icm

STUDIA MATHEMATICA, T. XCIV (1989)

Power-dominated elements in a Banach algebra
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Abstract. Let (A4, {|-|) be a Banach algebra. Using only elementary estimates and a simple
re-norming technique, we give short new proofs of theorems of Gelfand and of Katznelson and
Tzafrirt on power-bounded elements of A. Combining these ideas with a version of the theorem
of support leads to the following quantitative peneralization, valid for 2 wide range of functions
frifxedand {u(m)},s, is a sequence such that |27 < u(n) (n = 0) and lim, . p{n+1/u(m =1,
then imsup, - || (x) x"|[/u{n) is majorized by a bound depending only on f and the spectrum of
x (not on A). Some examples are then considered and we finish by proving a partial converse.

§ 1. Power-bounded elements and the theorems of Gelfand and
Katznelson-Tzafriri. Let 4 be a (complex, unitzl) Banach algebra. An ele-
ment x of A which satisfies sup,s,|[x"| < oo is called power-bounded. If
moreover x is invertible in 4, and if sup,_,||x"| < oo, then x is called doubly
power-bounded. From the spectral radius formula it follows that if x is
power-bounded then its spectrum satisfies Sp(x) = 4; and if x is doubly
power-bounded, then Sp(x) < I'. Here, and throughout the paper, we have
written 4 = {zeC: |2/ <1} and I'= {zeC: [z} = 1}, In this first section we
present short new proofs-of a theorem of Gelfand [8] on doubly power-
bounded elements, and of another of Katznelson and Tzafriri [12] on power-
bounded ones. '

Gelfand’s result can be proved a number of different ways (see eg. [8],
{10, Theorem 4.10.17, [13, Corollary 4.27), but the demonstration given
below seems particularly brief and elementary. It is based on the method of
Bonsall and Crabb [4] in their proof of Sinclair's theorem on the spectral
radius of an hermitian element,

Tasorem 1.1 ([8]). Let A be a Banach algebra and let x be a doubly
power-bounded element of A. If Sp(x) = {1} then x=1.

Proof. Let h= —ilog(x) =i 451 (1—x)*/k. Then Sp(h) = {0} and x
= ¢&* Thus, given any integer m, we have Sp(sinmh) = {sin0] = {0} and
(xm_x—m 3

2i

I(sin mh| = <suplpl (k> 0).
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If Y ez0c,2* is the Taylor expansion of the principal value of arc sin(z) about
2 =0, then it is elementary that ¢, = 0 for all &, and that > 5, ¢, converges
to arcsin(l) = /2. Hence

limhl| = ||laresin (sin mh)]| < 3. |eyl {I(sin mA)*|] < (m/2) sup||x"].

. k=0 ne Z
As this helds for any integer m, it follows that » =0, and therefore that x
=1 m

Recently, Katznelson and Tzafriri obtained the following interesting
generalization of Gelfand's theorem. Their result {[12, Theorem 1], see also
[1]) was stated in the language of bounded operators on a Banach space; we
have reformulated it in Banach-algebra terms since that fits more naturally
with our proof.

Theorem 1.2 ([12]). Let A be a Banach algebra and let x be a power-
bounded element of A. Then J|x"*'—x"| 20 as n—co if (and only if)
Sp{x)inF < 1.

Gelfand’s theorem is an immediate consequence of this, because

e= 11 < (supl b~ limsup|er* ! —.x1).
nz n oo -
On the other hand, we shall show that Theorem 1.2 can also be deduced
easily from the weaker Theorem 1.1. The key idea is contained in the
following “re-norming” lemma, by which certain problems on power-bound-
ed elements (and power-dominated elements—see §2) may be reduced to
questions about doubly power-bounded ones.

Lemma 1.3, Ler (A, [|*]]) be a commutative Banach algebra, let x €A, and
let 1tt(n)} 5o be a sequence of positive numbers such that limy, o fe (4 1)/ (1)
= 1. Suppose that ‘
0 < limsup||x"/uin) < 1.

[ ]

Then there exist a commutative Banach algebra (B, I'Ilg) @nd a continuous
homomorphism n: A — B such thar: :

(i) m(x) is invertible in B with ||z(x)||z = ||z (x)"Yjp = 1.
{11) limsup, . llax"li/u(n) < lin(a)lls < lid] (acA).

Proof. Define p: 4 =R by
pla) = limsupllax/u(n)  (a €A).

Then p is a‘scminorm on A which satisfies p(aa’) < ||a)| p(¢) (a, @’ € A), and
- by hypothfasm O0<p(l)< 1. Thus p~'(0) is a proper ideal in A, Deline B, to
be the (unital) quotient algebra 4/p~1(0), and let n: A4 —+ B, be the quotient
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homomorphism. Then

Im(@)llag:= sup play) (a€d)

yep™ L1}
defines an algebra norm ||-||5,, because it is just the operator norm on B,
regarded as acting on (Bg, p} by multiplication. Now, since lim, .. u(n

+1)/u(n) =1, it follows that p(ax) = p(a) (a€A4), and hence that
(1 7@ 7 (g, = In(@lis, (aeA),

By a theorem of Arens [2], (1) implies that (B, ||']ls,) can be embedded
isometrically as a subalgebra of a commutative Banach algebra (B, ||'[|z) in
which m(x) is invertible, and ||z (x)||s = {|=(x) ™ ||z = 1. This proves (i), and (ii)
now follows from the inequalities

@)l = liz()lls, < sup flall p(y) = lall

yep~ M)
{which also guarantees that z: A -+ B is continuous) and

Iz(@lls = lIx(@lls, = plal/p(1)) Z pla) (acA). w

(acA)

Remarks. (a) If Sp(x) is a proper subset of 4 (as is the case in the
proof below of Theorem 1.2}, then 7(x) is already invertible in the comple-
tion of (B, ||-|lsy). 80 that B may be taken just to be this completion, and
there is no need to invoke Arens’ theorem. To see this, observe that by
equation (1), m(x)—An (1) cannot be a topological divisor of zero in By, nor
therefore in the completion B, unless |4 = 1. This implies that
Bpe(n(x)) =T, so that either Spg(n(x)) =4 (impossible, because
Sps (7 (x)) = Spa(x) € 4), or Sps(r(x) =T. :

(b) The idea of defining the seminorm p was influenced by a proof of
Esterle [7, Theorem 9.17.

Proof of Theorem 1.2. The “only if* part of the theorem is a simple

~ consequence of the spectral mapping theorem, so we concentrate on the non-

trivial “if” part. There is no loss of generality in assuming that A4 is
commutative, :

If Sp(x) A I = @, then the spectral radius satisfies r(x) < 1, so that by
the spectral radius formula lim, . [|x"| = 0, and thus certainly lim,.., [jx"**
»x"|| = (. .

Now suppose that Sp(x)~T" # (. This implies that 1 < |Ix"| < M (n
= 0), where M = sup,.,/lx4. By Lemma 1.3, there exist a (commutative)
Banach algebra (B, |} ||y) and a {(continuous) homomorphism 7: 4 — B satis-
fying the conclusions (i) and (i) of that Jemma with u(n) = M (n = 0). By (i),
n(x) is doubly power-bounded. This implies that Spy(n(x)) = I', and since
also Spy(m(x)) = Spy(x), it follows that Spg{n(x)) = !l]. By Theorem 1.1,
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7(x) = 7t (1). Therefore, with ¢ =x—1 in Lemma 1.3 (ii) we have
fimsup " — XH/M < |lx (x— 1)y = 0. m

- . § 2. Power-dominated elements. In this section we prove a substantial
generalization of Theorem 1.2. The theorem is extended in three ways: firstly,

instead of ||x""'—x"|, we consider {|f(x) x| for a large class of functions f

for which f(x) makes sense; secondly, the spectrum of x is allowed to lie
anywhere within the closed unit disc: and thirdly, the notion of “power-
bounded™ is replaced by the much wider concept of “power-dominated”,
which we now describe, ‘

Let x be an element of a Banach algebra A, and let {u(n)},s, be a
sequence of non-negative numbers. We say that x is power-dominated by
i} if |]x" < u(n) (n = 0). In what follows it will usually be assumed that
bm, ., p(n+ 1)/l =1; it is therefore of interest to know when x can be
power-dominated by such a sequence.

Prorosition 2.1. Let x be an element of a Banach algebra A. Then it can
be power-dominated by a sequence |{p(n)} with lim, ., pu(n+1)/u(n) = 1if and
only if irs spectral radius satisfies r(x) < 1.

Proof Suppose that such a sequence {u(n)! exists. Then lim,.y u(n
+1)/u{n) = 1 implies that lim, ., x(m'" =1, so by the spectral radius for-
mula we have

' F(x) = lim (|x"))'" < Him u(n)'" = 1.
n-t o) norug

Conversely, suppose that r(x) < 1. If x is power-bounded, then of course
we may take u(n) =supsolx|| (n20). If x is not power-bounded, then
necessarily (x) = 1, so the sequence g, = log|!x"| is positive and unbounded,
and satisfies lim,_,¢,/n = 0. This implies that {g,),», has a least concave
majorant {s,},5,, and that lim,_ (0,.,—0,) =0. The sequence u(h)
= exp(o,) (n > 0) then fulfils the requirements. m

Remark. If r{x) = | and x is power-dominated by a sequence !u(n)
with lim, ., p(n+ 1)/p(n) = 1, then for each keZ

. wm _ . plm) X"t E]
lim su = limsu ——— = |im $up ~———.
rma b I T e (R - P T

Thus, the more “irregular” the sequence |[|x", !, the “further” from it
{(M}pzo has to be.

Before stating the main theorem, a little more notation is necessary. Let
A(I) be the space of all functions f: I — C of the form f(z) = ¥ . zc, 2* such
that  ||fllyn:=Ykezle) is finite,. Under pointwise multiphication
{AD), || Ha n) becomes a commutative Banach algebra. Given a closed
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subset E of I, we define
I(E) =ifedA(l): f=0on E!,

JE)=fedA(l: f=0o0na neighbourhood of E in I},

If E# @, then I(E) (respectively J(E)) is a proper, closed ideal (respectively
proper ideal) in A(F), and the quotient Banach algebra (AIEY, | -1ls)
(respectively (A(I)/J (E). || |l)) can be regarded as consisting of functions on
(respectively germs of functions near) the set E, and as having character
space equal to E (in both cases). If E = @, then I(E) and J(E} are both the
whoie of A(I) and we adopt the convention that 'l and |||z are
identically zero.

Tueorem 2.2. Let (A, |I'[) be a Banach algebra, let () 2o be a
sequence such that lim, ., p(n+1)/u(n) =1, and let x be an element of A
which is power-dominated by {u(n)). If f (2} is any function holomorphic on a
neighbourhood of Sp(x), or if f(2) = Y ynoc,2* where ¥,50leu (k) < oo, then

(2) lim*supllf(x)x"llfu(ﬂ) < 1S,
where E =Sp(x)n T,

Remark. {a) The notation in (2) requires a little explanation. If f is
holomorphic on a neighbourhood of Sp(x), then f(x) is defined via the usual
functional caleulus. If £ (z) = ¥, 5 o ¢, z* where Yusolal p(k) < oo, then f(x) is
defined simply to be the sum of the norm-convergent series Y ;5,6 x% In
either case, when E is non-empty, the function f (z) is defined on a neigh-
bourhood of E in I' (note that £ % @ forces u(n) = 1 for all n), and the germ
of / near E belongs to the quotient A(I/J(E); the expression {1/ ligy is then
to be interpreted as the norm of this germ in the quotient. If E is empty, then
according 1o our convention ||f lli;; = 0, whatever f may be.

(b) The appearance of the norm ||-l[y; in (2) may seem a little strange,
but in fact it is best possible in the following sense: given any non-empty
closed subset E of I, there exists a Banach algebra A, containing an element
x with {|x"l| =1 (n > 0) and Sp(x) = E, such that

1 G X"l = |1 flhcmy

for all n 20, all / holomorphic near Sp(x), and all f of the form Y kzoCyE

with 3,5 0le,) < co. To see this, just take A to be (A (DI (E), | Yg) and x
to be (the germ near £ of) the function u(z) = z.

{¢) Given A4, {u(n)}, x, fand E as in the theorem, with £ = @, there is
also a simple inequality in the other direction (corresponding to the “only if”
part of Theorem 1.2), namely

inf {1 £ () ") 2 | f e,
nz ¢
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where |-|p denotes the sup-norm relative to E. For if { €E, then there is a
character ¥ on the (commutative) closed subalgebra of A generated by x such
that y{x) ={, and so since characters have norm one,

ifgllf(x) x| = ig{)lx(]"(x))x(-‘f)"l = inf [f(O){" =/ Q).

nz 0
The proof of Theorem 2.2 has two main ingredients: one is the re-
norming Lemma 1.3, and ‘the other is the following result, which is a
variation upon a well-known theme, sometimes called the theorem of sup-
port.

LEmma 2.3, Let (B, ||*|lg) be a commutative Banach algebra, let & be an
invertible element of B such that &y =[ié g =1, and ler E be a closed
subset of I' which contains Sp(&). Then there exists a norm-decreasing homo-
morphism 9g: A(D/J(E) — B such that 3g(u) = £, where u denotes the function
u(z) =z

Proof. Since |[|&)lz=[¢""ip=1, the map I: A(I') —B given by
80 ez z®) =Y hez e & is a well-defined, norm-decreasing homomorphism
such that 8() = ¢ To finish the proof it is enough to show that 8(g) = 0 for
all g eJ{E), for then by continuity & vanishes on m“j", and so induces a
norm-decreasing homomorphism 95! A(D)/J(E) =B which fulfils the requi-
rements.

Let g eJ(E). Then the (closed) support of g is disjoint from E, so as

A(I) is a normal algebra, we can find heA(I) such that A= 1on E and h

=0 on the support of g. In particular, we have

(3) 8(g) 8(h) = 3(gh) = 3(0) = 0.

Now let x be any character on B. As y0d is a character on A(I), it
corresponds to evalwation at some point {el. Moreover, we have {
=y () = (&) eSp(&), so that { €E. Therefore x(9(h) = h({) =1, and since
% is an arbitrary character on B, it follows that §(k) is invertible in B. Thus
(3) implies that 9(g) =0, as was desired. w

Proof of Theorem 2.2. We may assume, without loss of generali'ty,
that 4 is commutative. Also, if lim, .., ||x"|/u(n) = 0 then (2) is obvious, so
Wwe can suppose that limsup, . lIx"|/u(n) > 0. Then by Lemma 13, there
exist a commutative Banach algebra (B, ||||5) and a continuous homomor-
phism n: 4 — B satisfying the conclusions (i) and (i} of that lemma. Now
Spp (7 (x)} <= E (in particular E must be non-empty), so by Lemma 2.3 applied
with & = m(x), there exists a norm-decreasing homomorphism $;: A(I )/T(_I-i'_)_
~+B such that 8g(u) = n(x). For any function f as in the statement of the
theorem, the operation f( ') commutes with continuous homomorphisms, and

50
n(f(x)) = f(n (x)) = f('9£ (u)} = Jg (f(u)) = '91. (.

Power-dominated elements 69

Combining this with Lemma 1.3 (ii) and the fact that 9z is norm-decreasing
we obtain

limsup || (x) x"l/u(m) < [ (f ()l = 119 (Nl < [f s

h 50

which proves the theorem. a

The following corollary is a generalization of [12, Theorem 5], of which
Theorem 1.2 is a very special case.

CoroLLARY 2.4, Assume thar A, \u(n)! and x satisfy the hypotheses of
Theorem 2.2, and let f(z) =3 4no0, 2" where Y ,sole)uk) < co. Suppose
gither that Sp(x) "I =@, or that [ is of spectral synthesis in A() with
respect to Sp(x) . Then ||f(x)x"| = o(u{n) as n —oo.

Proof Let E=S8p(x)nI. The hypothesis about spectral synthesis
means precisely that ||f|lz = 0. Thus the result follows immediately from
Theorem 2.2. =

There is also a multivariable version of Theorem 2.2, In this result, the
role of the functional calculus is now played by the several-variable calculus
(see eg. [5, Chapter I, § 4, Theorem 1]), and the norm (|- f|z now refers to
the quotient norm on -A(I')/J(E), where E is a closed subset of '™, and
A(I'™ and J(E) are the obvious m-variable analogues of their one-variable
counterparts defined earlier.

Tueorem 2.5. Let (A, ]|'|) be a commutaiive Banach algebra, let
{(n)) 0 be a sequence such that Hm, .o p(n+1/u(n) = 1, and let xq, ..., X,
be elements of A which satisfy

| I3 X g+ k) (R e, iy 2 0.
If f(z4, ..., Zs) is holomorphic on a neighbourhood of the joint spectrum
Sp(x19 rrey xm)s or if

. ky k
[z = Y Chg vk 21 Y i
KyvrnkyZ0
where
Z Ickl,....kml ﬂ(kl + .o +km) <,
KfonnkyZ0
then

m (o sup IS X0y s X XM ey o Kend) < 1 ey

N TR -
where E =8Sp(x;, ..., X, ) 0T
Proof, Define p: A =R by
pla)=lim ( sup |[laxit . ptke+ .. k) (@eA).

Beron koK B
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If p(1) = 0 then the result is clear, so we may suppose that p{l) > 0. The
hypothesis lim, ., u(n-+1)/u(n) =1 ensures that p(ax) =p(a} (agAd, j
=1,...,m), so as in Lemma 1.3 we can construct a commutative Banach
algebra (B, || || and a continuous homomorphism n: 4 — B, such that 7 (x)}
is invertible in B with ||[z{x)llz = |z {x) "l =1 (/ =1, ..., m), and such that
pl@) < |Im@llp < llal| (@ €A). By the obvious analogue of Lemma 2.3, there
exists a norm-decreasing homomorphism g A(I "‘)/J (E} =B such that
Sg(u) = m(x;} =1, ..., m), where u; denotes the function u;(z,, ..., z,) = z;
(==1,...,m). The rest of the proof goes through as for Theorem 2.2. w

As before, we single out the special case corresponding to || fllg =0.
This time it is a geperalization of [12, Theorem 8], even in the case when
X1y .., Xy are all power-bounded.

CoROLLARY 2.6. Assume that A, lu®! and xy,...,x, satisfy the
hypotheses of Theorem 2.5, and ler
k
.f(zls-"szm)2 Z cki 8y - le"‘me
kyyooakyZ0
where

2 ey HR Ry < 0L
k1=-~-skm;‘0

Suppose that either Sp(x, ..., x, ) "NI™ = Q, or that f is of spectral synthesis
in A(F™) with respect to Sp{x,, ..., x,) nI™ Then

0F Gty eemn X X110l = 0y + .. +Ky))  as mingky, ..., ky) =0,

§ 3. Some examples. To use Theorem 2.2 as a quantitative result, we
need to be able to estimate || fl|. This is the problem addressed in this
section.

We shall consider sets of the form

E = |e%el |9 <),

where 0 5 v < m, Any proper closed subset E of I" can be rotated so as to lie
inside some such E., so upper bounds for ||- lz, are also good enough to
cover ||-flim, albeit at the cost of some loss of sharpness. By standard
harmonic analysis (see e ;5....!;1 1, Chapter VIIL, § 7.3]), it can be shown that for
these sets E, we have J(E) = I(E,); thus it suffices to consider [|- llg, (the
quotient norm on A(F)/I(E,). The following theorem estimates ||/ lle, for a
class of functions f wide enough to include a number of examples of interest.

THEOREM 3.1. Ler 0< t <, and let . E, —C be a function of the form
fe)y=e"g(®) (tel—r,1]), where yeR and ¢: [—1, 7] =R is an odd, in-

Power-dominated elements 71l

creasing C*-function which (if = > 0) satisfies

‘0
“ g’z — (E%(—l)sin (Z—i) (t [0, ]).

(i) The norm || fllg, obeys the general inequalities

< Iflls, < g see(s/2).
(i) If moreover 1 = n/p and y = ¢/2, where p, geZ with p = 2, then

g(z), < if p+gq is even,
“f“I {g(r)sec(rﬂ if p+q is odd.
Remarks. (a) The right-hand side of (4) is negative for all 7€[0, z].
Thus (4) holds automatically whenever ¢ is convex on [0, z].
(b) The inspiration for Theorem 3.1 was the paper of Crabb and Duncan
[6]. In particular, the proof of part (i) is modelled on similar ones in [6].
The following lemma, crucial to Theorem 3.1, is also implicit in [6]. The
proof of it given below is a little more direct, but contains no essentially new
ideas, and is included mainly to keep this exposition as self—contamed as
possible.

Lemma 32. If 0t <7 and xeR, then e ™|lz, < sec(t/Z)

Proof. If v = 0, then A{I'}/I(E,) is one-dimensional and the result is
obvious, so we may suppose that 0 <t <. Since ||¢:*"""||ET = ||le™"||g, for all

n€R, and since |||y, =1 for all neZ, a simple compactness argument
shows that there exists [0, 4] such that

lle|l, = suplle™ s,
aeR

With this value of f, define F: I' = C by
F(e®) = e~ #%*sin(1 = Byt + O™ gin fr (se[—m, ).
Then FeA(l") and
Fe) =Y ae® (se[—m, ),

ke
where
(~ 1)*sin e -sin(1—p)t
7 {(B+ kreft)— (B + kmj)*}
In particular, ao > 0 and (—1)*a, < 0 (keZ\ |0}), so scttmg § =7 in the two
expressions for F(¢'*) above, we obtain

&) gl = ¥ la = F(e'™ =sinz.

k#0

& = j— j' F(e)e " ds = (keZ).

i
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Also, substituting s by mt/r in these two expressions for F(e”) and multi-
plying by &* gives

sin(l—f)r+eisinpr = ¥ a0t (re[—1, 7]).
ke Z

Thus
sin(l — )t +sin fr 2 [lsin (1 — f) 7 +&" sin fz|,

- ” k%:z a e;m+wz)f”Et

2 |aof lle"™|lg, — Z | Su}:”f?“"llﬁT

(81M)SUPII6‘“‘JI o
the last equality arising from (5) and the choice of . Hence

sup”e‘“‘[lE sec(t/2) cos(}— Pt <sec(t/2). w
aeR

Proof of Theorem 3.1. (i) Since “evaluation at ¢™ is a character on
A(N/I(E,), it has norm one, and therefore

1 lle, 2 1/ (9] = g(x),
which gives the desired lower bound.
For the upper bound, we may suppose as in Lemma 3.1 that ¢ <7 < &

The key observation is that if h: [—n, ©] =R is the function given by
h(s) = g(rsfn) (se[—mn, n]), then

(6) (—l)kj:[h(s)sin [k+Pslds 20 (keZ).
0

To see this, note that from (4) we have
K (s)+3h (0)sin(s/2) = 0
and therefore for each keZ

(s[0, D),

E(h”(s}—é—%h’(O) sin(s/2))(1 —(—1¥sin(k+4) s)ds = 0.
Integrating twice by parts yields the inequality
(—1)* lr|t'l’1(.s)sin [k+Ds]ds = %H‘ (O (k+H*(— 1) T‘(cosk.smcos(k + 1) 5)ds,
whose right-hand side is non-negative for all keZ (and indeed equals zero

unless k =0 or —1). Thus (6) is proved.
Now define H: I' - C by

H(e®)=e "2 p(s) (se[—m, x]).

. have
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Then HeA(l), and
H(E®) =Y be™ (sef—mn, nl)

ke Z
where

| =

b = 517; _j e p(s)e o dy = — (s)sin [(k+%)s] ds,

o--,a

—_

since g, and therefore h, are odd. From (6) it therefore follows that |b
= {(— Wb, (k€Z), and hence, setting s = = in the two expressions for H (¢)

above, we obtain

4 2 byl = TH (e") = h(r) = g (x).

ke Z

Also, substituting s by nt/t in these two expressions for H(¢*) and multi-

-plying by VI gives

€7 g() = T b el ®H DN (1l 7]).
fee Z

Thus

© Wil < X Bl < g (@) sup et
13
ke Z -

the last inequality arising from (7). The result now follows from Lemma 3.1.
(ii) First suppose that p--¢ is even, say p+g =2/ Then from (8) we

S Nle, < Sul‘JIIt?‘“”‘"”'IIJe <g(v) sup lle"™le, = g ().

By (i), |fllg, = g{z), so in fact equality holds.

Now suppose that p+¢ is odd, say ¢— p= 2m+1. Let ¢: A(DY/I(E
—>C be the linear functional given by

o) =e o) +e o™ (veATVI(E)).

Since 7 = n/p, it follows that whenever Y. z|e] < o we have

lo(Y e 2% = |Z 2¢, cos ((k—4) n/p) < 2cos(u/2p)(k§z|ckl),

ke Z

and therefore |||l < 2cos(z/2). Also
P (eI g (1)) = V2 g (1) + eI g (1) = 2ig (7),
50 as f(e") = &2 g (1) = eim 22V g (1), we deduce that
£ llg, = 172+ 929 g (1)l > | (€ 2 g ()]l gl =
By G), 1/, < ¢

g (z) sec (t/2).

(r)sec(t/2), so in fact equahty holds. (I
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We now give some examples of the use of Theorems 2.2 and 3.1. The
first of these, a quantitative generalization of Theorem 1.2, was obtained for
doubly power-bounded elements by Crabb and Duncan [6]. A related result
for power-bounded ones has been given by Bachelis and Saeki [3].

CoroLLaRY 3.3. Let 4 be a Banach algebra, let x be an element of A
which is power-dominated by a sequence [u(n)|,»o With lim, .o gt(n+1)/u(n)
= 1, and suppose that Sp(x)nI" < E,, where 0 £ 1 <n. Then

lim sup lx"* { — x|/ () < 2tan(z/2),

HroD
and the right-hand side is sharp when w/v is an even integer. If w/t is un odd
integer, then the estimate may be improved to

o
limsup ||x"** — x"[/u(n) < 2sin{t/2),

g 1]

and the right-hand side is sharp.

Proof szﬁpe fi €= Cby f(z)=z~1. The restriction f| E, is of the
form f'(e") = ie'" g (t), where y =% and g (1) = 2sin(/2) (t [ —1, 7). Hence by
Theorem 3.1 (i)

Hf”E, € 2sin(t/2) sec{r/2) = 2tan(t/2),
and if moreover t = n/p where p is odd, then by Theorem 3.1 (ii)

fi/lls, < 2sin(1/2),
Combining these inequalities with the estimate from Theorem 2.2, namely
lim Sllp”f (92 () < M lley = 1Sl
we obtain the desired bounds for lim sup, ., o [1x"* 1 — x|/ e (n).
To justify the sharpness assertions, take the Banach algebra A to be
(A(TVI(ED, 11 |ls), the element x to be the function u{z) = z (z €k,), and the

sequence i,u(n)} to be identically 1. Then the hypotheses of the corollary are
satisfied, and in this case we have

hr:l_’sgp £ G0 ) = 11f lle,

_{Ztan t/2, if m/r is an even integer,
2sint/2, if m/tv is an odd integer,

where the second equahty comes from Theorem 3.1 (u) This shows that the

stated bounds for hrnsup,,ﬁmllx”‘HL x"l|/u(n) cannot be improved when n/t -

is an integer, w
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CororLary 34. Under the hypotheses of Corollary 3.3,
lim supil(x-+ 1) (x 1) &/ (n) < tan (z/2)sec(x/2)

H—roo

and the right-hand side is sharp when njt is an odd integer. If n/t is an even
integer, then this estimate may be improved to

Hmsupi(x+ 1)~ (x— 1) x|/ u(n) < tan(z/2),
and the righi-hand side is sharp.

Proofl Define f: C\{—=1} »C by f(z) =(z+1)"'(z~1). The restric-
tion f|E, is of the form f(¢") =ie™g(t), where y =0 and g(r) = tan(i/2)
{te[—t, t]), so by Théorem 3.1

I£1lg, < tan{c/2)sec(r/2), and

e = tan{z/2)sec(t/2), if m/r is an odd integer,
I, = tan(1/2), if m/r is an even integer.

The rest of the proof goes through as for Corollary 3.3. w

CoroLLaRY 3.5, In addition to the hypotheses of Corellary 3.3, assume
that O lies in the unbounded component of C\(Sp(x)U E,). Then
limsup [{x"log x|| < 7 sec(t/2),

n=tm

and the right-hand side is sharp when mjt is an odd integer. If /v is an even
integer, then the estimate may be improved to

limsup||x"logx|| €,
and the right-hand side is sharp.

Proof. As O lies in the unbounded component of C\(Sp(x) v E,), there
exists a holomorphic branch f(z) of logz on a neighbourhood of Sp(x) U E,;
such that f (e") = it (t €[ —1, 7]). By Theorem 3.1 applied with y = 0 and g(t)
=t {te[~1, ]}, we have

1/l < sec(s/,  and

tsec(t/2), if n/r is an odd integer,
if mft is an even integer.

1l =4

The rest of the proof goes through as for Corollary 3.3. u

! ,

§ 4. A converse result, There is another extension of Gelfand’s Theorem
1.1, which is not implied by any of the results  mentioned so far. This
generalization, due to Hille ([9], see also [10, Theorem 4.10.17), replaces the



76 G. R. Allan and T. J. Ransford

hypothesis of double power-boundedness by an o(n) condition without
weakening the conclusion.

Tueorem 4.1 {[9]). Ler A be o Banach algebra, and let x be an invertibie
element of A such that ||x"|+|x™" = o0(n} as n —co. If Sp(x) = {1} then x
=1 m

(Note that o(n) cannot be replaced by O(n); consider, for example, x
= ((1) :) in the algebra A of 2 x2 matrices). It is natural to ask whether

there are corresponding extensions of any of the other results in this paper,
starting with Katznelson and Tzafriri’s Theorem 1.2, Even for this theorem,
we shall see the answer essentially is no.

First, a little more notation is needed. A sequence {w(n)!,», of non-
negative numbers is called a weight sequence if

w(0) =1, (m, n 0).

Also if {€Cand r > 0, then we write A({, r)= {z€C: |z—{| <r] and A({, 1)
=1zeC: [z—¢| <r! (thus A(0, 1) is just 4). We can now state the main
result of this section, which may be regarded as a sort of converse of
Theorem 1.2.

w(m+n < o(mo(n)

THEOREM 4.2. Let lw(n)l,.o be a weight sequence which satisfies
oM <<wo(ntl) (nz0) and liminf, o (2n)jo(n) < . Then there exists a
commutative Banach algebra (A, ||-||) such that, given any sequence [&(n)},z0
with lim, ., e(n) =0, we can find an element x of A with the following
properties:

@) Splx) = 4(0, Hu i)
() {lx" < w(n) {n =0} .
(i) Hx™ 1t —x7| > e(W)w(n) for infinitely many n.

Remarks. (2) If « > 0, then by taking @ (1 = (1+#n)* and e(n) = 1/log(n
+10) Theorem 4.2 shows that it is possible to find a Banach algebra A
containing x such that Sp(x) < 4(0, 1) u {1}, with ||x|| = O(*) a5 h —co,
but ||x"* ! ~x7i# O(n) for any B <o This and other similar examples
would appear to rule out the possibility of extending.the Katznelson—Tzafriri
Theorem 1.2 (and a fortiori, any of its subsequent generalizations) along the
-lines of Theorem 4.1,

(b} By Theorem 1.2, if an element x of a Banach algebra satisfies
Sp(x) =4(0, Hu {1} and [IX <L (n=0), then the sequence |jx"*!—x|
necessarily converges to zero as n —oo. However, taking w(n) = 1 {n > 0) in
Theorem 4.2 shows that it may converge arbitrarily slowly.

The proof of Theorem 4.2 proceeds via two elementary preparatory
lemmas. If (W, {|-]|} is a Banach algebra, then we write /(W) for the Banach

icm
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algebra of bounded sequences tw;)jz0 of clements of W, with coordinatewise
multiplication, and norm given by [|iw;!]. = supyso[Iwjll.

Limma 4.3, Let W be a Banach algebra, and let \w;);», be a sequence in
W which converges to an elememt weW. If' x = {w;l;z0, then

Sp,w(m (x) = _UQSPW (Wi} L Spw (w).
iz

Proof. Let AeC and suppose that 2¢(U;s o Spw (W) U Spy (w)). Then w;
— 11 and w—Al are invertible in W for all j= 0. Put y = {(w;—A1)" '} ;20
Since (w;—A1)"! = {(w—Ai1)"" as j—co, we certainly have yel/™(W). Also

plx—Al) = (x=ADy =1 in [2(W), 50 1¢Sp,u,,(X). =

Given a weight sequence f{w(n)l,»o such that w(n) =1 (n=0), we
denote by A, (I', ») the space of all functions f: I' = C of the form f(z)
=Y 502" such that ||f]l, = Yuzolal@ (k) is finite. Under pointwise mul-
tiplication (A (I", w), |||} becomes a commutative Banach algebra.

Lemma 4.4, Ler lo(n),zo be a weight sequence suqh that w(n) =1 (n
>0), let SR, and define veA. (I, w) by v(z) =%(z+€¢*) (zel). Then:

(@) Sp(v) = A(3e®, $R), where R = lim, o (m'".
(i) [ = 27" ka0 (z)a)(k) (nz0.
(iif) [lv"* =0, 2 [Nl lsin 8] (n 2 0).

Proof. (i) If A€Sp(v), then 24 —e* eSp(u), where u denotes the function
u(z) = z. By the spectral radius formula,

¥ () = im |[W|*" = lim w(n)'" =R,
R0 n=oe
and hence |A—%e® <iR.
(i) For each n20

e = ”2 ) (Z)e“"“"’“z"

kO

1 (n
=2"" k).
2 kgo (k)w( )

w

(i) For each n=0

HU):-H - unum - ‘ zwnkgo (ﬁ)ei(n-k)s zk (_i‘( _I_ei&)_", 1) )
o n n
2L - e

52y (n)iS'ihSIw(k) = 0"l sin Sl =

k=0 k
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Proof of Theorem 4.2. We take A4 to be [®(W), where W
=A. (I, w). Let le(n)),=, be a sequence tending to zero: we shall construct
an element x of 4 with properties (i), (i) and (iii} of the theorem.

Let € ='1+Hlminf, .o (2n)/w(n). Altering finitely many terms of the
sequence |g(n)! does not disturb the wvalidity of the theorem, so as
lim, . . &(#} = 0, there is no loss of generality in supposing that &{n) < 1/2C
(n = 0). We may therefore choose a sequence |9,],5 0 such that lim, ., 8, = 0
and sind, > 2Ce¢(n) (n>0), and then another sequence {r,},»o such thdl
0<r,<1 and

) 2o (1)(1 -

These conditions certainly force lim, ..., 7, = 1. Now define v;, w; €4, (I, w)
by '

ratl) <sin 9, -2Ce(n)  (n 2 0).

v;(z) = %(z%-emf), wi(z) =r;v(z)  (zel, j=0),

and let x be the element of A given by x = {w;};5,. This x has the desired
properties, as we now verify.

(i) As j — o0, we have w; —+w, where w(z)
Lemma 4.3

= 3{z+1) (z el). Therefore by

Spa(x) = L>J Spw (W) Spy (w W),

Now the hypotheses on \@(n)] imply that lim, ., ( /" =1, so Lemma 4.4
(i). gives Spy(w) = 4(},4) and Spy(w) cd(4re %4 Ar) =40, 1) (=0
Hence Sp, (x) < 4(0, l}u e,

(iiy Using Lemma 4.4 (i) and the assumption that lw(k)}po is increas-
ing, we have

l1%"f o <

supllufls = 27" kio (:)w(k) <w@m (M0,
{m) Using Lemma 4.4 (iii), for each n >
(1" =X 2 W™ =Wl
Z [l = vplle — (=2 ) o™ Yl — (1 = [fe2],,
2 vl (sin 8, = (1= 3 ) fu,lly ~ (L D)
2 [lnlo (sin 8, — 20 (1) (1 —r2* 1)) = Ilozll, - 2Ce (n),

the iast inequality coming from (9). Now by Lemma 4.4 (ii), for each m > 0

2Zm
>27m ¥ (zm)wk
k=m+1 k

where again we have used the hypothesas that {w{k))x»o i an increasing
sequence. As C > liminf, ., @(2m)jw (m), it follows that there is an infinite

0 we have

2 towm),

o2l

icm
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subset S of {0,1,2,...] such that for all me§
(2m)/2C.

[l 2 @
Hence, setting a = 2m above, we deduce that for all me§
[loc®m ™t — 27| o, 2 6 (2m) @ (2m),

which completes the proof of (iii), and of the whole theorem. m
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