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converges in L, (—oc0, o) if ¥, 4,2, ' < co. Consequently, by (9), the series

oD
Y EL o

n=1

converges in L (—o0, 00) if ¥, 4,2, ' < oo, which proves the theorem.
In [7] it is shown that E;[:1 —0 with respect to type I convergence.

The author expresses his sincere thanks to Dr. P. Antosik and Dr. A.
Kamifiski for their generous assistance in preparation of this paper.
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On vector-valued Fourier multiplier theorems *
by
FRANK ZIMMERMANN (Kiel}

Abstract. The classical Fourier multiplier theorems of Littlewood-Paley, Marcinkiewicz,
and Mikhlin are generalized to the vector-valued setting in d dimensions. A direct and a tensor
product approach yield slightly different results. While the direct approach works in general
UMD-spaces, the tensor product technique requires some uncondifional structure and it is
shown that the latter results fail for the Schatten classes S, with p # 2.

0. Introduction and results. Let X be a complex Banach space. We first
consider the d-dimensional periodic case. For 1 € p < oo let f,p Tesp. ip (X
be the usual Lebesgue space on [0, 11! with the normalized Lebesgue
measure. A sequence a = (a,),_,4 = C is said to be an L,(X)-Fourier multi-
plier if there is a constant C <co such that

(0.1) For all finitely nonzero sequences (x,),_,q SX

Xe
| Y anx, e|pm < clx xuezmx")pr(X)-

kEzd *xe

The set of all f,p (X)-Fourier multipliers will be denoted by AZ‘I,(X) and the
smallest constant C such that (0.1) holds by Jal| My For an f,P(X}-Fourier
multiplier a the operator

Y x. e Y a,x, e
weZ! xeZ?

extends uniquely to an operator on I:,,(X) which will be denoted by T,.
To state the Littlewood—Paley theorem we need a decomposition of Ze,
Actually, we will work with two different ones:

1) A coarse decomposition arising as differences of dyadic cuboids:
Dy = {0! and for n=dr+j, reNy, jell, ..., d! let

_Dnz {M =(}{1, _.,,%d)EZdHMiI <2r+1 fOI' iE‘{l,...,j‘—ll,
<yl <2, | < for ielj+1, ..., d}}.

* This is a part of the authors PhD. thesis written under the supervision of Prof.
H. Kénig.
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2) A fine decomposition arising as products of the one-dimensional
dyadic decomposition: let I, = {0} € Z and for neN, I, = {keZ |21 < |k
<27, and define for v = (v,, ..., v;) €N

4,=1I, x...xI,.

From the papers [Bur] and [B 1] we will need the following theorem.
For the notion of a Banach-space-valued martingale see [D/U].

Tueorem 01. For a Banach .Spac:e X the following are equivalent:

(i) For all pe(l, o) there exists a constant C, < o such that for any
martingale (fnen, and any choice of signs (g)..n & {+1, —1} and any NeN

N
I fo+ 2‘1 ey (fi— S 1)||Lp(ﬂ,£,u:X) < Gl M zpm-

(i) For all pe(l, oo) the sequence (a,),_,a With

1 i % = 0 coordinatewise,
ax = .
0 otherwise

is an iP(X)-Fourier multiplier.

Remarks. (i} is just the definition of an UMD-space from [Bur].
Formally both (i) and (i) depend on p, but it is shown that one gets
equivalent properties if one replaces “for all pe(l, ) by “for one
pe(l, c0)”. Also note that (ii) but not (i) depends on the dimension d. Well-
known examples of UMD-spaces are reflexive Lebesgue spaces L,, 1<p
< oo, reflexive Lorentz spaces L, 1 <p, g < oo, reflexive Orlicz sequence
spaces and reflexive Schatten classes §,, 1 <p < oo. The operator LI
which corresponds to the sequence in (ii) is the d-dimensional Riesz prajec-
tion and will be denoted by R.

A Banach space X is said to have local unconditional structure (Lu.st) if
there exists a constant C < co such that for any finite-dimensional subspace
Y of X there exists a finite-dimensional space Z with an unconditional basis

such that the natural embedding j: ¥ —X factors as j = AB with B: Y

—Z, A: Z —~X and ||4}j|iB]| < C. All Banach lattices (e.g. L, L,,, Orlicz
spaces. C[0, 1]) have Lust. The Schatten classes 8,, p# 2, do not have
lust. (see [Pis]).

We are now able to state our first result:

ProposiTion 1 (vector-valued Littlewood-Paley theorem). Let X be an
UMD-space (resp. UMD-space with lust) and 1 <p <. Then Jor any
choice of signs (Exen, (resp. (8)vend) the sequence (@), g With a, =g for
xeDy (resp. a, =¢, Jor xcAd) is an f,p(XyFourier multiplier.

Fourier multiplier theorems 203

Remarks. For d =1 the claim of both versions of the proposition
coincides and is contained in [B2]. [McC] uses different methods to obtain
similar results on R?. Other partial results are contained in the papers [Fer]
and [R/T]. In the case X = C this is the classical Littlewood—-Paley theorem.
This can be seen by averaging over all possible choices of signs and using
Khinchin’s inequality. For details see [E/G].

Since the D, are unions of the 4,, the claim of the bracketed version is
stronger, but we need the additional assumption of Lu.st. It will be seen that
this assumption cannot be dropped unconditionally. Corresponding to the
Littlewood--Paley theorem there are analogues of Marcinkiewicz’s multiplier
theorem.

DeFivrmion 0.1, Let «, feZ* with a < § (coordinatewise). Let [x:f]
= {xeZ'|o <% < B) (the Dy and the 4, are finite unions of such “cuboids™).
For y=(y1, ..., 4 = Y 3=, 7;¢; we consider the difference operators 4": for
4 = (@) 16t 4°a =a and

Ata = AT%L A%
0, %J =,

The variation of a on [«:f] is defined by

vara= Y K4'™a),| where

[:f7] aelax:f]

1 N xJ 7;‘5 aj,
0, "CJ = ij.

Y = (}’x,li [ERE] yx,d): yx,j = {

For D = Dy (resp. 4,), which is naturally the union of s = 2 (resp. s = 29)
such intervals [o: f;], we let _ o

<

Vara =Y, var a.
D i= 1 [ap:pil
ProposiTion 2 (vector-valued Marcinkiewicz theorem). Let X be an
UMD-space (resp. UMD-space with lu.st) and 1 <p < . Then there is a
constant C < co such that for any sequence a =(a,) _ 4

(e}, palliz oy < C sup Vara  (resp. |i(a,),_,llss x < C sup Vara).
e ? keNg Dy ? veNg
Let us now turn to the case of R Let L, and L,(X) denote the
Lebesgue space on R? with the normalized Lebesgue measure. We will work
with the set of rapidly decreasing functions
F(X) = {o: R" =X |¢ is infinitely often differentiable and

VNeN sup (1+IEM) D7 @ (Ollx| £ R, [y < N} < oo}

2 — Studia Mathematica 93.3
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For the Fourier transform and its inverse we have as usual

(Fo)n) = [cp(ff)e“z"“"’“dé (F o)) = | @e* e di.
K

Now let ¢ Rd - C be any bounded function. ¢ is called an L,(X)-
Fourier multiplier if there is a constant C < co such that
0.2 Voe#(X) [|1F 0 Fol,m < Clollm-

The set of all L, (X)—Foﬁrier multipliers will be denoted by M,(X) and the
smallest constant C for which (0.2) holds by |]l//||M.,,(x)-

Prorosrion 3 (vector-valued Mikhlin theorem). Let X be an UMD-
space (resp. UMD-space with lLust). Then for any pe(l, o) there is a
constant C < oo such that for all bounded functwns yr: R — C whose distribu-
tional derivatives D' of order y < (1, ..., 1) are represented on R*\! 10! by
Sfunctions, we have

1¥llae 0 <
(resp. [[Wll o =

(Here 7 is a multiindex and |y =p; + ...

Csup {|]"D7 (&) £ eRI\0}, v < (1, ..., 1)}
< Csup{E* DYy (DI LR 0], vy <(1, ..., 1))).
+7; and & =& 50
Observe that the weight function ¢! of the first version is larger than
the second, |£Y|. A weaker result is contained in [McC] and [Fer].

From this we are able to deduce a Littlewood-Paley theorem for R?
which corresponds to the following decompositions of R*\{0]:

1) A coarse decomposition: for n=dr+j, reZ, jeil, ..., d} let
D,={E=(&, ..., E) RG] <27 for iell, ., j—1},
TS <TG <2 for ielj+1, ..., d]}
2) A fine decomposition: for v = (v, ..., v € Z*
A, = [EeRN{0} 2T )5 <2 for iell, ..., d}).

ProrosiTION 4 (vector-valued Littlewood—Paley theorem for RY). Let X
be an UMD-space (resp. UMD-space with lust) and 1 < p < oo. Then for any
choice of signs (&)xez (resp. (e)), ,4) the function v R — C with s (£) = ¢, for
EeD, (resp. yr (&) =e, for Eed,) is an L,(X)-Fourier multiplier,

Our last multiplier theorem is a common generalization of Propositions
3 and 4. The notion of variation is defined analogously te the periodic case.
For the precise definition see Section 2.

ProrositioN 5. Let X be an UMD-space (resp. UMD-space with lu.st)
and 1 <p < oo, There is a constant C < oo such that for any W which has
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distributional derivatives D" of order y<(1,..., 1) in L, in D5 (resp. 43)

Csup lVarl,!/|neZ1

Wllae,00 < (resp. [Wila,cn < Csup {Varl,hivel’“)

V

{(Here D3 and A4? stand for the interior of D, and 4,)

It should be noted that for functions with bounded derivatives

sup lVaru,Hnel*L

Csup {[{D" Y (O neZ, y<(1,..., 1), {eD7),

sup {Vary|veZ* < Csup & Dy (2 |veZd, y<(l, ...,

a
AV

1), £eds).

Finally, we give a negative result:

Provrosi1ioN 6. In none of the propositions | through 3 does the bracketed
claim hold for the Schatten classes S,, 1 <p < oo and p+#2.

The anthor is deeply indebted to Prof. H. K&nig for his stimulation and
support.

1. The periodic case. The idea of the proof of.the first version of
Proposition 1 is taken from [B2]. Corresponding to the coarse decomposi-
tion of Z? we consider an increasing sequence of g-algebras:

For reN, the dyadic intervals {I,, =[0,2"")+427"|qe{0, ..., 27—1]}
generate a c-algebra which we denote by .. Furthermore, for n=rd
+Jj, reNg, jeil, ..., d}, we introduce the g-algebra 3, = #,;,.; which is
generated by

Doy X oo XDy XD x ... x5,
[ v k. "y

J factors d=j Tactcrs

For notational reasons we also define #, = (@, [0, 1)).

.The conditional expectation with respect to ##, will be denoted by
E(|##,). Let 14 f,‘,(X) '—rf,p(X), ff (- —9, denote the translation with
respect to the group [0, 1) when the operation is componentwise addition
modulo 1.

Lemma L.1. For any UMD-space X and pe(l, oo) there exists a C < oo
such that for all NeN, all signs (enen, and all f € L,(X)

(L.1) ” Z g, (h, *f)”LP(X) Cilflle 20

n=0

where hy=1 and for nz 1, h,,_-h,‘HJGL, (R%), reNg, jell, ..., d}, have

the Fourier coefficients
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(12 : i = (j—isinz(nx,/zrﬂ)\sin‘f(nu,-/zrﬂ) (I d sinz(nx,/?))

i=1 (27 )2 / (Tf%j/;’lr“}2 =j+1 (mey/27)?
where x = (X1, ..., %y).

Note that the Fourier coefficients of h,,; are away from zero on D,.
Our aim will be to replace h,., by a function whose Fourier coefficients are
1 on D, and 0 elsewhere. This will be done by a generalization of the’
contractton principle for Rademacher averages using a convexity argument.

Proof. The operator fn——r[m e Ts E(r- of | #.)dS commutes with
translations and is hence a convolution operator. Te compute the kernel we
write the conditional expectation as an integral operator. Let n =rd+; and

=180, n=(, ..., n). Then
E(f| 0 (m
r+l_y d 2r-1
= | f© (H ! Z Xopyr Com)( I 2 Z Xy g (&1 1)) dE
o, l)d ‘l— =g+ g=0
= Hn(é& 1)
Here j, _ stands for the characteristic function of the set J,, =1, xI,

A sxmple computation using translation invariance and Fubnms theorcm
shows

13 { wE@ of|#)d9=f*G,
.1 .
where
G,(H= [ H,((+9, 949
0,1y
j ar+l_y
=(H2"+1 r Z x-fr+1q(§f+‘gl! l)d‘g)
I=1 [0,1) g=0
d 71

(IT 2 1% 0, (68 9948)

I=j+1 [0,1) q=0
d

(T4 § LipuroCtt, d)( I 4 | XJ,_Q(éz“H, t)dr)

=1 (o,1) 1=j+’1 [0,1)
(H4r+lx“+1 S SN ()] H & Ay o *X- 1,.0(5))
I=1 I=j+1

The Fourier coefficients of a factor of the above product satisfy
@ 11, % X1, (k) = 4" (sin (27" nk)/nk)2,

If we furthermore use the fact that sin®(x)-sin®(2x) = sin* (x), we see that
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the functions h, = G,—G,_, satisfy (1.2). To prove (1.1) we insert {(1.3) and
get

N .
1E a0l Dlzem

=|| | raleoE(r_s )+ le,.(E(r-stJf"n)—E(f-sflf-1)))d-9|[L~ -
[G,l)d n= 4

< | |leoEfx-
{0, 1)4

and by the UMD-property (Theorem 0.1) this is
<C j [[E(z. sfi”n)fiz.c:{)dlg C||f”1,m n

o, 14 .

The main tool to derive Propaosition 1 from Lemma 1.1 is a generaliza-

tion of the contraction principle for Rademacher averages (see [Kah]). This

technique is well known in connection with square functions but as [B 2] we

prefer to work with Rademacher averages, since we do not. want to use a

lattice structure in the space X. The set of all operators on a Banach space X
will be denoted by L(X).

Dermvirion 1.1. Let T be a fixed element of L(L, (@, Z, u; X)) and

M(T)= [SeL({L,(®, T, u; X))|3¢, ¢: 2 ~ C measurable,
Wl 1ol <1 ae. such that VfeL (2, X, 1;X): S(f) =
We define for an arbitrary §eL{L,(@2, Z, 1: X))

N
s )+ 21 Ea(E(r_y f| ”n)"E(T-st*}-—l))”fpuf) d9,

YT(ef)}.

(1] = |FT”L(LP(Q,S,;;;X))inf 4> 0|Sedconv M(T)}

where conv M(T) denotes the closure of the convex hull of M(T) in the
weak operator topology.

Lemma 12 (generalized contraction principle). Let (2, X, p) be & meas-
ure space and X a Banach space and 1< p < oo. For all operators T,
Tel{L, (@, Z,4; X)) and for all finitely nonzero  sequences
(f) =L,(Q, Z, u; X) we have

1 1
(TIE720 TN e 0 8 < 25BN Tl (T 1) 5000 )

Proof 1) We apply Fubmls thecrem to get for any system (¢, =
Lo(@,Z, p; G

(1.4) ([HZ Fa(t) @n S22 )P = I I HZ ra(0) @, (@), (w)H‘idtdu(w))””
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For fixed o eQ the contraction principle and again Fubini’s theorem yield
that (1.4) is ‘

1
(§ (I3 7a(0) £ (@)||% dit du (o))
0

n

< 2sup [l@all,
" 0
1

= 25up [lp,flz., ( ler () @ufull2 2 50 4.
2) First assume that T,eM(T). Thus there exist measurable y,, ¢,

with modulus less than 1 almrost everywhere such that for all f]
T.() = v, T(e,.f). Applying the estimate for (1.4) twice we get

1 1
(TIEral TUE i 5 96 = RACEARACH T o 2 4E)7

e

|£pm,l‘.#:x) dt)

1 1
2(”[2 r, (t) T((Pnfn)”ip(ﬂ,f.u:)() dt)llp € 4|IT”(”|Z rn(t)f;x
6 n G n

The general result follows by convexity and by the lower semicontinuity of
the norm in the weak topology. m

In the application of Lemma 1.2, ‘T will be the Riesz projection R (see
Theorem 0.1) and the operators T, will be the convolution operators with the
trigonometric polynomials

1, : n=40,
0 l€<n<d
(L3) ,= <0 | <n<d,
g > Rie) Le®™@%> pzd4l,
€Dy g

ie. T.(f) =gn.+f. We then have to estimate ||T,)x.

To estimate ||Tj||x we need some linear algebra. For o, feZ, a<f
(coordinatewise), the finite-dimensional vector space of finite sequences
@ = (8y)erayy; has the basis [a” =(a}), e v €[a: 5]} where

. 1, %2y,
a!( = .
0, otherwise.

An arbitrary element can easily be expanded with respect to this basis:

Lemma 1.3, (i} For x e[w; f] take v, as in the imtroduction. Then for all

vela: f]
(47", = {1’ * =

0, otherwise.

(i) For any a = (@ yeep S C we have
a= 3 (4™a)a"

" xela:f] )
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Sketch of proof. () If for a gell, ..., d}, %, #v,, then (4™a’),
= {. Hence also (47*a"), = 0. This proves the otherwise case. Suppose that
1, ..., 4, are all coordinate 'directions g for which 2, # ;. Then

(a9, = (4. Ay, =42 A ), ~( ‘2 g,

a1

J

v’

=0
=..=a=1.

(ii) holds because it holds on all elements of the basis. m

For veZ? let us consider ¢ = (c,),_,« given by

1, x=z=v,
Cy = ]
*7 10, otherwise

(ie. ¢ is the characteristic function of the positive cone translated by v).
It is clear that for all f&eL,(X)

L(f)= Ez’dé“">R(e—2ﬁ (v,->f).
This implies
9 1 Tdx = IRl e om-

Extending our previous notation we consider for any ¢ = (a,)yeq. G = Z,
an operator T, which acts on the trigonometric monomials as
25 {x, )
T, (€24 ) = a,e x, #€G,
0, G

For the basis elements @” of Lemma 1.3 the norm || 7,z can be estimated by

1 Telle < < 2[Rzt

This can be seen by writing the cuboid {v:p] as a “signed sum” of 24
translated positive cones. (For d = 2 and d = 3 drawing a figure is sufficient,
but also the general case is elementary and we therefore omit the proof) We
can then use (1.6) and the triangle inequality. A second application of the
triangle inequality to Lemma 1.3(ii) gives:

Lemma 1.4, Let X be an UMD-space and 1 < p <co. Then for any
neNo and any sequence a = (4 )yen,

|T”R <2 |R||L(L,,(X)) Vara
Now we need a convenient tool to estimate thc variation of a sequence.
For «, ek, a < B, let [, B] = {EeR!|a < & < f coordinatewise}.

Lemua 15, Let o, Be2% a < B, and let ¢ [«, p] = C be a sufficiently
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smooth function. If the sequence a = (a,),up IS given by a, = @ () then

varas 3 max {{(D? o) (&) (B—o) | £ en, B}

[2:8] P€(1,...,1)

(for the notation see Proposition 3).

Proof. We rearrange the sum in the definition of the variation:

vara= 3 by

[x:f1) YE(1,.,1) B]y,=7)

(47 a).|.

Ify=(0,...,
¥ =o. Hence

0) then we have only one x for which y, = v, namely

2 7)) =lal <

B re=7)

max {|@(&)]| £ e[z, B}
= max {[D" @ (& (B —«)?| ¢ efa, B]).

Now take any multiindex y with 0 2y <(1, ...,
that y, =y. Let ¢,, ..., g, be the coordinate directions g for which Pug % 0.
We write 1’ for (1, ..., 1) eR" and %' for (x %,) €R". By the fundamen-
tal theorem of calculus we have

1) and a x e[a: B such

PTERRRE

(4™a), = | D'@(d¢ where ¢ = gf 7= e \
[x’—.l',x‘] aj: Jé“lqiﬁ LA | qP'J‘
This implies '
‘ 2 el Y max Do (&) & e[~ 1, %)
el ve=7v) Belyye= 1 .

< Y maxiDp
=y}
The last equality holds because we have exactly (f—a)" different x with
Y« = 7. Summation of the inequalities gives the result. m

(1€ ela, f1} = (B—a) max {|D? @(&)][ £ e[a, £1}.

We are now able to prove the desired inequalities for the operaters T,
of (L.5):

LeMMma 1.6. For any UMD-space X and any pe(l, ) the operators T,
Sfrom (1.5) satisfy

sup {IPTllnln eNp} <.

Proof. Of course {|Tiflx=...=[|Tflx =0 and 1 Tollx < 2d||R||L(E(x>}

For n=dr+j> dtheset D,_, is the disjoint union of two cuboids. Since the

estimate for the “negative” part is the same, we only treat the “positive” part.

icm
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Its edges are given by

= (=241, = XL DT, 2T )
J—1times m:}ﬂmes [
Bu= (=1, ., 2—1, 21,2711, ., 27 =)
Jj—1times h i times -

To simplify notation we introduce the functions

52,(%) = sin? (27" /(27" mx)2, 84, (%) = sin* (27T /(2 wx)2,

(H S2,r+1 fx))54r+1(f,)( H Sz,r(fl))-

I=j+1

(&) =

Thus we have for a constant C that depends only on 4
[Be—a)"ly < (1, ...
= C|Rllzg00 (max {max {s3 1, (x), (277" —2)(s3}4 1) ()} ]
xe[-2+1, -1}

xmax {max {sz}y s (), (7 =1 (sl ) 0} xe[2, 27— 17}

Disz ()} | xe[— 27 41, 21y

ITlir < CHR“L(L o AX LFD? @, (&) 1), Eela,, 8,1}

x (max {max {s3 ! (x), (27—
and changing the variables gives the bound
")} xe[-1/2, 2]}t
(%), (53,8) (0} | x e[1/4, 1/2]}

< CIRllyiz 0 (max {max {575 (%), (53,6
xmax {max sy

= C [|Rl{zei,oon- =

Proof of the 1st version of Proposition 1. We write S, for the
operator which acts on the trigonometric pelynomials as

e?™™x,  web,,

A x) It 4 and xeX.
(1.7)  S.(e x) {0 otherwise, for all xeZ? and xe

Note that for n 2 d we have §,_;(f) = T,(h,* f). Averaging in Lemma 1.1
over all possible choices of signs we can deduce

1 N
(I 7ul®) b Sl 0 42} < ClIfllzy0-
0 n=1

Because of Lemma 1.4 the generalized contraction principle (Lemma 1.2) can
be used with the operators (1.5) to give with a different constant C

(1.8) J" HZ 1@ S (N5 42) < C Il
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Note that the same estimate holds in the dual space L, (X’). Because of the
orthogonality of the trigonometric functions we have for all X-valued
trigonometric polynomials f and all X'-valued trigonometric polynomials g

). 0> = Sull) 5@y, (Sl Su@)> =0
Here (-, ) is the duality bracket of the dual pair (EP(X), I:,,f(X

for k # n.
). If for a

fixed trigonometric polynomial f, N is large enough, we have f = Z,.N= ()
and hence for fixed re[0, 1]
N ‘N
(ra>=L Y S(ha>= 21 $Sa(f), Sulg)y = Z (08 (f), ra() S.{g)>
n=1 n= n=1

N N
=( ;1 ()8, (), 21 ra ()8, (9) -

By integration over ¢ we get

1 N N

H<Er,. @8N, ¥

Q n=1

I<f, @)l < o) S, (0) ] dt

N . ;
T ralt) Sulal|E, ey 40

n=1

< (12, @S, ()

1 N
<C([| X r@ Sn(f)”i‘!,m dt)”””ﬂ”ztpr(x')-
0 n=1 -
Since the X’-valued trigonometric polynomials are norming for I:p (X) we get

1 N
(19 Ifllz0 < C(| Z ma@® Sul f)||n,,<x; de)t.
) . 0 n=1
Now let (a,), ,4 be the sequence which is dctermmcd by the sequence of
8igns (gxren, a8 in Proposition 1. For an arbitrary trigonometric polynomial
f and N large enough
@

1
TNl = || 2 & Sa Uz, < C{l| T 16§ o Z d)

0 n=1

JHZ 08, (Fl0 4Y# S C UMl

Proof of the 2nd version of Proposition 1. We need the local
unconditional structure to apply a result from [Pis]. Actually, the results of
this paper also hold if Lu.st. is replaced by the somewhat weaker assumptions
of [Pis]. Let S, ; resp. S, denote the operators which act on the trigonometric

icm
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monomials as

2mi(x,>
Ry _(EZNE(x,')x): € X5 %) EIH\In—l’
i 0, otherwise,
21!:(%, >
s (ez’“" >x) X, xed‘,,.
0, otherwise.

Note that for UMD-spaces S, ; can be extended to a continuous operator
on L,(X) if 1 <p <oco. Furthermore, §, = 810,08, 4. Let (r,‘),,EN% be

a d-dimensional renumeration of the Rademacher functions. Suppose X has
Lust. It was proved in [Pis] that there exists a constant C < oo such that

” Z re(t) S, (S| 0 42"

ueNO

d
(T IE (T rg@)SulE mdts .. dea ™ = ().
(0,12 xend J=1
We abbreviate I’ for (tl’-’ ERE] td): » for (22: .

Syp2 008, 0 Then

W=C( | [T r@Snal I T1rgC)SeNEmdede)”,

[c. 1)“ 1[0 1) %1eNg EN%_I Jj=2

x;) and 8, for

and by applying the first version for d = 1 (Bourgain’s result) d times this is

< I 2 H” ) S (Nz,0

to,18= 1 weNd™ 1j=2
< Cllf N0
Again a simple duality argument can be used to finish the proof. w

d)e

Actually, Proposition 2 is an easy corollary of Propo'siti-on 1 if one uses
the generalized contraction principle. Indeed, if a is as in Proposition 2 and
S, are the operators (1.7), then for any trigonometric polynormal f

LU= T T, 080
‘ ' neNg
Here a|p is the sequence which coincides with a on D, and is 0 elsewhere.
Thus

1% Nl = % Tain

ENQ

OSu (f)”fp(X)

”| Y 70 Ty, SN m)'”

9 neNg
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< C, sup {H’I;,DJ[RIneN‘ “Z () Sy (N|E,0)'"  (by Lemma 1.2)

neNq

< Cysup (Varalp | neNo} | fllg, -
DPI

The proof for the second version of Proposition 2 is the same w

2. The case R%. To translate the results of Section 1 to RY, we will make
use of the well-known Poisson summation formula in the following vector-
valued form:

21) Vee#,(X), acR\{0) and £eR’

T ol+a)=a""y (Fo)i/a)eRriacs
ey e zd

The translation is done by the following lemma:

LEMMa 21. For ¢e#(X), p <o and keN we introduce
Oy =27 Y (F) (/290 (1p+1/p = 1).

xeZ?
Then
(2.2) ”(p”Lp(X) = lim ”‘PJ:p”Ep(X)'
k- o0y
Proof.

fim Il(PyZplff,,,(X) = lim 274" ( ‘ f H Y (F0) (/29 emm,b”g,df)lfp.
k- koo [-1/2,1j2)¢ e

By a change of variable this is

= lim 2—5&( ) j- ” Z (F0)(2/29) e(m/z*)(x,ﬁ)”;,df)llp
koo [~ 2k~ 1 k= 1yd o
CRY him ( " ” E @ £+2k%)ug’ dé)i,’p

Koo (mgk=12k=1d o

To calculate the above limit, we observe that for any fixed n > d there is
& constant C < oo such that

VEERY .21 o(dly < Clélzn
With this we have

C T NE e@+2xgage—( |

[_zk—lizk-l)d xezd [—2k=1 2k— 1)d

(here |&|,, = max {|&], ..., |ED).

llp ()% dE) 7
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< X (] lle@+25 0 deyr

xeZdyo} -2k~ 1 k-1

2P C Y (e 1/2) "< C2PTR N (] o —1/2)7
xs Z9\(0} . :‘z_szd\(og
<o
We see that for large k this tends to zero, so that the above equalities can

be continued:
= lim ( f

k= gk gk 1y

g

o (©NEdE)™ = lipll x. =

We need a well-known convergence theorem foi Fourier multipliers.
It is a simple consequence of Lebesgue’s dominated convergence theorem
and Fatou’s lemma.

Lemma 2.2, Let ().~ be a sequence of L,(X)-Fourier multipliers that
converges almost everywhere to . Then

Wil 0 < sup {IW il | n €N

Proof of Proposition 3. First we will assume that y: R = C is
a rapidly decreasing function. Then for any ¢ e #(X) we have F ' (y F¢)
=(F YY)+ pe¥(X). For this function we can use Lemma 2.1:

1) * ol oy = Jim (=1 )« @hsidig,n

= hm “2 dkfp’ Z ¥ M/Zk)(J(p (}ﬂ/2k) el ioN )”

< sup {||( (/24) xezd”ﬂp(X) |keN} khm lloipll 0
— e,
= ||€0”L {X)

To estimate ||y (»/2) uezd”M o we will use the two versions of Proposi-
tion 2 to get the two versions Yof Proposition 3. In the case of the first
version we get

[0 02/ 29, pell 52,00 < Csup Var()j/(x/Z"))szd FreNg} = ().
To estimate this variation we wﬂl apply Lemma 1.4. Since the sizes of the
edges of the two subcubes of D, are proportional to 2" we get
(#) < Cysup 2Dy (/29)&) Dy, < (1, ..., 1), neNg}
= Cysup {2"DYWYA(E/29) [{ €Dy, < (1, ..., 1), mENG]
By changing the variable ¢ to &/2% this is
< Cysup [ D7) (B[ € eRN\ {0}, v < (L, ..., D}
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In the case of the second version we have
10 /29, _ il it oy < Csup {Var(y (2/29)_,q|v €Nb} = ().
ezdll My 4

Now the sizes of the edges of the 27 subcuboids of 4, in the jth coordinate
direction are proportional to 2. Writing 2" for the vector (2'7, ..., 2’ and
taking exponentials coordinatewise we find

() < Cysup {2V (D79 (/290D [veNs, y< (L, ..., 1), ¢ed,}

< Cosup {IE DY) 1 RN (0}, y< (L, ..., D).

This proves the proposition in the case that g %.

As a second step suppose that ¥ is infinitely often differentiable. Since
both versions can be treated in the same way, we just consider the first. Fix
an infinitely often differentiable o with compact support such that g(0)=1.
Define for all ¢ >0, g, = g{¢-). Then g, is in .% and converges pointwise
to ¥ as ¢ goes to 0. By Lemma 22 we have

”'/’”MP(X) < sup {[le. d’”Mp(X) | £> 0}
< sup YD g (&) RO, y< (L, .., 1), e > 0}
<sup{ Y Clo, fIE D=y ()] )E)# | D* 2: (&) | € eRM\ [0},

y=atg
| 7y<(l,..., 1), e>0} (by Leibniz’s formula)
< Csup (i D™y ()] |E e R\ 10}, a < (1, ..., 1)
xsup {|I# D% o, () | € RN {0}, B< (L, ..., 1), & >0}
= [e£]|DF g ()|

pa Yy

Finally, take ¢ arbitrary as in the proposition. Choose ¢ infinitely often
differentiable such that ¢ > 0, (lgll;, = 1 and supp ¢ <[ 1, 1]* and define
g. =t %0(-/e). Then ¢ g, is infinitely often differentiable and converges
almost everywhere to  as ¢ converges to 0. Again we have to apply the
convergence lemma:

Wl < 8up (I * gellas, 12 > 0) = (%),

For the first version we find

(4 < Csup M (D7y xg) (9] |& > 0, EeR\ 10}, y<(1, ..., 1))

We distinguish two cases:

icm
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If [£], < 2¢ then
1E[1201D7 (4 + 0 () < (2911 % D7 0 () < 28 (W, 107 ullz,
= 29 iyll,, I D7 elly, -
If |£],, > 2¢ then since g, has its support in [—e, &]®
IE121DY (y * 0 (EN < 112 Il sup (D7 () | In — &l < &}
< sup (&)™ 1€ =nlw <& lllly Sup {of™ ID7¥ (| €R* {0}

124+ 1
< 2((1/ 7l

That means in any case we have
() < Csup M D' (DI EeR 10}, y<(L,..., D].
For the second version we need to érgue a little differently:
(+) < Csup Y& D7 (Y + )@l le > 0, £eR* [0}, p < (1, ..., D}

Again we distinguish two cases:
I || <& then

&7 D7 (¢ % 22) ()] < e[y + D7 @) (D < M WL, 107 @ulliy = Wl . ID7 el -

If |¢|, > & then we use the binomial formula to get

D)@ =] T Cla, B D* v (m) (D e, ) (2)]-

y=at+f

Since |&], > ¢ and suppg, =[—¢, £]* the above convolution can be written
as an integral as follows:

=] Y Ce.p | E—nrDyE-—mn’ Do, (n)dn|

y=atp T
< Csup & D%y @) £ eR\ 10}, a < (1, ..., 1)]
xsup |’ D g, (llr, 12 >0, B<(1, ..., 1)},

The last supremum equals actually sup {7’ D" oz, |8 < (1, ..., D}.
Therefore also the second version is proved. =

For the proof of Propésition 4 we need the following fact:
LemMa 2.3. For any Banach space X and any 1 <p < oo we have
lp e £ (X)|supp Fe compact, O¢supp Fo) aeieL"(X)'

Sketch of proof Fix an infinitely often differentiable function g:
R? — C with compact support which equals 1 on a neighbourhood of 0. For
$>0 put g, =g(8-). We first show that (¢ e (X)|Fp has compact
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support} is dense in L,{X) for 1 < p < oo. For this it suffices to show that
for every infinitely often differentiable ¢: R® — X with compact support

(2.1) lim(#F 'g)+@ = ¢ in the L,(X)-norm.

30
Note that the Fourier transforms of the functions on the left-hand side
have compact support. To prove (2.1} one first uses Lebesgue’s theorem to
prove almost everywhere convergence and then appeals to Lebesgue’s theo-
rem a second time to get convergence in the norm. To finally prove Lemma
2.3 one notes that for 1 <p < oo ‘
limsup | (#~" 0g) * @llu, < tim Sp|lgflz, o 17 "oslle,

$—-w

= msup ol on 977 177 dlun =0 (/p+1/p' =1).

This means

(2.2) limo—(F *g)*x¢=¢ in the L,(X)-norm.

&=

Note that the origin is not in the support of the Fourier transform of the
left-hand side. Altogether (2.1) and (2.2) imply the lemma. w

As in the periodic case an L,(X)-Fourier multiplier y induces an
operator T, on L,(X). It is easy te prove that the characteristic function of
the positive cone RZ is an element of M, (X) for UMD-spaces X and | <p
< o0. The corresponding operator is also called the Riesz projection and will
be denoted by R. We abbreviate S, for the operator T,p - Similarly to the
periodic case we have !

(2.3) ISille < 2 27| Rllzqz o -
Of course a similar result holds for the A,.

Proof of Proposition 4. We choose an infinitely often differen-
tiable ¢ with compact support. Furthermore, we require that glp, =1
(resp. 0lagg,... o0 =1 for the second versiop) and suppg < UlnwlISd‘ D,
(resp. suppo SU, <14 For n=rd+jeZ (resp. veZY) and ¢
=(§19'”9 éd) PUt .

0,(8) = Q(zr'g’j: 2F+1f1, cens 2r+1§j—1; 2r\fj+1, s 278 ]
(resp. u(8) = ¢(2" ¢y, ..., 2¢)).
These functions have the following properties:

1) @ulp, =1 (resp. g,|,, =1).

2) suppg, = U Dy (resp.suppo, = U 4,

[k~n|<d le—v] €1
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3) sup {EMD7 g, (&)1 eRIN {0}, y< (1, ..., 1)}
< 2%sup &M IDY 0 ()1 eRN (0], y < (L, ..., 1)}
(resp. sup {|* D7, (O)|EeR'\ (0}, y< (1, ..., 1)}
<sup S D7 (D€ RN {0}, y < (1, ..., 1))

For simplicity we only treat the first version. The second can be handled
analogously. :

For re[0, 1] put ¢, :ZHE 2 n(f) @, Because of 2) this sum is locally
finite on R?\{0! and an application of Proposition 3 will show

Wl 0 < Csup {17 D7 Y (O] E R, v < (L, ., 1))

< Cysup {EV11D7 0, (D)1 R y < (L, ..., 1), neZ} = C, <o,

Because of Lemma 2.3 it suffices to show the inequality (0.2) for all ¢ € %(X)
whose Fourier transforms have compact support and do not contain the
origin. Observe that for such ¢ the sum
T:pt((P) = Z rn(r)('j}“‘“i Qn)*q’
neZ

is finite. Furthermore, because of property 1) we have S,(T; (f)) = S,(f).
An application of the generalized contraction principle shows

1 1
(1 12, 70 Su (N2 0 dt) 7 < (g | ern () Su( T, (PNIE oy )"

neZ

1
< CsupdliSillelneZH[|| X ru() T (N0 42)'77
0

ne Z

1
=C, “”(5*“1 ) *f”f.p()c) df)”p £C, ”f”LP(X}-
o .

The same duality argument as at the end of the proof of the first version
of Proposition 1 can now be used to prove the full statement of Pro-
position 4. =

We turn to Proposition 5. For stmplicity we will define the variation
only for functions with continuous derivatives. The reader may convince
himself that this notion can be extended to the functions . described in
Proposition 5. We need some additional notation. Let &eR? and let 3 be
a multiindex with 0 ==y < (1, ..., 1). Let g,,"..., g, be the coordinate direc-
tions ¢ for which y, = 1. We put. ¢, = (¢, , ..., ;). Furthermore, let {x, f)
= {{eR'w <¢ < B} and [o, f) = {£eRa < & < B}

3 ~ Stedia Mathematicn 933
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For ae(a, f) and ¢ e(w,, B,) define &7 = (¢4, ..., €) b
(60-) {019 jé{ql: cers qr}:
, .

531 J = QS'
Dermnmion 2.1, Let o, feR%, a < B, and let  be a function with
continuous derivatives D'y, y < (1, ..., 1), on (x, f). We put
vary =inf Y (0)+ % [ D7y de|oela, B].
(@8} 0#y € (11 l) @by '

Again D2 and A2 are naturally unions of such cuboids (o, §;) and we put

Vara,!f Y var ¥, Varw > var .

[ CTN:A)] t )

Now Proposition 5 can be deduced from Propos:t:on 4 in the same way as
Proposition 2 was deduced from Proposition 1. We just need to establish

Lenvima 2.4 Let W, a, B be as in Definition 2.1. Then
[ Tille < Cvary.
(@)

Proof. Split the cuboid (x, B) into 2* subcuboids all having the new
vertex . We only treat the part [, f), since the other can be handled in the
same way. Now the lemma is a consequence of the elementary formula

Y= Z ;[/3, where

P&,
d’y ("f) - [ _fﬂ x[n;,ﬂ) (é) DY 'j’ ('?;') d": E E[O’,‘ ﬁ)
Ty

Observe the difficulty arising by the fact that the mapping T, -y is not

Bochner integrable. Nevertheless, for all f e, (X} the pointwise evaiuated
mappings

—T,
" ng.B) !

are continuous and hence Bochner integrable. Thus T, can be approxi-

mated in the strong operator topology by Riemann sums fsee [H/P]) so that
‘we still have

I fe<2 | IDG0dn. =

o pby)

3. A counterexample. To prove Proposition 6 it suffices to show that the
bracketed version of Proposition 4 fails for §,, 1 <p <oo and p#2.
Furthermore, we restrict to the case d = 2. Fix a nonzero function ¢: R —~C,
p €%, such that supp Fo =[1/2,1]. Let (e,) I, be any orthogonal system.
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For N eN we define

N

‘ N
f: R? =8, (9,7 Z > (9 e, ® | Z e o (1) ).

The norm can be computed easily:

N N
Wileyisp = (] § HE e o®e} @ L e o (1) e, J|g, 29 da)'/r
n=1 k=
” Z elml”BqJ(S e ”r “ Zru'zkr (P(,c) e]‘lllp2 deT)llp
RR n=1
— Nligl,.

On the other hand, we have

e"*’“(m”k"qo(é})qa('c)e ®Re, flgnkg
otherwise.

Ty V13 ) =

If the bracketed version of Propositioh 4 would hold, we would have

N“‘?’”Lp = ||'/’”Lp(sp) ES C ” Z "(n @ T, itn 1) W“f. A5 ) dt

=C(] II! S ran® g2 0.(9) () e, @8 dr d9 do)tie

R0 mk=1

and by the contraction principle for Rademacher averages

‘ i N
<26([ [ ¥ ran®o® o e, @elt drdsdr)!r

RO mi=1
1 N

=2CIlollE, (Il X Ton () en @e§, dt)r.
0 nk=1

In the case p = 2 the last expression is just N. If p = o the average can be
estimated by C, N'/2 using Chevet’s inequality (see [Che]). Then for general
pe[2, o) by using the interpolation inequality [|-[ls, < II' HEFII- (15 %7 one
obtains the bound €, N*/2* 1% This shows that Proposition 4 cannot hold
for p > 2. By duality the proposition also fails for p <2. =
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Quotients and interpolation spaces
of stable Banach spaces

by
Y. BASTERO®* (Zaragoza) and Y. RAYNAUD (Paris)

Abstract. We show the stability (in the sense of Krivine-Maurey) of the quotients of
several reflexive or superreflexive stable atomic spaces. We show that the space L(E) is stable
provided L is a stable ri. space and E a stable Banach space. We study the stability of
interpolation spaces [L;, Ly]sy when L,, L, are stable ri. function spaces and X a stable
atomic lattice.

Introduction. In this paper we study the stability of quotients and
interpolation spaces of stable Banach spaces. The notion of stability for a
Banach space was introduced by Maurey and Krivine [KM]; recall that a
Banach space E is stable if for any bounded sequences (x,), (v, and
ulirafilters 4, ¥~ we have

lim Lim ||, + y,l| = limlim [lx,+ 3,,/|-
n m,y mo¥ omd

This property is élearly hereditary but does not behave well with respect
to other standard operations on Banach spaces. Quotients and duals of

- stable Banach spaces, even reflexive, may not be stable, as was shown in [G].

Similarly, no interesting result about interpolation of stable Banach spaces
was known (except the stability of Lorentz spaces, cf. [R]). In fact, if E, F
form an interpolation pair of stable Banach spaces, the space E+F (with
norm ||x|j = inf {|lel| +||f]| e €E, f €F, x =e+ f}) is a quotient of the direct
sum E @, F and therefore may probably not be stable. If E is a stable
Banach space, it is known that L,(E), 1 <p < oo, is also stable ((KMT). In
fact, in all cases where a lattice L is known to be stable, the same is true for
L(E) if E is a stable Banach space. This is the case for L, spaces, Orlicz
spaces, Lorentz spaces. But there was no general result in this direction,
except in the case of atomic lattices (i.e. spaces with 1-unconditional basis, cf.
[BM] and [B]). '

Here we present some positive results in these three directions. For the

* The contribution of this author was supported by the grant 0804-84 from CAICYT
(Spain). '



