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Abstract. It is proved that if w is in the weight class 4, on a cube @, then w*, the
nonincreasing rearrangement, lies in 4, on the interval [0,[Q[]. This gives another proof that
o then also lies in the more restricted class A, for some ¢ > 0, An estimate of ¢ is given as well as
8 new characterization of 4. The doubling condition & (Q) = cw(2Q) is strictly weaker than the
condition that we 4. A new counterexample, comparatively simple, is given to demonstrate this
fact.

1. Notations and introduction. The Lebesgue measure of a set E in R” is
denoted by |E|. w will always be a locally integrable, nonnegative, real-valued
function on R" and we use the notation

o(E) = | w(x)dx.

We denote by w, and «w* the nondecreasing and nonincreasing rearrangement
respectively of the fanction . E' is the set of density points of E. The mean
value of a function f on a set E is written

fridx = IEi‘lif(x)dx.

The Muckenhoupt classes A,, p > 1, were introduced in {4]. 4, is defined
as the class of locally integrable nonnegative functions e that satisfy

) fodx(fo e dxpt < 4
Q Q

for every cube Q and some constant A. We then say that w belongs to A, with
constant A. Xf the cubes Q are restricted to lie within a fixed cube @, we say that
w belongs to A, in Q,. ' . :

The paper conmsists of a proof that weAd, in Q implies that w*
(or equivalently ,) belongs to A4, on [0, |Q] (Theorem 1). Using a
couple of elementary function-theoretic lemmas we proceed to prove the
well-known fact that weAd, implies weA,-,. for some > 0. An esti-
mate of ¢ comes as bonus (Theorem 2).As a corollary we obtain another



246 1. Wik

characterization of A,. Theorem 3 is a strengthening of a theorem by
Muckenhoupt [5], connecting A, and A4,. A consequence of Theorem 3 is that
A, may be defined as the class of locally integrable functions for which there
exist constants r and k such that

|E] > Q] = o{E}> ko(Q)

holds for any subset E of any cube Q (r <1, k> Q).

It is an interesting fact, proved by Fefferman and Muckenhoupt in [3],
that A, is a strictly stronger condition that the doubling condition
@ (Q) = co (2Q), where 2 is a cube with twice the side-length of @ and the
same center. We end this paper by giving a simpler such counterexample.

2. Theorems and proofs. We start by proving a lemma which gives
a covering of a set E by disjoint (dyadic) cubes in each of which E takes up
roughly the same portion (and equally important, the complement of E takes
up at least some fixed portion). This lemma has been used earlier by the author

(6] A similar lemma can be found in the work [1] by Bagby and Kurtz.

Lemma 1, Let E be a measurable set with finite measure and ¢ a real number
in ]0, 1[. Suppose that E is contained in a cube Q (or just R") and that |E| < ¢ |Q|.
Then there exists a sequence {0,}T of dyadic cubes, dyadic with respect to Q,
such that the cubes @, have disjoint interiors and

) 277 <[, N EV/IQ| <e,

) (Jo,-E,

. =1
where E' is the set of density points of E.

Proof. Let x be a point of density of E, xe E". Then there exists a dyadic
cube Q. containing x, such that {Q, ;N E| > ¢|Q, |- We double the cube
0,1 dyadically and obtain Q, ,, double that cube, etc. Since |E| is finite we will
after finitely many doublings reach a first cube @Q,, with “density”
1@xp N El/1Qx, < 0. Since |@ypy M E|/|Qy,p-1] > @ we have

,IQx.p N El > |Qx,p-—1 a El >0 |Qx,p—l| = 2_ng |Qx.p|, ie.

27" EQx,pl < IQx.pﬁ Ei<yg |Qx.p| L

This procedure can be carried out for every xe E'. We obtain a family of cubes
{Q e Two such cubes have disjoint interiors unless one of them is
contained in the other. We can number the cubes by size, disregard the cubes
which are subsets of larger cubes in the family and thereby obtain the sequence
claimed in the lemma. '

TreorEM 1. Let w(x) belong to A, in Q, with constant A. Then
w*(t) (orew, (t) belongs to A, i {0, |Qy|] with constant A* = 24-2"+1e=1),
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Proof Llet @ be a positive number and put
E={xeQy wl)<a}.

Cover E', the density set of E, by a union of disjoint cubes in Qg, &0,
such that

277N < IEn Q) <310
(IE| < %10, is assumed.) This means that
(1) 210 < 2"THE]
By the definition of 4,

_[ cu(x)—licp—l)dx < All(p—l]‘QvlpI(p_I)(Qj w(x}dx)‘lf(l"'ll_
a, ) ;

Since w(x) = o on at least half of Q,, we obtain

J' a)(x)*l/(p-l)dx < (2A)1I(p—1) EQV! g-he-1),
Q

A summation gives

Im(x)-utp—i)dx < j w(x)—ll(p-l)dx < {ZA)u(p—lla—II(pl' I)EIQvl'
E

Uy
We use (1) to find

{2 _fw(x)— V-1 gy (2A)1.’(P"1)2n+ 1,-1itp—1) \E].
E .

Of course [z (x)dx < a|E|. Combined with (2) this gives

f o@)dx(f @)D dgrT < 24:207 R0,
E E

The arguments which lead to (2) also give
? o, " Y=gy < pnt1 (2A)1Hp— ”co* (b)~ M 1y
0
Since
b b b
fo, O Y Nd < fo, @7 Pde and fo,@dt <o, ),
a 0 . a
we have
] b p—1
fo, @) dt(fo, @)

which by definition’ means that o, and w* belong to- 4, on [0, 04] with
constant 24-26T e |

< 24-20+ 1)(17—1),
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LeEMMA 2. Let g be an integrable function on [0, 1] and ¢ a constant such
that

t

(3) fgydu<ctgt), 0<t<l.
[¢]
Then

_[g(u)du t”°jg(r) dr.
Proof Put ¢ = ¢~ %, multiply (3) by t 7 7¢ and integrate. We then obtain
1 4 i
ft™i=edt{ g du < c[t g (#)dt.
a 0 a

A change of the order of integration gives

a " —1¢ 11 B 1
_[g(u)du+;j'(u “—D)gydu < cft™g(z) dt.
0 4

a

Since oc = 1 this can be rewritten as

a"}g(u)du < jl'g(u)du,
Q0 0

which is the statement of the lemma.

LemMA 3. Let f be a positive, nondecreasing function on [0, 1] with the
property that

3 t
(4) f@)du(f )~ eV aupt < 4,
N 0 0
holds for some p> 1, some A, and every te[O 1]. Then

jf(u)du e PP l’j"f(u)du

where ¢, = 270"V Ar and o = (24,)7 M@~ 1)‘
Proof. Since '

Jéf(“)du >3, 0<t<l1,
we deduce from (4) ’ .
]Ef (W)™ Dy < (2A4,)1K0 70 f (t2) o=y
and therefore '

ff (u/2) Yo=D) dy (24, )M £ (t/2)7 M),
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The function g{u) = f (u/2)~ ™Y gatisfies the assumptions of Lemma 2 and
we conclude

:j;f(u/Z)”l""’“”du < t"jl‘f(u/Z)””“’"“du
1]
for ¢ =(24,)"Y*~Y, This means that for 0 <t <3
©) if(u)“”"'"”du <@ ff{u)-”“'"”du < Q07 [ £ )0V du.
0
By Hélder's incquality
j'f(nz)du(jf(u)‘”“”‘”duz)”"1 =P
X 0 0
Combined with (5) this gives
jt-f(u)du = 270w ypolp— ) (}f(uj—ll(p—l)du)F(p~l}‘
0 )
We finally apply assumption (4) to obtain
_r[f(u)du > ALZ"”(P”I’(}f(u) dujz~or™
0 1 o

and the lemma is proved.

We will now prove the old result ([2], p. 243) that if w € 4, then w already
belongs to A,_, for some &> 0.

THEOREM 2. Let w belong to A, with constant A. Then W€ Ap,, for every
py > p—o(p—1), with constant

1( p—1 )p1—1
¢ \py—p+oip—1) ’
where ¢, =27 VAT, g = (24,) YD and 4, = 2420407,

Proof Let @ be an arbitrary cube. By change of scales we may assume
that |Q} =1 and @(Q)= 1. Then, using Theorem 1, we get

f w, (t) dt(:[‘ (O*(t)—l.!(!’—l)dt)p,.,l < Al_
0 0
We now apply Lemma 3 to obtain
. ‘
j'w* Wdu 2. c t?70¢" Y,

and using the monotomclty of o,
(p—1K1-a)
*(t} = tP”
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A direct computation gives

( j’ w (x)— 1(py~1) dx)"i -1

1
([, () Ha =1 g =1
Q 0

< l(___&_:lh__.my’“l
ey \py~pto(p—1)
if p, > p—o{p~—1). This finishes the proof of Theorem 2.

As a consequence we obtain the following characterization of A,.

COROLLARY 1. A locally integrable, nonnegative function o isin 4,, p> 1,
if, and only if, there exists a number p,, 1< py < p, and a constant A, such that
Sfor every cube Q

(6) w{E)w(Q) = A(E/QD™

for every measurable subset E of Q.

Proof. Suppose @ is in A,. By Theorem 2 there exists p;, 1 <p, <p,
such that we A, with constant 4~ 1. Therefore, by Holder’s inequality

(El/IQ]" = (i Le dx)7r < 32 10 (x) dx(g @ (x) "V dxpp

which proves the necessity of condition (6).
Suppose now that (6) is valid. Take an arbitrary cube @ and lst w, () be
the nondecreasing rearrangement of @ in Q. Then (6) can be interpreted as

(]) o, (Wdu = A|Q) 0 (Q),

which implies e, () > (4/|Q|P1)t" " @2 (Q). Therefore

2@ 00 axp < 0@)(§ o, (07 g~
Q 0

< Ile*('?'t—(pl—n/tp—ﬂdt)f"l = }—(p_l )p“lIQI”-
Ay A\p—p,

This means, by definition, that we 4, and we have proved the sufficiency of {6).
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Muckenhoupt has in [5] defined A4, as the set of afl nonnegative locally
integrable functions, @, on R" which have the property that for every subset
E of any cube @

o (E)/w(Q) < g(EI/Q)

for some function g on {0, 1] with lim,.q g(f) = 0. In that paper he then
proves that w € 4, if, and only if, 0 € A, for some p > 1, We will now show that
the same conclusion holds true with a seemingly weaker condition,

THEOREM 3. Suppose w is a nonnegative, locally integrable function on R"
with the property that there exist two constants, r < 1 and k > 0, such that if E is
any measurable subset of any cube Q then

9 [EVIQ| 2 r w(EYo(Q) = k.

Then o is in 4, for every p>Inkln(27"r))/(Inry.

implies

COROLLARY 2. If condition (7) is replaced by
(®) ENQl < v implies w(E)w(Q) <k,
then w is in A, for every p>In(L—k}n(27"(1—r)*)/(ln (1 —-r)*.

Proof of the corollary. By taking complements with respect to Q, (8)
is transformed to

|C(E)/IQ| > 1—r implies w(C(E))/w(Q)>1—k
and the conclusion fellows from Theorem 3.

Proof of Theorem 3. Let Q be any cube and E an arbitrary subset of
Q with |E| < r|Q} Let p be the nonnegative integer determined by

® 2L ENQl < et

We use Lemma 1 to cover E' with disjoint, dyadic cubes, {0, 1}¥, such that

(10) 2700 < iQua N El < |Qul, ve=1,2,...
Put
o
El = U Qv.l-
vyl

From the construction in Lemma 1 of the cubes Q, , it follows that Q,, is the
union of 2" cubes with ha)f the side-length of Q,, and where at least one of the
subcubes, Q¥ ,, has the property [Q*, ~ E|/{Q¥ | > r. By assumption (7) we then
have

w(@% NE) = ker QY1) _
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We can expand 0%, to @, , stepwise by increasing the side-length by a factor of
r " at each step except for the last. The number of steps we have to take is
m where

n
(0 ot = [1‘?«173]

Using (7) we therefore obtain w(Q¥,) > k"w(Q,,) and thus
w(@¥ N E) = k" w(Q,,).
Since «(Q¥; N E) < w(Q,; nE) a summation yields
w(E) 2 k" w(E;) or wE)<k T o(E)
and from (L0)

1
[E,] > - |E].

By (9)
U EIQ| < P,

We start anew with E, as our new E, increase the Lebesgue measure by
a factor of at least r~! and obtain E, with

IO < B <rPTMQlL,  o(E) 2 k"o (E,).
After p+1 steps we have
OIS IE el <@, @(E,4q) < k™0 D+Dg (F),
Since E,., is large enough for us to use assumption (7) we have
(12) : w(E) 2 k-ktm*T et (0),

We observe that obviously k is smaller than r and put k™** = rf. Then,
f=m+1)Ink/lnr > 1 and

w{E) > k(E/Q) w(Q).
Using (11) we find this to be true if eg.
Inkln(2™"r%)
P>
The statement of the theorem now follows from Corollary 1.

We end this paper with a new example showing that A, is a strictly
smaller class of functions than the class of nonnegative functions, o, satisfying
the doubling property:

@(2Q) < cor(Q),

for some ¢ > 0.
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In [3] it is observed that it is sufficient to produce an example, w, in R since this
gives an example, w,, in R" if we define w, (x) = w(x,).

THEOREM 4. There exists a function which does not belong to A but still
has the doubling property.

Construction of the function w. Our starting point is the triangular

function
X, 0<x<k1,
@we{x)=<2—~x, 1<x<2,
0, elsewhere.

We then construct the graph y = w, (x) by successively adjoining to the graph
¥ = @y (x) translations of that graph diminished by a factor of 4, 4, ... in both
the x and y directions. We reach the point x = 4 and complete the graph from
x =4 to x =8 by making it symmetric with respect to the line x =4. In
general w, is constructed from w,—; in the same way. In formulas this yields

w
z 2*ka)"(2k(x_4ﬂ+1)+4n+1)’ 0 <x< 4n+1’
k=0

Cl;,,+1(2'4"+l—JC), 4n+1$x€2.4n+1’
G, elsewhere,

Bys 1 (X) =

Then we define

®(x) = limw,(x), for x>0,

s+ oo .
and make w even by @ (x) = w(—x), for x < 0. An immediate calculation gives

24" .
§ o,()dx = (§)".
0

ST ———

T+ RO

Fig, 1

We now make an estimation of |E,|, where
E, = {xe[0,2:4; & (9 < 27"},
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Obviously,
|Eqf = 2:277,
|Ef|> 427" Y 1=42""n,
k=1
I 1
|E,|>827" % k= 8-2""n(n+- ),
=1 2
(2n—1)!
> 2
El (n—D!n!
Using Stirling’s formula, we cobtain
. 4?{
{13) |E,) > (1+0(1/m).

N

Proof that w does not belong to 4. Itis sufficient to show that
o violates {(6) if p, is large enough. Take p, =Inn, @, =[0,2:4"] and E, as
above. We use ©(Q,) = (3)", w(E) <2™"|E, and (13) to find

OED 10 _ naot friot (10 (2
oo B <2/ l(Ho(n))’

which certainly is o(1). Thus, w does not belong to any 4,, p =1, and
therefore not to A.

Proof that @ has the doubling property. I. Let I be an interval
{a, b] where a=m-2* and b=(m+1)2% for some integer k and some
nonnegative integer m. We claim that

(14) w@BIl) < 6w(l).

If b =4" or a =4" we see that '

(i) wl|; consists of an infinite succession of copies of ...
Otherwise one of the following cases can occur:

(i) o|; consists of exactly one, or of one half of a copy of w,-;.
(iii) |, consists of + or § or ... of a copy of w,_.

In case (i) it is evident that w(31) = 5e(I). In case {ii) it is also evident that
@ (31} < 6w (D). In case (iii} we easily see thatif a = 2-4"~* or b = 2-47, then (14)
is true. In the remaining possibilities we can, without loss, instead study the
corresponding subinterval of [0,2-4"']. The inequality (14) is obviously true
for I = [0,8]. The general result therefore follows by induction. Now w is an
even function. Therefore (14) is true also if m < 0.

II. We are now in a position to prove
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w2 < 6*a ()
for any interval I
Let the length of I, ||, satisfy 2% < |I] < 271, Then I contains an interval
of the form I' = [m-2¥"!, (m+1)2*"1]. It is easily seen that 21 < 15I'. We
double I' three times in suitable directions to obtain I” with endpoints of the
right form, Then 31" = 21
Using (14) four times, we obtain

w2 6wl < 6*w ()

and we are through.
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