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On semigroups generated by left-invariant positive
differential operators on nilpotent Lie groups

by
JACEK DZIUBANSKI and ANDRZEJ HULANICKI* (Wroclaw)

Abstraet. For a nilpotent Lie group G let

k
¥ =3 (=) X,
J=1 !
where the X, belong io the Lie algebra of . Then — ¢ is the infinitesimal generator of a
bolomortphic semigroup T, f = fxp,, |Argz| <8, on L'(G). We show that for every Ieft-
invariant differential operator & on G, |dp, (X} < Aye™ "™ for every comstant N and Ay

= A(f, z, N), where ¢ is a riemannian distance on G.

Let G be a Lie group and let t be a subadditive function on G (ie.
t{xy) € 7(x}+t(¥), e.g. 7 is a riemannian distance from x to the unit element
e of G. For elements X, ..., X, in the Lie algebra g of G which generate ¢
as & Lie algebra we consider the left-invariant differential operator

L3
(0.1) S ¥= Y (-
J=1

-In [2] G, B. Folland and E. M. Stein proved that if G is a homogeneous
group and .# is homogeneous, then the closure of —.% is the infinitesimal
generator of a one-parameter semigroup {T},»¢ of operators on L*(G) such
that ‘

Tf=f*p,

where p, is C® and [or every in the enveloping algebra % of G and every N
we have . '

(0.2) | lop, (1 +)l 0 < 0.

On' the other hand, if & is of the second order, ie, if all the n's are
equal to one, then it is well known and goes back to Nelson and Gérding

* This paper was written when the second-named author was visiting SUNY at Albany.
He would like to express his gratitude to his host Joe Jenkins for the hospitality and
discussions which led to considerable simplifications of some proofs in the paper.
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[3], [9] (cf. also [1]) that for an arbitrary Lie group G, every &in % and an
arbitrary N we have

©3) 12, & < 0.

The aim of this paper is to prove (0.3) for the operators of the form (0.1)
on nilpotent Lie groups. We believe that (0.3) holds for operators of the form
(0.1) on arbitrary Lie groups and a good part of our arguments will be done
in this generality; however, we do not know whether the following subellip-
tic estimate proved by B. Helffer and J. Nourrigat for nilpotent groups [4]
holds in general:

(04 For every 0 in ¥ there are o and ¢ such that
Nl Scllt+ 2 fNl,.  for all [ in CF{(G).

It is easy to see that the operator % is positive on L?(G), and
consequently it has a selfadjoint extension, As a matter of fact, the closure of
FiCE 1s selfadjoint; we shall sketch a proof of this in Section 4.

Let’ E(4) be the spectral resolution of %. Then

T = [e"*dE(), Rez>0,
0

is a holomorphic extension of T,.
In the case when G is nilpotent and X,, ..., X, generate g we prove that
for every N there is a 8 such that if |Argz| < 6, then for every @ in % we have

fl8p. €], o < c0.
This has the following
CoroLLArY. For every strongly continuous Banach space representation U

of G the operator U(— %) is the infinitesimal generator of a holomorphic
semigroup of operarors U(T) for |Argz| < @y.

It is perhaps interesting to remark that if

IV < (L+(x)¥, xeG,
then Oy = w/2.

The authors are grateful for very helpful conversations on the subject of
the paper to Piotr Biler, Michael Cowling, Ewa Damek, Pawel Glowacki,
Bernhard Helffer and Joe Jenkins, '

1. _Preliminar.ios. Our main tool is the following theorem essentially due to
J.-L. Lions [8]. Since its proof is.a combipa

tion of ositi
from [8] and [11] we include it here. of & number of propositions
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Let 4" be a Hilbert space and let V' be a dense subspace of # such that
V is a Hilbert space with the inner product (-, *);- and the norm |- ||y and for
a constant ¢ we have

Il < clixlly  for xeV.
Let a{x, y) be a bounded sesquilinear form on ¥ It defines an operator
A: @ (A) = # as follows:
@A) = lweV: |a(u, v) < C,llvllp, v6V},  (Au, V) =alu, 1).
(1.1) Proposrrion. Suppose that for some a >0 and A, €R we have
allullg < —~Rea(u, W+ Ao 1.
Then A is the infinitesimal generator of a strongly continuous semigroup of
operaiors on # which is holomorphic in a sector
S, = {z: |Argz| <s)}.
Proof. For i > 4, we let
@, v) = alu, )— A, 1) ..
Then, by assumption,
(1.2) —Rea; (u, 1) = a||ul7.
By [8], Proposition 1.2, p. 11, (1.2) implies that the corresponding operator
Ay = A—AI is an isomorphism of 2(A4) = %(4,) onto #. A, is dissipative,
ie. Re(A, u, w)p< O for uin 2(A;), and, by [8], Remarque 1.1, p. 12, ¢(4)
= %(A;) is dense in . Now applying the Lumer—Phillips theorem {(cf. e.g.

[117, p. 14), A; is the infinitesimal generator of a strongly continuous
semigroup of contractions on #. Of course,

(1.3) 0 belongs to the resolvent set g(A;) of A,.

-Also there is a constant ¢ such that |Im(A; u, u) | < ¢|u/|}. Consequently, by

(1.2}, we have .
NR(—A;) = {(— A u, )t u €D(4;), |l = 1} =8y = {z: |Argz| < 6}

where 6 = arctan(c/e) < n/2. Thus for a § such that 8 <& < n/2 there is a
constant Cy such that ' '

Cy |14 < d(Ay, S¢) < d{A,, closure NR(~4;))
for
lyeXy = (z: |Argz] > 6},
where d(z, A) =inf {|z—w|: wed}. Now, by [11], Theorem 3.9, since we have
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—o0, 0) = Z;no(—A;), it follows that
(14 . - X5 < oldy),
(L5 NIR(Ay, A <d{i, NR{(=4))" < Crilyy|™t  for 4 €5,

But {1.3)41.5) imply (cf. eg. [11]) that our semigroup is holomorphic in a
sector S;, & > 0. It follows that also the semigroup generated by A = 4, 11
is holomorphic in §,.

Now let & be an arbitrary connected Lie group. By g we denote its lefi-
invariant Lie algebra and by % the enveloping algebra. A fixed right-
invariant Haar measure is denoted by dx.

If

(/, 9) = | fydx,
then for X €g we have
(Xf, 9) = —(f, Xg), [, geC?(0).
Let d(x, y) be a fixed left-invariant riemannian distance on G and let
(%) = d(x, e,

For a fixed C™ nonnegative function f such that supp f < {x: t(x) <1}
and [fdx =1 we write

p () = e,

(1.6) ProrostmioN. For every submultiplicative function o on G there exist
positive numbers m and C such that

e{x) < Co™(x) for all xeG,
Preoof Cf eg. [5]
From now on we shall fix a function n of the form
(1.7) n(x) = o™ (x).

(1.8) ProvositioN. For every 0€% there exists a constant ¢ =c(0, n)
such that

lon(x)] < cn(x), xe€6.
Proof. Cf. [5].
Let
H= Ay =L = {f: [If P n(x)dx=(f|]} <o},

To simplify our notation we shall “also write (-, Dy =00y
Let U be a symmetrlc relatively compact neighbourhood of the identity
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of G. We write’
(1.9) : Ty (X) = min{n: xelU"),

Of course, 7y is subadditive.
We shall need the following simple

(1.10) LEmma. There are a subset A of G and a constant ¢ such that

1y G= | aU, T e <o,
ag A e A
Proof Let F be a finite subset of G such that FU > U2, Then
(1.12) Fr=ly = un,
Let

F,=lagF" 1 alU n(Un 1y # 0},

By (1.12), F,U > U"—U""*, Consequently, if A4 = )2, F,, then the equality
n (1.11) holds. On the other hand, if aeF,, then 7, {a) > n—2, whence, for
¢ >loglF|,

Z e—crU(a)SZ Z eu“U(")QZIF'RE—“"MZ)<OO.

agd n aely n
For a submultiplicative function ¢ on G we write
L' (o) = [feL*(dx): {1/ (%) e{x)dx <0},
We have
(1'13) “f*g”Li(o) S ”f”];l(q) ”9”1,1(9)'

'Finally, let G be unimodular and let N be a unimodular normal -
subgroup of G, L_et dx, d¢, di be Haar measures on G, N and G/N
respectively such that

(1.14) [fgdx = [ [f(Ey)dcdy.
GIN N

Let = be the natural homomorphism 7: G ~G/N. For a submultiplica-
tive function ¢ on G/N the function gor = ¢ is submultiplicative on G.

We wrile
7 (%) = ‘ff(EXJ dg.
Then

It is well known, and also follows from (1.6), (1.10}, that for sufﬁmently
large k

l[tp(x)‘“"dx<oo.
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2. Some lemmas
(2.1) LemmMa. Let X €g. Then for every natural number n there is a
constant ¢ such that

n=1
IX*f112 < ¢ (X3"f, )+ kZOHX"fII,?}-
Proof. Since [|X"f]|? = [(X"f, X"f),l, we have
-1
i < s e+ T (1 e, Xt

and by Proposition (1.8) for an arbitrary £ > 0 there is ¢, such that
1

13 <, i+ 3 U1 o |X411)

0
n=1
= (XS, i+ ne L XS N1+ co 2 IXESI
k=0
Now for & small enough we take ne || X"f]j? to the other side, and the proof is
complete.

(2.2) Lemma. Let X eg For every b > 0 there is B such that for every
natural number j we have

IX/f1IF < BIXTTL A7+ BIX 1 f117, [ eCR(G).
Proof. By Proposition (1.8), for a constant ¢ we have
IXAI = WX2A, Xifl = (X f, XX f))|
ST X )+ X, X X
SHXTTLS XTI )l e XL, X fi)l,
Hence, by the Schwarz inequality for ¢ >0 there is ¢, such that
111l < e X1 F1F +e 1 X7 F113+ cc, 11X~ £|12+ e || X112

Since ¢ depends only on # and X, for ¢ sufficiently small we may take
£c||X/fli3 to the other side thus completing the proof.

{(2.3) Lemma. Let X'eg. For every integer n = 2 and every b > O there is
B >0 such that

24) X717 <BUXSIE+BIANZ,  feCR(G), 1<j<n,

_ Proof. We proceed by induction on n. The case n = 2, J=11s an
immediate consequence of Lemma (2.2). Suppose (2.4) holds for n < m, ie.

(2.9) : IXAIF < el X1 +C 12, 1<j<m,
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where ¢ can be taken arbitrarily small. By Lemma (2.2), for an. arbitrary
b, > 0 and some By

26 IX™f1ly < by hX™H 211+ By X117

Hence,

S b X" F+ B IX™ A1l

< by [|X" A f113 4 By e | X" 117 + Co L)

= by | X" fIF +Byel| X"f1I5 + By Gl 17,

I X™fH2

so taking & small enough, the conclusion follows,
A similar argument yields

(2.7) Lemma. Ler X eg. Then for every positive integer n and every & > 0
there is a constant C, such that

IX*S, X' )l <-ell X777 + Gl AU
for all k, € n—1.

Now let X, ..., X, be some fixed elements from g and ny, ..., n, some
fixed positive integers, We introduce a Hilbert space norm on C(G) by
1 njy
1115, = 715+ 3 lelXjfll,?-

1=1 g=

By Lemma (2.3), this norm is equivalent to

k
A1+ 121 I1X3 £l12

.. and we shall use the same notation for both.

Let ¥, be the completion of C2(G) in the norm ||-||V”. The -following
lemma has a standard proof (cf. e.g. [1]).

(28) Lemwva. f eV, iff fex, and Xifed, for all 1<s<mn;, J
=1, ..., k, where X’ f is understood in the sense of distributions.

3. A semigroup of operators on weighted Hilbert spaces. We are st'i'lll
considering a gemeral Lie group G. For elements X, ..., X; in the Lie
algebra g of G we consider the operator

k
(3.1) Z= 3 (=) x"
J=1

defined on CZ(G). As in the previous sections, we write n =¢" and we
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define a sesquilinear form a, by
k
a(figy=— % [X77(0)X7[g(x)n(x)]" dx.
=1 G
For n =1 we write a,(f, g) = a(f, 9).
‘We note that in virtue of Proposition (1.8) for some ¢ > 0 we have
la,(£, ) < el 11l gy,

and so as in Section 1, a, defines an operator A" whose domain is

PA) = {feV: la,(f. 9l < Crliglly)
and
(A, gl = ay(f, g)  for [€B(A", gV,

Also, a,(f, 9) = —(&f, g), for f, g€C2(G), ie. —.F < A"
Now, by (2.3), (2.7} and (1.8) we have

(3.2) Tueorem. There exist Ay and o >0 such that
=Rea,(f, N)+AlIf 1R Z llfIIF,.
Consequently, by Proposition (1.1),

(3.3) Tueorem. A" is the infinitesimal generator of a holomorphic semi-
group [T") .o of operators on Hy.

Also it requires only a routine verification to prove

(34) Tueorem. For feB(A", Af=—%f and (A" = .{fEV,,:
Kf est,}, where f is meant in the sense of distributions.

Hence the following theorem follows:
(3.5) THEOREM. If my < my and n; = @™, 5, = ¢, then A" = 4™,
The next theorem is a consequence of (3.5) but its proof, though routine

and easy, seems to require passing from the inclusion (35) to the resolvents
and using the Hille~Yosida~Phillips theorem.

(3.6) Tueorem. If ny, n, are as above, then for [ in Ky, we have _.
TS =T

Jor all positive t and consequently, since the semigroups are holomorphic, for t
in the smaller of the corresponding seciors.

Fil}aﬂy, we note that for 1 equal identically to 1, the operator 47 = A is
sch_'adjomt, being symmetric and the infinitesimal generator of a (holomor-
phic) semigroup of operators.
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4. & as an operator on L2(G), In this section we are going to prove that

" our operator ¢ as defined by (3.1} is essentially selfadjoint on CZ(G). This of

course follows from an argument by E. Nelson and W. F. Stinespring [10]
but requires some care: CX(G) is not the Gdrding space of the right regular
representation (it is only demse in it). Moreover, for the right - regular
representation the ellipticity or hypoellipticity of % is not needed: we can
regularize from the left-hand side.

For an element 0 of the left-invariant enveloping algebra % of G let &*
be the element of % such that @ — 0% is the linear anti-automorphism of %
such that X* = —X for X in ¢

The following is a lemma of E, Nelson and W. F. Stinespring [10].

(4.1) Lemma. Let f be a positive-definite smooth function on G. Then for &
in %

" & (e) 2 0.

Let ./ be the Gérding space for the right regular representation:
4. - SO = lin | fww: fel?{G), weCP(G).
Of course, for every 'd in % and [xw e Y™ we have

A ww) = 6w €9 = LA(G) A C*(G).

(43) Lemma. Let L =Yk, (=1 X" be a differential operator defined
on ¥®. Then L is essentially selfadfoint.

Proof. We note that L'is of the form
@4 L= 2’:31 5 4,

It suffices to prove that {1+ L)(¥®) is dense in L*(G).
Suppose that for some g&L*(G)

O=([1+LI[E»s*g*], 9)
for all ¢, weCP(G). Then, by (44), since w is arbitrary,

k
0=(1+ Y, 8f ON(E*g) & #a)(),
. Je

ie, by (1), 0= (Exg) *(Eng)(e) =|[¢ wgli2, hence |igll2 = 0.
(4.5) TueoreM. The closure of &, 2, is selfadjoint, & being defined on
Cr(G),

Proof, We are going to show that & = L. The inclusion ¢ = L = ~A
is an obvious consequence of (3.4), (4.3) and the note at the end of Section 3
To show &% = L we let {y,! be a sequence of functions in C;°(G) converging
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with all derivatives almost uniformly to 1. Let uey® = (L). Since
Su €L2(G) for all de%, by the Leibniz formula,

litn || & (v, @) — Lull 2 =0

n—o
and also
lim 7, 5—ull,2 = 0.

) n—r oo
Hence u (), ie. Lc 2.

5. The case of graded groups. We now assume that G is a graded group
(cf. [2]) and that the operator % defined by (3.1) is of degree, say, 4, ie.

(5.1) ) P(fod)=r (jf)o&,,

where |8,),,, is the family of dilations of G. We also assume that X;, ..., X,
satisfy

(5.2) Lie{X,, ..., Xl =g.

Our basic tool now is the following subelliptic estimate due to B. Helffer
and J. Nourrigat [4].

For every & in % there is an integer ¢(0) such that
(53) éull, 26, < cli(1+ &7 u]
for all ue(F"9).

Consequently (cf. [10]), since G is unimodular, there are N and ¢ such
that for ue®(#")

Since # is selfadjoint on L2(G) and positive, we write

L2@G)

T.f= [-“dE(A)f, Rez >0,

where dE ()} is the spectral measure of #Z. For every z with Rez > 0,
T L*(G) » N 2(£),
n
hence, by (5.3) and (54), we have
(3.5) T.SeC®(G) for all fin L*(G).

Moreover, since T; commutes with left translations, and T, =
e.g. in [7] that

T*, we verify as

Lf=f+*p. p.cl?(0),

icm
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p.(x). Also
Rez > 0, Rew > 0.

and p¥ = p, for ¢ real, whence p;(x)=
Pz *pw = Dot wo

Hence, finally, p, €Co(G).

‘We note that 7, = T" for # =1, as defined in Section 3.

Now assume that n is an arbitrary function of the form (1.7). Since
[T, o is a holomorphic semigroup on .#,, in virtue of (5.5) and (3.6), we
have

T L~ N @ ((4)") n C*(G).

A routine application of (1.8) and the Leibniz formula yield

(5.7) Lumma. For every X in g there is a constant ¢ which may depend on

X, t and n such that
(XTf, XT N S IXET gy + el T 226+ eI X T 2,

(5.8) LemMa. For each @ in % there is ¢ = c(t, §) such that

187 fll 20y S €lf M 26
" Proof. By (53) with N = ¢(d),

”an”LZ(m C||(1+~f’)”Tf||,z(¢,,<C||l(1+l)” e"HdEM) 11 < ellfl2qq-

For fel?(n* we have
”(Tf) nHLZ(G)

and so, by (5.7) and (5.8),
(XTf, XT /)y <

”TIHLZ("Z) = c”f”il(,lil)

¢ ”f”[_ﬂmZ) v

Hence, by an easy induction, we obtain
(5.9) Lemma. For every & in % and every t > 0 there is k such that
| 10T, £l 2 < €M 2000
Jor all £ eL?(n"). Consequently, for some s
180T N 126y < €120
This, by (5.4), implies

~ (5.10)- CoroLLARY. For every § in %, every v and every t > O there are ¢
ami § such that

10(T; 1) '1“1,00((;) < c“f”bz(n’)‘
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(5.11) TaEoREM. For every t >0 and every n = o™ (cf. (1.7)) we have
[p ()2 n(x)dx <co.

- Proof. We already know that p, e L*(G). Let U be a symmetric relative-
ly compact neighbourhood of the identity in G, r > 0 and m > 0. By (1.10),
there are & and a countable subset A of G such that

G=a'U, YnpaHhH™<ow.

agd aed
Let
(5.12) fi=-1plU.

Since p,€C,y(G) we have |f)] < € and ”fu":ﬂ(c;) < M, for all aed. Conse-
quently, by (5.10), since suppf, = U,

. (5.13) [ fa®) o DAy P =T, £, () (4

< Clifdlagusst 1, S cllfilly2 < M.
Since #(xy) € cn(x)n(y) for some ¢,
I={p0Pndy <y, | n®Pnla " apdy
acA g~ 1y

<c) | pOPn@ Ynlay)dy

aedg~ 1y

SeMo Y | pOPnla YW i~y kdy,

acd g~ 1y

where M, = sup {n(y): yeU}. Consequently, by (5.13),

I<eMo ) | Lpala™ Py Y *dy

geAd a"iU
MM Y n(a™ )™ <o,

aeAd

(5.14) TueorEM. For every w, every de¥ and every t >0
10 nll e < 0.

Proof. Since p,, eL*(y) for all n and p, = T 5.14) follows i -
diately from (5.10). ‘ bz (S14) o Sme

Now we consider p, with z complex.

(5.15) TuecREM. For every n there is a sector 8445 O > 0, such that for
all 9e% and z €8,

18P 7l o0 < o0,

1
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Proof. As we have shown in Section 3 for z €S, the operator T maps
L*(n) into L?*(m). Hence for + small enough

Op, = 0Py ¥ P) = Proy * op, ELz(’ﬂr
which, by (5.9), proves (5.15).

It follows immediately from (5.15) that for every » there is a sector S,,
g > 0, such that for z &8,

p. €L ().

Also it is easy to sce that the map z —=p,eL' (1) is holomorphic for z in S,.
(5.16) TrroreM. |l wo 8 @ holomorphic semigroup on L () for euery' 7.
Proof. To prove (5.16) it suffices to show that

(517 Ipall 1y C for |2 €1 and z &S,

 Let |z =1 be in the sector S, in which z —»p, L' () is holomorphic.
Since the infinitesimal generator % of the semigroup |7}, o is homogeneous
of degree say 1, if Q is the homogeneous dimension of G (cf. [2]) we easily
verify that

ps=t" W p, 08 Ly
Hence for ¢ <1 .

Ipell 1y = 1P 9118, X) i < Cy

because if ¢ is a riemannian distance on G and §, is an automorphism of G,
then (8, %) < t*z (x) for some d and, on the other hand, 7 (x) < ¢¥®*C. This
completes the proof of (5.17).

6. Arbitrary nilpotent Lie groups. Now we use the trick of L. Rothschild
and E. M. Stein [12] applied by many authors afterwards: We pass to the
free nilpotent group on which the operator & is homogeneous. The details
are as follows. _ ]

If G is an arbitrary nilpotent Lie group, of step p, say, and Xy, ..., X,
ate elements of the Lie algebra ¢ of G such that

Lie {Xia cavy Xk} st é‘

we let G be a free step p nilpotent Lie group whose Lie .algebra is freely
generated by X, ..., X, We introduce dilations on G such that the opera-
tor (3.1) is homogeneous. The mapping

o ogeX, X 6§

' defines a homomorphism of g onto g and consequently a homomorphism of

G onto G and of # onto % Let N be the kernel of © in G.
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Consequently, the operator
k
=3 (-1
J=1
is the image by = of % defined on the free nilpotent group G by (0.1). Also it
is easy to verify that for z in a sector S,, # >0,

P (%) = [ p. (£x)dd
N

defines a strongly continuous holomorphic convolution semigroup on
LMG, y), where ¢ is a submultiplicative function on G, whose infinitesimal
generator is the closure of —%. Also )

(f;i 0B, (¥ () dit = g ]{’I@pz(f)il//(ﬁ(éx))dé dx

< [18p. (%)Y om(x) dx.
G

This shows that Theorems (5.15} and (5.16) hold for an arbitrary nilpotent
Lie group and arbitrary operator of the form (0.1).

(6.1) CoroLLary. For any strongly continuous Banach space representa-
tion U of a nilpotent Lie group G, if & is the operator defined by (0.1) the
operator U(—.%) is the infinitesimal generator of a strongly contintous
holomorphic semigroup of operators.

An easy application of (5.16) and the results of [6] and [7] yield the
following

(6.2) CoroLLARY. If G and ¥ are as above and U is an isometric strongly
continuous representation of G (or more generally, ||U (x)|| grows at most like a
polynomial as x —co), then the semigroup generated by U (— ) is holo-
motphic in the half-plane Rez > 0.
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