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The maximum path theorem and
extreme points of James’ space

by

STEVEN F. BELLENOT (Tallzhassee, Fls)

Abstract. The maximum path theorem gives conditions on the costs of the edges of the
graph of the relation x >y on N so there is a unique “biggest” path of maximal cost. This
theorem is used to characterize the extreme points of James' guasi-reflexive Banach space.

We derive a result in graph theory and apply it to the theory of Banach
spaces. The maximum path Theorem 2.1 gives conditions on the costs of the
edges so there is a unique “biggest” path of maximal cost on the graph of
the relati_on x > y over N. This graph is acyclic and so by negating the costs,
we can find all maximal paths by well-known algorithms (see Section 1) for
finding minimal paths. Algorithms for finding shortest paths have been
extensively studied {see [4] and [7, pp. 41 f]). '

This maximum path is used to characterize the extreme points of James'
quasi-reflexive Banach space J (Proposition 3.1 and Corollary 3.2). Al-
though the set of these extreme points is small (closed and nowhere dense by
Corollary 3. 3), the algorithmic nature of the maximum path theorem allows
us to construct interesting examples of extreme points in J (Examples 3.4).

In Section 4, we briefly consider exposedness and smoothness. Fach
extreme point is expesed and a necessary condition for a point to be smooth
are in Proposition 4.1,

§ 1. The maximal path algorithm. This section gives most of the basic
definitions needed for the maximum path theorem in the next section.
Besides including the -algorithm, this section also tries to put the maximum
path theorem in context by showing what is true in general and giving a
couple of examples.

The setting is graph theory. The graph’s vertices are the natural num-
bers N = {0, 1, 2, ...} and there is a directed edge from j to i if i < j and that
edge has a cost C;; > 0. The algorithm below will find a path of maximal
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strongly exposed points.




2 S. F. Bellenot

cost between any pair of vertices. Proposition 1.2 will show how this implies
a maximal cost path for the whole graph {the path could have infinite
lengthy). 7 7

This algorithm is-similar to many well-known algorithms, Dijkstra’s
shortest path algorithm [2, p. 19] for example. The algorithm works since an
optimal path must be locally optimal, i.e. optimal on each of its “subpaths”
* and since we are applying it to a graph with no circuits. The algorithm takes
O(n? time to compute the maximal path from n to 0.

The algorithm defines three functions for 0 € i < < c0. The function
“N{i,j) is the cost of the maximal path from j to i (N is for norm), The
function B(i, j) is the first vertex =j on this path (B is for back). The
function E(i, j) gives the set of vertices on this path (E is for extreme).

AvcorrTaM 1.1, Initialize by setting N(i, i) = 0 and E(i, 1) = {i} (B(i, i) is
undefined). For i <j, these functions are inductively defined by

(1) N, p=max NG K+Cyr i <k <},
(2 B(i, j))=max {k: i<k <j, N{i, )= N(@, +C,;},
(3) E({,j)=E(i, BG, ))v i}
Since {N (i, n)), is increasing, define N (i, o) = lim, N (i, n). Also define
Cio = limsup;C,; and note that
NG B+C < N3, )<

so that N(i, k)+ Ci, < N(i, 0) is always true.

We are identifying subsets 4 = N with paths in the graph. Let S{4) be
the cost of the path A computed in the following strange manrner. If (a(k)}=,
is the increasing st of the elements of a finite set A, then

§ (A) == 3(1) o«

N(i, c0),

if j= 1, or
-1
S(A) = Z Cﬂ(k)ﬂ(h+1)+cﬂu')tﬁ ifj; 2
’ k=1

If (a(k)), is the increasing list of the elements of an infinite set A, then
S{A) =Y. Coapes 1)+
k

Note that for finite sets A we are implicitly adding the vertex “c0” to the
path.

The following proposition is perhaps well known. We give a proof both
for comparison with Theorem 2.1 and for completeness. Readers used to
“Banach space trees” are warned that our trees are usually not binary and
they grow down with the root at the top, ie. a tree is modeled on a tree of
descendants (of the root).
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ProposiTionN 1.2, For each i, there is A < {1 i+1,...} so that $(A)
= N(i, co). .

Proof. We use the algorithm to also construct a tree, The vertices are
{i,i+1, ...} and i is the root. If i, i+1, ..., k—1 have been added to the tree
make k a child of B(i, k). There are two cases to consider.

~ Case I: Some vertex t in this tree has infinitely many children (m(k}).
Note that E(i, t) is the unique path in the tree between t and the root i.
Since (N (i, n)), is increasing,

N(i, o) = im N (i, m(k)) = hm (N, 1)+ Comy) = N (i, £)+ 1im Cppgsy -

k k
Let ¢ <n <m(k). Since N{i, t)4+Cpupy = N(i, m(k)) 2 N(i, n) 2 N(i, 1)+ C,,
we have C, < Comy € Compe+ 1)- Hence limsup, C,, = limy, Cyyqy and S(E (i, )
= N (i, c0).

Case H: All vertices in the tree have finitely many children. Now the
infinity lemma [9, p. 381] applies and yields the existence of an infinite
branch L = {i, i+1, ...}  Note L = {J;, E(i, ) and hence if L = (m{k)}, then
S(L) =Lm, N{i, m(k)) = N(i, «v). Readers not familiar with the infinity
lemma may pick m(k-+1) as any child of m(k) with infinitely many descen-
dants, m

Examries 1.3. {A) For iz 1 define Cy_q 241 = Caizi42=2"" and
otherwise C;; =0. If A = {2i—1: i 2 1} U {0} and B = {2i: i > 0}, then both
S{A)=8SB)=N(0, g) =1, That is, different maximal paths need not have
any vertices in common other than the destination vertex. Also, there are two
almost distinct maximal paths from 2n to 1.

(B) Define C;,=1: C;,=2~1/n, for n=
and otherwise 'C;; = 0. In this example 4 = {1} and B = {1, 2} are both
maximal paths for i = 1. Yet for k > 3, N(1, k) = Ciy>C+Cy = N(1, 2)
+N(2, k). That is, the path B only catches up to this cost of the path A in
the limit.

(C) Let C;;=0; then any 4 « N is a path of maximal cost.

(D) Let C;; =1i; then any infinite 4 < N is a path of maximal cost. If A
is finite and n = max 4, then §(4) € n+n(n—1)/2 < o0 = N(0, ).

(B) Let Coy =Ci3=0, Coa=1, Cppyy =1/n for n22 and C;=0
otherwise. Let 4 =1{0,2,3,4,...), B=N and 4,={ied:i<n}, B,
= {ieB: i < n}. Observe S(B,) <S§(A4,) but §(4) = S(B).

3; Cp,=1-2/n for nz=3;

§ 2. The maximum path theorem

Traeorem 2.1. If the costs C,; satisfy the glueing condition, are of bounded
variation and are nice at infinity, then for each i, there is A < {i,i+1, ...} so
that §(A4) = N (i, ), and for each t with i <t <o and t¢ A there is then a &
=8 >0 so that if B {i,i+1,...} and teB then S(B) < N(i, w0)~3.
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Before defining the terms in the hypothesis, let us observe that 4 is the
maximum path. It follows from the theorem that if B < {i, i+1,...} and
S(B) = N(i, ), then B = A. That is, A is the “longest” or “biggest” path of
maximal cost, and is obviously unique. Example 1.3C shows that the
inclusion B < 4 can be proper. Indeed, there 4 ={i,i+1,...} and any
nonempty B = A has S(B) = N (i, oo) =0. We collect these observations in
the following statement.

CoroLLARY 2.2. If the hypothesis of the theorem holds, then for each i,
there is a unique A ={i,i+1,...} so that S(A) = N(i, ), and for any
Bcli,i+1,...] with S(B)= N{(i, ©) we then have B c A.

DermvTion 2.3, (A) The costs C;; are of bounded variation if

sup { Y. Cugigsy: 12 1, 0<i(l) <ifd) <... <i(n+1)} < o0

k=1

(B) The costs C;; satisfy the glueing condition if given 0 €1 <s <t <u
so that both r <k <t implies Cy+Cy < C,, and s <k < u implies Cy+Cy,
< Cgq, we have C,+C,—C, £C,,.

(C) The costs C;; are nice at infinity if given r <5 and an increasing
sequence (m(k)) of integers >5 so that for all k, B(r, m(k))=r and
B(s, m(k)) =s, the sequence (Coppy— Comgy— N (r, 5)) is bounded away from
zero.

Remarks. 1. Observe that the C;; are of bounded variation if and only
if N(i, ®) <o for each i. This hypothesis is almost not needed in the
theorem. It is used to prevent things like in Example 1.3E where the inferior
.path B, catches A4, in the limit. However, the theorem is still true for
Example 1.3E. We w111 delay the use of bounded “variation in the proof as
long as possible.

2. The glueing condition is necessary as Example 1.3A shows. As we will
see in the course of the proof, this property is well named. That is, it requires
different maximal paths between different pairs of vertices to have a “com-
" mon part” (see I, J below). The glueing. condition says under ceytain
conditions, even allowing a negatlve cost for backing up an edge (—C,) will
not increase the cost.

3. Frankly, the nice condmon at infinity was added on just to make the
proof work. It is designed to prevent what happens in Example 1.3B. We
note that the comclusion of the theorem is still true for Example 1.3B.
However, this condition is satisfied by the application we have in mind. And
this application requires a slightly stronger statement which does require this
condition. (See the proposition below) Also it yields a constructlon of the set
A in the conclusion of Theorem 2.1.
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In addition to the N(i,j), B(,)), E@, ), N(, o) and S(A4) notation
defined in Section 1, we need a bit more. Define .

E({# 00)=J N E(, n)_hmme(z 7

i on=j

It is possible that E{i,
finite define

oo} is’ a finite set, even a singleton. When E(i, oo) is

F(i, o0) = {m>r—-maxE(z co): B, m =r].

The following proposition formally implies Theorem 2.1.

ProrosiTioN 2.3, Under the hypothesis of Theorem 21 the set A
= E(i, ) satisfies the conclusion.

Proof. The proof is long-winded and broken up inte a sequence of
lemma-like “claims”. We group the claims by increasing strength of their
hypotheses. The first collection are true for any costs C;;.

Cramvs, For any Cy; 2 0:

(A) E(i,)cik: i<k<jl and if s#i and scE(i,j) then B{i,s)
= max {k <s: keE(i, j}.

(B) Ifi<j<k, then NG, J+N(, ) < N(, k).

Q) If i<j<k and m=B(j, k), then N(i, D+ N(, k) = N(i, k) if and
only if both N(i, )+ N (i, m) = NG, m) and N(i, M)+ C,y = N(, k).

(D} If D is a finite set withi=minD < j = rnaxD and (d (k) is the list
of the elements of D in increasing order, then Y p_1 Cm)d(kﬂ) < N, j). Hence
if Deli,i+1, ...}, then S(D) < N(i, o).

(E) Let Osi <j and suppose N(i,j)+N(j, m) = N({i, m} for j<m <k;
then B(i, k) < B(j, k) and either N{i, )+ N(j, k) = N(@, k) or B(i, k) <j.

Proofs. (A, B, C, D) are all done by induction. The proofs are
straightforward and are omitted.

(E) Let m=B(j,k) and let m <n <k so that N(, n)+Cy <N, k).
Now '

N(, )+ Cp =N, D+ NG, m+Cp < NG, p+N(G, k) < N, k),

so that B(i, k) < m = B(j, k).
Now let n = B{i, k) and suppose j < n < m=B{j, k). We have
N@E K =N{EN+Ca=NED+NY, m+y
NEN+NG, K,
and the reverse inequality is in (B). This completes (E).
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MoRE cLAIMS. Suppose the costs C;; satisfy the glueing condition. Then:

(F) Let 0 <i<j<n and suppose N(i, D+ N(j, k) = N{i, k) for j < k <n,
but N(i, )+ N{j,n) <N, n). Then for all m=n, NG, )-+N(, m) < N(i, m)
and either B(i, m}=n or B(i, m) <j. )

(G) Let 0<i<j<k Then jeE(, k) if and only if N, )+N(, k)
= NI(i, k). :

(H) Let Osm<i<j<k If NG, )+N(, k) <N, k), then N(m,])
+ NG, k) < N(m, k).

MIFOSm<Ki<j<n then Em,mynlk: i< k<) < E(, j); further-
more, if i, jeE(m, n), then E(m, n)n (k: i <k <€)} = E(i, )).

() E(i,0) ={k>i: for j2k, keE(,))). If i <j, then E(i, c0)n k
2jl <E(, ), and if jeE(i, ), then E(i, 0) n {k = J} = E(j, o).

(KY If t¢ E(i, o0) and i <t < keE(i, ), then for some s and &> 0, we
have for n = s

NG, n—632 N(i, ) +N(, n).

(L) The proposition is true for. infinite E(i, o) or for finite E (i, o) with i
<t <max E(i, ).

- Proofs. (F) Suppose the first conclusion is false and“let m = n be the
smallest integer with N (i, )+N(j, m) = N(i, m). Let p =B(j, m), so that p
2 J. By the equality above and part (C) we have N(i, j)+ N (j, P =N(, p),
~and hence j < p <n. Let g = B(i, n), s0 by (E) we have i < g<j Thus g <p

<n<m.
We are set up to apply the glueing condition. Note p = B(j, m) (resp. ¢
= B(i, n)} implies Cpp+ Cyp < C,,,, for p <k <m (resp. Cut+Cr, <C,, for g
<k <n). Thus Cp,+C,,—C,, < Com:
However, . "
N(la n) = -N(Is Q)+an > N(Is p)+cpn=

N, +Con< N{, P+ C,p, = N{i, m).

Subtracting we get C,,—C,, > Cpn—C o, a contradiction.
' A similar contradiction is obtained by assuming Bli,m=q<j<p
= B(i, m) <n<m This completes (F).

(G) Suppose N (i, )+N(j, k) = N(i, k). Then by (F), NI, D+N(,n
=N(, n) for jSn<k We show jeE(i, k) by induction on k. Certainly
JEE(, j). Let n=B(j, k) =j. We have -

NG m+Chu=N>i, )+N({, +Cy = NED+HNG, k) =N, k).
Thus m=B(i, k)2 n>j Now j<m<k implies by (F) and the induction
hypothesis that jeE(i, m) < E(i, k).
The converse is also proved by induction on k. Note that both N i N
+ NG, J) = NG, j) and jeE(, j). So suppose jeE(i, k) and the result is true

icm
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for smaller k. Let m=B(i, k). Since E(, k) = E(, m)yu ikl, we have
JeE(i, m). Thus N(i, )+N(j, m) = N(i, m). Hence

N, k)= NG, m+Cp =N, )+ N, M)+ Cp < NG, )+ NG, k).
The reverse inequality is in (B) so N (i, )+ N(j, k) = N, k) and (G) is done.
(H) Suppose i is the largest integer <j with N(i, DENG B <N, k).
Suppose the result is false and let n be the largest integer <i with N(n, j)
+ N(f, k) = N(n, k). The idea is to contradict the glueing condition.
Suppose for some m, n <m <i and meE(n, j). Then N(n, m+ N(m, )
= N(n,j) by (G). And hence

N(n, k) = N, )+ N{, k) = N(n, m)+N(m, )+ N(, k)
<N{@n, m+N{m k)< N(n, k),
a contradiction. Thus if p is the second smallest element of E(n, j) we have
<p<] .
The maximal condition on i implies that N(p, )+ N(j, k) = N(p, k).
Now N(n, j) = N(n, p)+N(p, ) by (G) and N(n, p) = C... If peE(i, k), then
N@G, &) =NG p+N@p, ) =N p+N{p. )+ N, k

<NG)+HNG R, |
which is a contradiction to our initial assumption. Thus p¢E(i, k).

Let r <p<s so that {f: r<t<s}NE(, k) ={r, s}. f i <r, then by
assumption N{r, p+N{ji, k) = N{(r, k). However,

N, k)=N@GnN+Nr, k=NEn+Nr, )+N(G, k)
5 N(laj)"_NU» k):
which is a contradiction by part (B). Thus r =1i.

Now N(@ k=N(@E9)+N(5, k=Cy+Nis,k) and NG k> N(G,p)
+N(p, k)= Cp+ N(p, ). Also N(n, k) = N(n, p)+N(p, k) = Cop+ N(p, )
and N(n, k) = N(n, s)+ N(s, k) = C,,+ N (s, k). Thus

Cis+ N(Sa k) > Cip+N(p= k)’
Cut+ N, < C,,+N(p, k).

Subtracting yields C;,—C,, > C;,—C,, or C;;+C,,—C;, > C,,, which contra-
dicts the glueing hypotheses. Thus (H) is done.

(I) If k satisfies i € k <jand k¢E(, j), then N{i, k)+ Nk, ) <N(, j) by
(G). Hence by (H) and (F), N(m, k)+ N (k, n) < N (m, n) and by (G) we have
k¢ E(m, n). _ _

Suppose i=m or j=mn, i, jeE(m, n) and t€E(, j). Say if j =n, then

N(m,n) = N(m, )+ NG, n) = N(m, B+ NG, )+ N, n)
= N(m, )+N(t, n),
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hence :€E(m, n). Now in the general case i, jeE({(m, n) implies jcE(i, n}.

Thus
Nmn=Nm)+NGEin=Nm )+NGLH+N({ n
=Nm, )+NELOD+NEH+NG, < Nm, )+ N, n).

Appeals to (B) and (G) complete (I). :

() If keE(i, co), then for some j> k, keE(i, n) for each n > j. By (I),
keE(@,n) for each nz k. If n2j, m>n and nek(, ), then nek(i, m),
hence by (I}, neE(j, m) so that neE(j, o). If in addition JeE(i, oo), then
JEE(, m) for m=j So if neE(j, ) and mzn, then neE(, m) and
nek(i, m) by (I), thus neE(i, ). Now (J) is complete.

(K) Let r, seE(i, o) so that r <t <s and {n: r<n £ 5N E(i, o)
={r,s}. Observe that if j>s then seE(,j) and B(i, §) = max ik
<s: keE@, )} by (A). Hence B(i,s)=r, N(i,s)=N({,r+ Cp=N(i,r)
+N(r, s). And since t¢E(, s), N, )+ N{t, s) < N(i, 5} by (G).

But r €E(i, 00) so reE(i, k) for k> r, in particular when k = ¢, Thus by
(G NG, »+N(r,1)=N(, 7). We have N(, N+Nr, )+ N, s) < N(i, s)
=N({i,n+C, or

3 =C,~(N(r, D+ N, 5) > 0.
Now suppose n>s. We have seE(i,nnik: t<k< n < E(t, n so
that seE(t, n). By (G),
NGO+NE =N )+NE, O+N(t, )+N(s, n),
NG, m =N, 0+N{r, )+N@, 1), N, 5 =C,.

Thus N(i, mj—(NG, )+N(, n) = C~(N(, )+ N{(t, )} =4. Thus (K) is
complete.

. (L} Use the fact that the Ci; are of bounded variation, so that the
mequality in (K) passes to the limit. We have N @, 00)—d 2= N(i, 1
+N({, 0) I Becfii+l,...}] so that teB, it follows that
?‘(B N{k: i<k<tPEN(Gt) and S(B N {k=1}) < N(t, ) by (D). There-
ore

S(B) S N(i, 0)—6 = S(E(i, c0))~5.
And hence (L) and this set of claims is done.

icm

STILL MORE cLAIMs. Let Ci; satisfy the glueing condition and suppose

E(i, w) is a finite set with r =max E(i, o0}, Then: '

(M) E(r, c0) = {r} and F(i, ) = F(r, w0).
(N) F (i, o) is an infinite set, {C,: seF(i, o)} is strictly increasi e::md
N(i, o) = N{i, n+1lim{C,: seF(i, o)} g : "
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(O) Suppose r <t <m <s, with meF(i, o0) and seE(t, c0). Let
n=min{k >m: keE(t, c0)}. Then either neF(i, w) or mekE(t, ). Thus
there is & 8 >0 so that k= n implies '

N kK—8=N{, D+N({, k).

Note such m and s exist if E(t, o) is an infinite set.

{P) Suppose r <t and s = max E{t, o0) < 0. Then F(i, ) F(t, 0} has
infinitely many elements.

(Q) The proposition is true.

Proofs. (M) Since rekE(i, o), E(i, M nik: r <k €< m} = E(r, m). Thus
B(i, m) =7 if and only if B(r, m) =r. Also E(r, ) = E{i, w)n (k=2 rl = {#}
by (J). So much for (M).

(N) If n>r, then since r <t < n implies t¢ E(i, o0) there is some k so
that j=2k and r<t<n imples t¢E({,)) by (I). Let s
= min {m > r: meE(i, k)}. By (A), it follows that B(i, s) = r, Since s > n, we
see that F (i, oo) is infinite.

If 5, teF(i, o) with s <t, then

NG, ) =N, nN+Cy > Ni, 5)+Cy = N(i, 114+ Cps+C.

Hence C,, > C,+Cy = C,,. Thus {C,,: seF(i, o)} is strictly increasing and
the last result follows since (N(i, n)), is nondecreasing. :
(O) By (), EG,nmnik:i<k<m)cE(i,m) so that B(i, ) =m or
B(i, n) =r. The last equality is because r €E(i, oo} and it implies n&F (i, o).
On the other hand, the definition of n implies B(i, n) < m so the first
inequality implies m = B(i, n) eE(t, o0).
In either case we have an reE(t, oo) n F(i, ), with n>t. Now

NG, m =Co+ N, N> NG 1)+N(t, n)
2 N{E +N{r, D+N{t, n),
by (H). Thus 8 = C,,—(N(r, £)+ N{t, #)) > 0. Now if k = n, then neE(t, k)
so that N(t, k) = N(t, )+ N(n, k). So )
NGRK=NGEN+Nn K =N{inN+C,+N(n,k
=d+N{E, D+ N, )+N(t, w+Nin, k).
But reE(i, o), neE(t, o) yield N(i, k) = -+ N (i, 0+ N, k).

(P) Suppose m>s and meF (i, ®). Suppose m¢F(f, cv) and let
neF(t, ©0) be as small as possible with n > m. Since B(t, n) =s, we have
B(i, ) <m by (1). Hence B(i, n) =r, since B{i, m} =r and reE(, o0). Thus
neF(i, co) and (P) is complete.

{(Q) From (L), we may assume max E(i, 00) =7 < o0 and ¢ > r. As. in the
proof of (L), if the hypothesis in {(O) is true, then the proposition is true
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(again using the bounded variation property of C,;). Thus we may assume s
=maxE(t, o0} <co. By (P), there is a strictly increasing sequence
(m(K)) = Fi, w) " F(t, 0). Now by (M), E(r, ) =1{), E(s, o) = {s},
F(i, o0) = F(r, o0) and F(t, o0) = F(s, o0).

Thus by the nice-at-infinity condition,

6 =inf {Cppy— Comgy = N (7, 8)} > 0.
Hence
N(i, m(k)} = NG, 1)+ Comgy = N 1)+ N, 8)+ Cogy + 0
ZNE DN, )+ Nt 5)+ Coppy + 6
= N(, )+ N(t, m(k)+8.
By (N) and bounded variation, N(i, o) = N(i, -+ N{t, o0)+d. And once

again as in the proof of (L) this implies the proposition, Hence (Q), this
sequence of claims, the proposition and the theorem are all true. m

- § 3. Extreme points of J**. James' quasi-reflexive Banach space J ([8]
or [10, p. 257) is a famous counterexample. In this section we characterize
the extreme points of J**, its bidual.

The space J is the collection of all real null sequences with bounded
square variation. We will often identify the sequence (@) with the (sometimes
formal) sum ) g ¢, where the ¢; are the usual unit vector basis. The norms on
J which we are interested in are defined via

k
2 aiel” = sup {}_:1 (@ = @+ 1)},

k
2[“2 a; ei|”2 = Sup {;1 (piy = Ay + 1)) + (A pper D= p1)?}

where the sup is over all sequencés (P@K with 0 <p() <p(?) <... <
p(k+1). By convention a, =0 always. ’

The space J** is the collection of all real sequences with bounded
square variation. It is one dimension larger than J in that it also includes the
constant sequences like ¥ e,. If p = ||| or ll-Ill and if ¥ a,e, €J** then the
corresponding norm in J** is given by P ane,) = limyp(3-Ya,e,)

In the norm ||| +|)|, J is isometric to J** [10, p. 257 while in || ||, the only
onto isometries on J are plus or minus the identity [1].

An element x in a normed space X is said to be extreme if whenever x
=(+2)/2 and y # z, then max(|yll, |fz) > ||x|[.

Prorosimion 3.1, Let x =Y a,e, eJ** and let Ci=(a—a)? for 0i
<j. Then the C,; satisfy the hypotheses of Theorem 2.1 and x .is an extreme
point of the unit ball of J** with ||| if and only if E(0, c0) = N,
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Proof. The bounded variation of C; follows from the fact that the
norm is <oo. If r <s<m and B(r, m)=r, then either a, <a, <a, or
a, > a, > &, Take the first say. Then the hypothesis of the nice-at-infinity
condition implies @, < a, < type) < dpz < ... and

N(r, S)+(am(1)_as)2 < (am(l)—ar)z-

Since (@ — ) —(Ggy — a)* is increasing as k —co, C;; is nice at infinity.

To see that the glueing condition is true, let 0<r <s <t <u and m
=g, n=a, p=da and g=a, The hypothesis on the glueing condition
implies m>n>p>gq or m<n<p<gq and the conclusion is that

{m—p)*+(n—@* < (m~qg*+(n—p)?.

We may assume ¢ =0 by translating by —g. So this last inequality is
equivalent to —2mp < —2np, which is true under either hypothesis.

Now suppose there is a t ¢ E (0, c0). We claim there is a d > 0 s.t. l?oth
llx+dell < 1. If (p(H)k*? is a sequence which misses ¢, then the approxima-
tion to the norm is the same for x+de, as it is for x. On the other hand, if
(p())f*" includes ¢, then by Proposition 2.3 it falls short of norming x by
some fixed §, > 0. Using this sequence to norm x=de, ¢an increase the norm
squared by at most

2[(2sup |a,|+ d)* —(2supla,)*],

“which is <& for small enough 4. Hence x is not an extreme point.

Conversely; if E(0, o0) =N but x is not extreme, then there are y
=Zynen and Z=ZZ"B" so that a, = (yy+2z,0/2 and {lyll, ||zl < [ix]|. The

triangle inequality implies |[yf| = iz|| = ||x]|.

Consider the sequences (£,), (¥, and ({,) in [,, the space of squared
summable sequences with |[} £, ¢,/|z =3 ¢2. Define S

‘:1 =1lim Uy My = lim y,, (s = limzm
n n n

€n+1 =dy—Out1>, M+l =Va—Vusr1: Crﬂ'l =znmzp+1-

It follows that 2[ixl|3 = (|3 ¢, e, and that 2||yl|}? HZ E,,e,,”i and 2|jz))?
=3¢, e,,||§. But since ¢, = (1,+(,)/2 and every point in I, is extreme, at
least one of ||V n.efl, or |[X.¢,e, is strictly larger than ||} &,e,|2. This
contradiction completes the proof.

CoroLLARY 3.2. If ¥ aye,&J** is not extreme in the norm | |l, then for
some m and >0

IS ave = |5 anest 32
Remarks. 1. Proposition 3.1 does not ho'l_d for ||+l Indced,_it is easy
to check that e, —e; is extreme in ||-|| but not in |||-[}.
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2. If |||} a,e,[| = 1 and lim,a, = 1, then Proposition 3.1 does hold for
M-Il ie. ) a,e, is extreme if and only if E(0, 20) = N.

COROLLARY 3.3. The set of extreme points in J or J** with the norm |- I
is a closed nowhere dense set.

Proof. If x =} a;¢ is not extreme and ¢ E(0, o) for x, then there is
¢ >0 so that if lx—ylj <e, then t¢ E(0, o) for y. It follows that y is not
extreme,

If x =3 ae is extreme, then

B =

x{ =) ae+(2e,te,)/n—=x

fi

i

1

and the x, are not extreme. w

ExampLe 34. Define ay, = 1 ~(2/3)" and ay,—; =1-2""Y3" (g, = ()
and let x, =2, &6+ Y2241 and x, =3 a;¢;. Then x, is extreme in
il and [§-]]l for 1 < n< o0,

Proof. Note that if 0 <a > b <c, then ae; +be,+c¥ 2 ;¢ is extreme
Af and only if ¢ <a’+(a—b)’+(b—0?% or ¢<(a*+b*~ab)/b=a+(a
~b)*/b. In particular, the choice a = 2/3, b = 1/3 and ¢ = 1 works and so X
is extreme. .

Suppose x,, is extreme; then we will show that x,,.,, is extreme, Apply
the algorithm with costs C;; = (b;—bj)? where x,., =) b e. Since x,, is
extreme, if x,,., is not extreme, then it must be the case that B0, 2m+1)
=j+# 2m. Let K = N(j, 2m) and hence

(@2m+1 —aj)z ~(@om+1— 3 — K >0,

But f(y) =(y~a)*—(y—a,,)* — K is increasing for y > a,,, > a;. But using y
=1 this implies that x,, is not extreme, ie. the algorithm applied to costs
derived from x,, also has B(0, 2m+1) # 2m.

Finally, if x,, is not extreme, then again B(0, j+ 1) #j for some j. But
- this would alse be the case for x; and hence x; would not be extreme.

Remark. In some sense these results say (in a vague way} that a vector,
is extreme if and only if it is locally extreme. However, it seems “locally”
cannot be replaced with some bounded number. '

For example, if 3 b,e, is extreme, then neither b, < b,,, <b,., nor
b,>b,41 > b, is possible, but the converse is false since 1+e) e+
(1—¢&)e,+2e; is not extreme. Another example is when d = .\/3/3; then
(1+d)e; +de; +(1+2d) ey + 2de, +(1 +3d) es is extreme but (1+d)e, +de,+
(1+3d)(e3+e4+e5) is not extreme. Thus the process in Example 3.4 does not
create all extreme points even of the form } a,e, with [ a,e| =1 and
lima, = 1. . . : '
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§ 4. Support functionals. If P = {p(i))%, is an increasing integer sequence
with p(0) = 0, then define Tp: J =1, by

i Iy
Tp (2 anes) = El (2 - 1) = Opiiy) Upir/ /2

where (1) is the usual basis for /. Besides requiring 4, = Q, klct us ad<_i t.hc
point oo to the integers and require a, =0. If P=(p()f., is a finite
increasing integer sequence with k > 2 and 0 = p(0), p(k) = oo, we also define
Tp: J 1y by )

To(S anen) = 3 (pp- 1= Gp0) tpin/ /2
j=1

Clearly || Tp || < {ixj| and for each x&J, there is a P with ilTp_xll = |!3fli-
Let (), (f) be the coefficient functionals to (1), {¢) respectively. Sirple
algebra shows

(bp(i+1)—bp(i)) fp(i)/\/i: or

s

K
U

TP* (_Z bn U,,) =

=
i

o+ 1y = Bo) Foxol /2

1

i ini infinite si Let I: I, =1, be the map for
depending on the finite or infinite size of P. 2 5
which fu, =v, and consider Sp=T¥ITy: J—J* We have IS¢ = 1,
(Spx)(x) = || Tpx||?, and

.E.

© .
Z (28p5 — Bpi - 13— Apg + n) fp(i)/zs or
=

Sp(X anen) = Y k-1 :
Y, (250~ Gpi— 1y~ Gpti+ ) foa2
i=1

ain depending on if P is finite or infinite.

ag sup]fose xi.f with ||x|| = { and P is so t.hat HTpx1|_= 1. Th*ex_1 x:h=§§;ic1
is a support functional at x. A support functional at x is an x 1*n >el .
with norm ome so that x*(x) = 1. Indeed, x*(x) = 1, so that ||Ix 1|_, an
lx*|| < 1S4l JIx]l = 1. The unit vector x is §aid to be a smooth pgmt if the::ge];
a unique support functional at x. The umt. vector x is said to e*an eicpI vod
point if there is a support functional x* with the property that x (ty) or
Iyl <1 and y % x. We collect a couple of easy results in the next propo

tion,
ProrosiTion 4.1, Let xeJ with ||x|| = L.

. , o 4
(A) x is extreme if and only if x is exposed. .
(B) If there are P # Q so that | Tpxll = || Ty x|} =1, then x is not a smooth
point. .
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Proof. Exposed points are extreme so suppose x is an extreme point of
J. Let P =N, then |T; x|| = 1, and consider x* = S, x. If yeJ with vl <1,
then | Tl <1, x*() = (Tpx, Toy> <1 if Ty Trx, where <-, - is the

inner product on I,. But since P = N, x # y if and only if T x ¢ Tp y. So (4)

is complete.

Now (B) would be true if §px # Sg x. Suppose jeP\Q, 0 <j < co. Then
the f; coefficient of S, x is zero and the J; coefficient of 28, x is 2050~ ap_y,
—dp;+1y, for some i If 28psy = @pg—1y~@p4y) # 0, then we are done. Other-
WISE, Qpsy == (Ayg 1)+ By v1,)/2, 50 if Qpiy 5 -1y, then the norm of x would
be increased by deleting the singleton {p ()} from P. This would contradict the
assumption that {|7; x|j = 1. Thus Apgy = Gpii— 1) = Gpy1y. We will complete
the proof by showing there is another support functional different from S, x.

Either there is n <i~1 or m > i+1 so that Qpiry # Opinr 1) = iy == ...
iy O Gpiy = ... = Qpim— 1y # Apg Since x # 0. It follows that the coefficient
of either fo,. 1, or fo— 1y I8 nonzero in Sp x. Let y* be Spx with the nonzero
coefficient of either Jotn+ 1y OF fom— 1, moved to Jow- Clearly, y* s 8, x, ¥*(x)
=1 and since (f) is invariant under spreading [3] we have ||y*|| = IS x|
=1 .

Remarks. 1. Note that f, does not expose the extreme point e,. Here
Syey = (—fi+2f, =f)/2. .

2. If x is in the linear span of {e;}, then x is not smooth, Indeed, if x
=Y ae, then eventually a; =0 and so there are uncountably many P with
[ITp x|l ={|x||. Thus the set of smooth points is nowhere dense. (The set of
smooth points is always dense in the unit sphere of a separable space; see
[5, p. 42])

OpeN QUEsTIONs. 1. We do not know if the converse of Proposition 4.1
is true, That is, if I =1 =|{Tpx|| = I Tp x|l implies P = Q, then is x smooth?
The difficulty seems to be knowing how vectors in J* are normed.

2. We also do not know if each extreme point of J is strongly exposed.
(Here a norm one extreme point x is strongly exposed if for each & > 0 there
s 2 >0 so that ||y <1 and Syx(y} >1-8 imply |lx—yl| <e) The
difficulty here is if z = x—y =3 a,e, is so that a, < Q2K ... K Ay 2 Gy y
2 ...; then in certain cases lxxzl| ~ ||xfl. (This is much like the construction
of s in J; see [6])
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