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Abstract. A sitnple proof of a more general version of the Orlicz interpolation theorem for
Lipschitz operators is given along with some applications.

0. Introduction. The first interpelation theorem concerning Orlicz spaces
(not only L, spaces) as intermediate spaces is due to Otlicz. Be proved in [17]
that any separable Orlicz space L,(a, b) is an interpolation space between
L,{a, b) and L.(a, ) for linear operators. Next, in [18] he extended his
theorem to arbitrary Orlicz spaces and even to Lipschitz operators. In this
paper we give a generalization of Orlicz’s nonlinear interpolation theprem with
a simple proof and with some applications to inequalities mvolving noninc-
reasing rearrangements. Orlicz’s theorem is generalized to the case of arbitrary
measures both in the domain and in the image of operators. We did mot
succeed in proving the theorem for the Orlicz space L, () but only for L,(w)
A Ly (). Of course, if uQ2 < co or if ¢ satisfies condition &, for small u then we
have the Orlicz theorem on the whole of L, (), because L,(w) = L,(u) in the
first case and L,(u) n L, (4) is dense in L,(u) in the second. Simplicity of our
proof of the main theorem stems from the application of a representation (2) of
Orlicz functions and a special property (7) of the operators considered.
Moreover, our proof gives an exact estimate of the norm of the operator. In
Orlicz’s paper there was an additional constant connected with his technigque of
proof.

The paper is divided into five sections, Section. 1 contains necessary
definitions and basic facts. In Section 2 we give two proofs of the main theorem
which are based on a special representation of Orlicz functions and a special
property of operators. In Section 3 we show a generalization of Orlicz’s
nonlinear interpolation theorem to arbitrary measures. The derivation of
Theorem 2 from the main Theorem 1 has a general character and can be
formulated in the language of abstract interpolation (cf. [19] and [16]). For
a study of interpolation of nonlinear operators, with particular reference to
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Lipschitz operators, we refer to [16]. Pointwise nonlinear operators are
considered in Section 4. This was partly motivated by results in [5] and [11].
Applications of the main Theorem 1 and the Orlicz type Theorem 2 yielding
a classical interpolation result for linear operators, the Hardy-Little-
wood-—Pélya theorem, the Lorentz-Shimogaki inequality and a generalization
of Brudnyi’s result on the modulus of continuity of x and x* are considered
in Section 5.

1. Preliminaries. In this section Orlicz spaces and rearrangements are
defined and some of their properties are given. Also a result on truncation is
included for use later on.

Let (€2, X, u) be a ¢-finite measure space and let ¢: [0, o0)— [0, o0) be an
Orlicz function, ie., a nondecreasing continuous convex function such that
@0y =0.

Let S(u) be the space of equivalence classes of real-valued measurable
functions on £2.

Then the functional I,,: S(u)—[0, oo] defined by

I(x) = [3; @(Ix @) du

is 8 modular on S(u). The Orlicz space L, = L (u) = L,(£) is the space of
all xe8(u) for which I,(rx) < o for some r >0, depending on x. The
functional

I, = inf{r > 0: I,(x/) < 1}

defined on the whole of S(u) is a norm on-L,,. The Orlicz class L, = Lj,(1) is the
set of all. xe S(y) for which I (x) < co. This set is, in general, only convex.
I, = I%,(u2) is the space of all x & S(x) for which I,(rx) < oo for any r > 0. This
is a closed subspace in L, and the norm |-[, on L5 is continuous, ie., if xe L,
and |x| = x, ] 0 then |x,|,—0. In the case when @(u} = u* we write the letter
p instead of ¢.

The nonincreasing left-continuous rearrangement of x € S(y} is the function
x* = x}: (0, c0)—{0, oo] defined by

xr()) =1inf{d > 0: d (1) <1},

where d,.(1) = p({teQ: {x(t) > 4}) and inf@ = co.
~ The collection of all x & S{u) for which (1) # oo will be denoted by S,(w).
For every xe8,(u} we have d, (1)—=0 as 1— oo and so x*(t) is finite for any
t > 0. The rearrangement has the following properties (cf. [9])
(i) 0 < x, »x implies x¥(t) » x*(7) for all £ > 0.
i) 0 < x < y implies x*(t) < y*(z) for all > 0.
(i) If m denotes the Lebesgue measure then

p({tef: x(t)] > A}) =m({s > 0: x*(s) > A}) for all 1> 0,
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and we say that x and x* are equimeasurable even though they are defined on
different measure spaces. Moreover,

flxldp = [ x*dm.
P o

(iv) For x and y in S{p) we have

Oty =

L t
(x+yy*dm < [x*dm+[y*dm for all t>0.
O 0

Suppose now that x: Q—R, and define the a-truncation (a2 > 0) x™ by
x“(t) = min(x(8), o)sgnx{t).
One can show that for functions x and y defined on @ we have
(1) [x® () — y® (@) < 1x(t)— y{0)

Finally, recall that an operator T in a Banach space X is called
nonexpansive if |Tx—Ty|ly < |x—y|y for all x, ye X.

for all te (2.

2. Main theorem. In the proof of the main theorem we will need the
following lemma about representation of Orlicz functions.

LeMMA 1. Every Orlicz function ¢ has a representation

) rp(u}=au+°§(u—s)+ dp(s),

where p is a nondecreasing nonnegative right-continuous function on [0, cc) and
a = p(0") (here ¢, means max(c, 0)).

Proof. It is well known that every Orlicz function ¢ can be represented in
the form @ (u) = [% p(s) ds, where p is the right-derivative of ¢. By integration
by parts we get

}p(s) ds = up(u)—}sdp(s) = up(0H)+ I udp(s)-—}sdp(s)
b 0 0

— a9 dp(s) = aut | (=), dp(s).
0 . 0

Let us now explain with some examples how to interpret (2) with dp(s) as
a measure: .

1° If p = ¢’ is absolutely continuous then according to Lemma 1 we have
@) = au+[F (u—5). ¢"(s)ds. Note that in [8] the existence and integrability
of ¢" is assumed.
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2° Ifqo(u)=0for0£us1andu-1foru>1,thenp(s)=0f0r0:<,s<1

and 1 for s =1, and for u>1 we have
t

}(u—S) dp(s) = u[p(0™)—p(0)]+ @ —1)[p(A")—p(17)] = u—1.

3 I @(u) = ufor 0 < <u<tlandw? foru>1,then p(s)=1for0<s<1
and 25 for s = 1, and for v > 1 we have

= up(0*)~p(O)]+{u—1p(17)—p(

=u—l 42—t —2u+1 =t —u.

u . 1

f(u—s)dp(s) N+ [(u—s)2ds

0 1

In the sequel (7', Z’, v) will be a o-finite measure space. The basic result is

TreoreM 1 (Main Theorem). Let T: Ly ()L, (1) = L, (V) + Lo, (v) be an
operator such that T maps Ly(u) into Ly(v} and L () into L, (v), and

(3) ITx—Tylly < Mx—yl, Vx yel@),

(4) [Tl o < M x5 V xeLg,(1).
Then T maps L,(u) " Ly(y) into L,(v} and

(3 L (Te/M) < T, (x) Vv xelh ) m L,
(®) 17ty < Mlxl, ¥ XALG0O L.

First proof By taking T/M instead of T if necessary, we may assume
that M = 1. First we prove that if (4) holds and M is 1 then for each xeL, (1)
+ Lo, (1)

(7) [Tx () —{T%)® )| T vae.

Indeed, if | Tx(t)] < « then (7) is obvious. On the other hand, if |Tx(r)| > o
then since || T(x®)].. < [x*], < a, it follows that [T (x®}(t)| < « v-a.e. Hence

| Tx (1) — ()™ (8)] = | Tx(t) —axsgn Tx(t)| = |Tx (1) -«
<T@ = (T < | Tx(e) - T veae.

Now, if xeLj(u) " L, (1) then from the representation (2) of ¢ and the
Fubini theorem

) < | Tx(t)—

I(Tx) = i:[ (| Te()dv = [ [a{Tx(@)]+ Qj? (ITx (@) —s) . dp(s)] dv
’ 24 0

= al| Tehy+ [ | (Te@]—s), dvdp(s)
3 .

=a||Txll; +

O'—-"‘18 oe—g

,! | T () — (1)t} dv dp (s).
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Using (7) and (3) with M =1 we have

1,(T%) <all Tl + { |5~ TE)], dps) < afxly + Slx X}, dp(s)
0

= afxll;+ § J(x(€)~s). dudp(s).
0N
Again, from the Fubini theorem and (2)

T(Tx) < I[a!x(t)lﬂ(!x )—5)+ dp(S)]du—Jqo(Ix Wdu == I,(x).
Hence '13ceL,,(v) and I,(Tx) <1 (x)

The remaining assertlons follow immediately from the above and the
definitions of L, space and |*[,-norm.

Second proof (when v(2) < u0). Asin the first proof, let M = 1. Given
u>0and xeL, (), let a = x*{u) and x; = x. Then by properties (iv) and (iii)
of 1earrangement

=

[ (Do) de <

} Tx— T, F () dt+ } (T ¥ () de
] 4] 0

(Te—Txy (B de+uli T | = JlTx(f)—Txl(t)IdV+u- (WE P

N
Se— 8

Using (3), (4), (iii) and the fact that d (o) S u we get

} Ty (e dt < j'lx(t) X, (O dptulxy o = § (6@ —o o)y dpi+ua
0 0

dx(ex)

< [ (xFO)—w)di+ue < [ (50— ) dt v = jx*(t)dt
) 0
Hence, if xeL, () then

(8) T de < [xk(de  for all 0 < u <puf.
0

c'—.:

Now, we prove that if (8) holds and v(2) < 2 then for xe L5(1) m Ly (1)
we have

5 o(ITx(2)) dv }; o(x(0))d

Indeed, let A,={t>0: x}(®)>s}, B,={r>0:( (T)%(r) > s} and aq
=mA,, b, =mB,. Then from property (iii) of rearrangement representation (2)
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of ¢ and the Fubini theorem we have

Y52
L(T) = [ o(Tx@)dv = | o((B@)dt
a 0

(2 o {12}

wa [ (BROdi+ | | (TN —s]s dedp(s)
0 o ¢

e o by

<a [ (Brndt+ [ [ IIx)F() 5], drdp(s)
0 00

and from the assumption (8), this is

+e]

2 bs
<a | xeyde+ [ ([ x}(@)de—sb,) dp(s).
o 00
But now, if b, < a; then

be g ids
[ x*(t)dt—sb, = { x*(£)dt— | x*(z) dt —sh,
(1} 0 bs

a

< fx* (£) dt —x*(a)(a,— b, —sb,
]

< [ x*())dt~s(0,~b)—sb,
0

= fx*(t) dt—sa,,
[}
and if b, > a, then

by ag by
jx*@)de—sb, = [ x*()dt+ | x*(t) dt—sb,,
o] 0 ag

and t > g, implies x*(f) < s, so the last expression is

< [ x* () de+s(b,—a) —sb, = | x*(t) di—sa,
4] 0

Hence, from the Fubini theorem, (2) and (i) we get

I(M)<a Tx*(t) dt+ Qjo (afx"‘(t) dt—sa,) dp(s)
0 0

[ oo pfl
=a jﬂx*(t)dt+j J [x*(t}~s].. dtdp(s)
0 00
ug

= T ol @)dr = [ o(1x(0) du = 1,9,

0

-
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In the case when T is a linear operator and ¢(u) = u” we have a simple
proof of a particular case of the M. Riesz interpolation theorem, ie., for Pa=1,
py = and 1 < p < w (cf. also [8], where it is assumed that T is also positive),
In the nonlinear case with ¢ (u) = u” the above theorem follows also from Lions
[12] and Peetre [19] (see also Krengel and Lin [11], where additionally T is
order preserving). Brezis and Strauss [1] proved Theorem 1 under the
additional assumption of T being positive. Moreover, their theorem is for
convex lower semicontinuous functions ¢ on R such that min¢ = ¢(0) = 0. In
[14] it is proved that if both measure spaces are the same and either nonatomic
or counting then (3) and (4) with M = [ imply (8). Then the Calderén-Mitya gin
theorem (see [9], p. 105) and the fact that the space L, (¢} N Ly () has the Fatou
property imply {6). However, in this paper we wanted to prove the theorem
without references to other theorems.

3. Interpolation of Lipschitz operators. Using Theorem ! and considera-
tions from Orlicz’s paper [18] we prove a more general version of Orlicz's
theorem about interpolation of Lipschitz operators in L; and L.

THEOREM 2. Let T: L, (u)+ L (u}— L, (v)+ L. (v) be an operator such thut
T maps Li(y) into L,(v) and L (w) into L_(v), and

(3) ITe—Tyll, < Mllx—yl, V¥ x, yeLp,
#) ITe—Tyl, < Mlx—yl., V¥ x,yeL (.
Then T maps L,(1) n Ly (y) into L,{v) and

(6) ITx—Tyll, < Mlx—yl, V¥ x yeL,u)nLn).

Proof. For any fixed x,eLl ()L, (x} and for xeL,(m)+ L., (1) let
Tixi= T{x+x5)—Tx,.

Then .
1T x =Tyl = 1T+ x) =T +xo)l, < Mllx=yi,  V x, yel (. '

1Ty %l = | T(x+x0)—Toll . € Mix] V xel, ).
From Theorem 1 we get

[Tyx), < M|xll, ¥V xeL,()n L, (u).
This means that _
[T(e4x0)—Txoll, € Mxl, VxeL,(mnL(p, or

9) [Te—Toll, € Mlx—Xoll, ¥ xeL,)nLy{w). xoel(nL, (.

For arbitrary x, yeL,(u)n L,(1) we consider the truncations x*, y,
Then z,:= T(x*)~T (3™} converges to Tx— Ty in the L, (v}-norm, by (3) and
the continuity of the |-|,-norm. Consequently, the same convergence holds

4 — Btudin Mathematica 95,1
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in the measure v. Therefore, for a properly chosen sequence k,, the sequence z,
converges v-a.e. to Tx— Ty Then x,:= x* and y,:= y** have the followmg

property:
X Vn€ LW Lop(),  [xp—yl SIx—)  p-ae,

(10)
Ta,— Ty, Tx-~Ty v-ae.

Now, by (10), the Fatou property of the norm and (9) we get
“Tx"—‘ T}V”(o < lim inf ” Txn_TynH:p < M lim inf Hxnmyn”(p 5 ‘M”x_y“(p'

CoroLLARY 1 (Orlicz’s Theorem, 1954). If T: L, (a, b)— L, (a, b) is a Lip-
schitz operator in L,(a, b) and in L (a, b) then T is also Lipschitz in L, (a, b).

COROLLARY 2. If the operator T: L,(u)n L, (u)— Ly (v) n L, (v) satisfies
(3) and (4) for x, ye L, {u)n L, (1) then (6) holds for x, ye Li(1)n L_ ().

Corollary 2 with the additional assumption that L, () n L, (1) is dense in
both L, (¢) and L (y) (this means that pQ < co and L, = L) is a particular
case of a general theorem of Browder [2].

Remark 1. If yQ = oo and for arbitrary x, yeLq,(,u) it 18 possible to
construct sequences x,, v, with the property (10) then it easy to see that (6)
holds even for x, ye L, (1). On the other hand, if 4@ = oo and L, o) N Ly (1) is
dense in L, (i) then (6) also holds for x, yeL,(u), by contmmty

We prove now that the density of L, n L, in L, is equivalent to condition
&, for ¢ for small u

PROPOSITION 1. Let p be a o-finite measure and pfd = oo, Assume that
£ contains a nonatomic part of infinite measure or that there are atoms {e,} ,

such that O < inf, pe, < sup, pe, < co. Then the following conditions are equiva-
lent:

(@ Lo(w)nLy(u) is dense in L, (w).
(b) Loy Loy (u) = L5, (1) v L, (1),
(©) @ satisfies condition §,: Hmsup,_q+ ¢(2u)/pu) < .

Proof. (a)==(b). If 0 € xe L, n L, then by assumption there is a sequernce
0<sx,eL,nL, such that [x—x,|, —»0 Let y, = min(x,, |x|,). Then y,
eLlr\L and

b=yl = Imin(x, |x].)—min(x,, fxl ) < x—x) pae,

i.e., |x—y,ll,~0. If we prove that y,e I, then xe L%, (because L, is closed in
L ) and so xe;L’J ~L,. For any fixed r > 0 let

¢ = @@ yall Yr 17all ) < @ lx ]| M Ix1l) <
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Then I,(ry,) <erfqy,(tdu < o and so y,els,.
(b)=> (a). Let xe L, and r > 0 be such that I(rx) < 0. If 4, = {teQ: rlx(t)|
>n"'} then

pin~Hpd, = < I,(r) < o0

[em™du< | olrix(@)du
An AH
for any natural number n. Hence pd, < oo and so xl, eL,nL,.

On the other hand, there is a sequence (5,) of simple functions such that

s, #x p-a.e. Of course, 5,eL,nL,. Then putting
Xy = 8, lona, X1y,

we have x,eL,nL,. Moreover, (x—s
*lgu, €L, "L, = 4~ L. Therefore

o, 40, x—x1,, = x104,10 and
[E2BHFES

Ix—s)lau.llo+ix—x1,fi,—»0 asn-—co.

{b)=(c). Assume that limsup,.¢- @(2u)/@(u) = co. Let (x,)e L\. If u is
nonatomic then there are pairwise disjoint sets B, such that 4B, = 1 for each
natural number n. Let

>0}
= 3 x,1;  (convergence in p).
=1

Then xe(L, "L \L, N L) In the second case, let

=]

X = Z xnlc“

n=1%

then also xe(L,n L NI, L)
(cy=-(b). Let xeL,nL, and I (rx) < oo for some r> 0. Put

¢, = sup{pu)/o(): 0 <u< 2" 'r|x|,}.

Then ¢, < co (because ¢ satisfies condition &,) and

(convergence in ji);

n
i <. <[] &

I,2'rx) < ¢ 1, I,(rx) < oo,

ie, rxeli, and so xeli,nL,.

It may not be a simple maiter to check directly whether an operator is
nonexpansive in L,. Then the following result may be useful:

CoroLLARY 3. If T: L{(W+L, (W—L,()+L (1) is nonexpansive in
L,(1) and in L (i), then T is nonexpansive in L,(w prowded uld < oo or pis
such as in Propos;twn 1 and ¢ satisfies condztwn d,.

Remark 2. If an operator T is such as in Theorem 2, then (with the same
proof) 1,((Tx— T¥)/M) < I,(x—y) for x, yeL,(y) such that x— yeL(u). We
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note that in [17], this is proved under the additional assumption that T is
positive. Moreover, if for a space X the inclusions L (u)+L (s} < X < S(y)
hold, and for any x, yg X it is possible to construct sequences x,, y, with the
property {10} then

Tx—T
(11) I(p( xM y)s I(x~y) for x,yeX.

4. Interpolation of pointwise nonlinear operators. In many problems of
analysis, an operator T as considered above is not linear, but order preserving
and C-sublinear (C 2 1) in X, ie., it satisfies
T maps X < S{p) into S(v) and for any x, ye X, 1gR:

0 < x<yimplies Tx < Ty,

| T (Ax)f = ]| Tx],

|T(x+y)| < C{Tx|+|T).

For such type of operators the proof of the interpolation theorem is simpler
than the proof of Theorem 1.

(12}

THEOREM 3. Let T be an order preserving and C-sublinear operator in

X oL () and let

(4) 1Tl < Mx|, VxelL (.
Then for xeX

(13) o{T(x]) € M~ ' T(@(CM{x)) v-ae.
Moreover, if we assume that X = L (p)+ L (1) and

(3 ITxl, < Mlxll, ¥ xeL;(w),

then

(59 I(T/(CM) € 1,(x) ¥V xelliy),

(6) o ITx), < CMixf, ¥ xeL,(p).

Proof Let o*(v) = sup,s ¢ [uv— @ )] and o~ *(v) = inf{u > 0:
Then ¢** = ¢, ¢le 1(u)) < wu and by the Young inequality

) < o)+ o*(0* ) < plu)+o.
Therefore, for any v > 0,

(1) > v},

rﬂ(lxl)+v
x| < (u) p-a.e.
and from (12)
To(x}+vT1
(Ix) < SRl PR
o* V)
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Then using (4) we get

Tt M
T{|x|) < Cﬂtc—l),j——v v-a.e.
* (1)
Note that

-1 . Uv
o* ()= inf ——;
0@ (1)
if ¢’ is an increasing functlon then this follows from the fact that for v = ¢’ (1)
we have u+v= ¢ '(w)e* '(v)—equality in the Young theorem. For the
general case, see, for example, [15], Lemma 2. Thus

T(x) < CM@**™(Tp(1x])/M) = CM¢ " (Tp(lxl)/M)

and (13) holds. The proof of the next part follows immediately from (13)
and (3.

COROLLARY 4. Order preserving and sublinear operators in L, + L, which
are nonexpansive in L, and in L, are also nonexpansive in Orlicz spaces L,

Of course, the above corollary holds also for positive nonexpansive linear
operators. We wish to point out that this result generalizes the corresponding
result in [10] for linear positive operators on L, spaces.

5. Applications. We now consider some applications of the results of
Sections 2 and 3,

a) Orlicz’s interpolation theorem for linear operators. Looking at the first
proof of Theorem 1 and using the proposition given below, which is of
independent interest, we will have a simple proof of the well known fact that
any Orlicz space is an interpolation space between L, and L_ for linear
Operators.

PrOPOSITION 2. For any Orlicz space L, -either

L,=L, +L, for some @, with L, <(L;+L,_ )"

L,c(L,+L,)" or

Proof First, we note that (L, + L) =
the closure of Ly "L in L, +L,.

If u@ < oo then there is nothing to prove, because L, = L, < L, and L,
is dense in L,. Therefore, let uQ = oo.

We divide the remaining preof into two parts (always u2 = w):

L Iflim,o« ™' (W) =0, then L, « L, n L,
inequality, for xel,

;™ L,, where L, n L denotes

. Indeed, we have by Holder’s

1

(e S £ x(s)ds = 17 ot Lo b < 267 L, I goual oo
0

=21 Ifx?"\lq,/IQD*'f(l/t) < 290"1_(1/0 [xlgs
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and so lim,. . x*(t) =
={te@: x> 1k} (k=1,2,..
x1,. €L, and

.} we have pd, < oo for any k. Thus

mexlAk”L1+L.n g ”x_x:lAk“m S- l/k’

and so xeL_l. But L, = En'f,: =L, n L, and the result follows.

IL If im, .o+ @~ (1) = b > 0, then g, is an Orlicz function, im, .o+ ¢g *(u)
=0 and L,=L, +L,, where @o(u) = @(u+Db). Indeed, if xeL, and
I,(rx) < oo, and B = {te Q: r|x()| < 2b}, then x1z €L, and

(2 rxlop) = | e@rix()+b)du
2B,

< | elrix))du

2B,

< I, (rx) < oo,

ie, xlgg €L, , which proves the inclusion L, <= L, +L,

Convcrsely, let xe L, +L,, 16, x = x0+x1, where xoeL o, and x; €L
Choose r > 0 such that rlxl(t)i <b p-ae and I, (rx ) < co. Then putting
4 ={te: rlxy(t) > b} we have

L, (%) = Lo +30) € Lrxo) +1,(r%,) = L (rxo)
= | o(rlxo(@)l)du = J 9orbxalol —b)d
A
< [ oolrixo (@) du <
A

Hence xeL, and so L, +L, < L,.

I, (rxo) < 0.

Tueorem 1'. Let T: L)+ L (W—L,+L_(v) be a linear operator
which is bounded from L,{y) into L,(v} with norm M, and from L,(u) into
L (v) with norm M,. Then T is bounded from L,(y) inte L,(v}) with norm
M < Cmax(M,, M,), where the constant C depends on ¢ and p.

Proof. For any xeL, (1) the sequence x, = x1, is in L, (@) L, (1),
where 4, # Q2 and pd, < oo (such a sequence of sets exists because y is g-finite).

L, <= (L +L,) then ||x—x,|,+.,~0 and the boundedness of T from
Ly (@) + L () into L, (v)+ L (v} implies || Tx— T, |z, 1, —0. Thus Tx, —Tx
v-a.2. By the Fatou lemma and Theorem 1 we have

| Tx|, < liminf | T, |, < max(M, M,)liminf x,, |,
k= b+
IL,=L, +L, with L, <(L;+L,)" then from the above T is bounded
in L, Therefore T, as a hnear operator, is bounded in L, +L = L,.
Note that C =1 if either uQ < oo or lim,_o+ @ *(w) =
Consequently, we have the following result of Orlicz (1935).

< max(M,, Mz)”xﬂ

0. Hence, d,(4) < oo for any i>0 and writing Ak'
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THEOREM A, Let T: L,(a, b)— L,{a, b) be a linear bounded operator with
norm M, which is also bounded in L_(a, b) with norm M ,. Then T is bounded in
L,(a, by with norm M < max(M,, M,).

b) Inequalities for rearrangements. Let T: Sy(u)— So(m) be defined by
Tx = x¥. Then from property {ii) of rearrangement {3 Tx(r)dt = [glx{du. We
prove now that 7 is a nonexpansive mapping from L, (4) into L,(0, cc) and
from L (u) into L {0, co).

If x, yeL{u) then

17— Tyl =°f T— Ty)+dt+j(Ty ), dt
0

Df {T (max(x], |y))— Ty} dt+ g [T {max(ixl, [y]))— Tx] dt

f [max(lx|, [y)—yl]dp+ ‘jz [max{|x], [y}—|x]] du

= [|Ix|—=Iyl|de < fx—y1;.
2
If x,yeLl (W then |x| < [x—ylo+Iyl, V< Ix—yl,+ix]. Thus x*
& [x=yll, +y* and y* < ||x—pil, +x* Hence
[Te—Ty] o = [x*—y* o < [x— ¥l

Note that for x, yeS,(y) it is possible to construct sequences x,, y, with
the property (10). Indeed, let x, = x™1, and y, = y™1 e where 4, # Q and
uA, < oo (such a sequence of sets exists because p is co-finite). Then X,
v, €L ()" L, (x) and from property (1) of truncation and property (i) of
rearrangement we get |x,—y,| < [x®—y?| < |x—y| and x} —yF—x*—)* ae.

From the above and Remark 2 we have

THEOREM B. For each Orlicz function @ and for any x, ye§, (u)

I(x*—y*) < I(x—y).

This inequatity is proved in [3] for the case L,(0, 1) and in [4] for the case
when © = R" with Lebesgue measure. Note that in [4] this inequality is
claimed to hold for x, yeS(R". This is a misunderstanding because if x
y€ S(R™M\S,(R"), then x* = y* = o0 and the left side of the inequality is not
defined.

Treorem C (Hardy, Littlewood and Pdlya). Let x, y€ Ly (u)+ L, (). Then
{8 x*(s)ds < [ y*(s)ds for any 0 < u < pQ if and only if 1,(x) < I, () for any
Orlicz function .

The proof that the inequality for rearrangements implies that for I o 15 the
same as the second proof of Theorem 1. On the other hand, if I (x} < I oy} for
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any Orlicz function then [ (x| — 1), dp < [o (¥l —1), du for any t > 0, because
¢ {u) ={(u—1), is an Orlicz functlon

Let O <u< pQ and t = y*(u). Then
j oy, (1) di

|[\*{s—-r1ds j[x $)—t], ds =

T dlt+ )i = [ dyt+2)dA = | dgsj-sy, (D) dA
[+] 0 0

i

n2 "
fUxl=t,du < [y =0 di= | [y*e)—t], ds = [[y*(s)— ] ds,
7 o 0 o
and the proof is complete,
From Theorems B and C easily follows

TreorREM D (Lorentz-Shimogaki inequality [13]). If x, ye L () + L. (1),
then for 0 < u < uQ
Jx*—y*)*(s)ds < j(x —y)*(s)ds.
1]
¢) Modulus of continuity of equimeasurable functions. Let us now confine

our attention to periodic functions on [0,1] with period 1. Given an
xel, (0, 1), the expression

U).p(f, X) = sup “x( +h)-x(-)l|q,
0shsr
is called the integral modulus of continuity, in L,, of x. Using Brudnyi's result in
[3] for L,(0, 1) spaces and Orlicz’s theorem we prove

TuroreM E (Brudnyi inequality). If xeL,(0, 1) then

W, (t, x*) < 3w, (t, x}.

Proof. Theorem B (or Orlicz’s theorem, ie., the special case of our
Theorem 2) 1mp11es that the operator T: L, (0, 1)—+L {0, 1) defined by Tk = x*
is nonexpansive in L 0, 1}

The Polya~—Szeg0 mequahty means that |[[(Txy|, < |x']|, for xeL
r=1{xeL, xedAC, ¥ €L,} (see [20]; see alsc [6], Th. 4.1 or [7], Th, 1)

Now for xeL, dnd 1> 0, consider the Steklov average function

Wt i
xuwy=1"" | x(s)ds =t"* [ x(s+u)ds.
[ 0

Then

] 3
lxe—xlp <71 XC +5)—x]|ds < ¢! [w,(s, x)ds < a,(t, x),
0 [¢]
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x‘eLq, and |xf, =t {x( +8)—x|, € t'lw,p(t, x). Hence

w,(t, Tx) € @, (t, Tx—Tx,) +w,(t, Tx) < 2| Tx— T fl, +H TX)N,

2x—xl,+tlxl, < 2w,(t, x)+ o, (t, x) = 30,(t, x).

This proves the theorem.
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Continuity of derivations from
radical convolution algebras

by

W. G. BADE (Berkeley, Calif) and H. G. DALES (Leeds)

Abstract. We study the question whether or not every derivation from a radical weighted
convolution algebra A = LN(R*, w), or from certain related algebras, into a Banach A-module is
necessarily continuous. We show that such a derivation must have striking continuity properties.

Introduction. This paper studies continuity properties of module deriva-
tions from radical convolution algebras defined on the non-negative real
numbers and on its subsemigroups.

First we describe our algebras and recall some standard notions which
may be found in the text of Bonsall and Duncan [6].

Let R* =[0, o). A radical weight on R* is a continuous, positive,
submultiplicative function o for which w(0)=1 and lim,_,o(t)* = 0. We
denote by IMR*, w) the set of all equivalence classes of Borel measurable
functions on R* for which [ ]| = [g+ |ADlw(t)dt < co. The set of all Radon
measures 4 on the Borel sets of R™ for which [uj = j r+ @Oul(df) < co will be
denoted by M(R™, w). Under convolution multiplication, M(R™, o) is a local
Bapach algebra having for its identity the unit point mass at zero, while
I}MR™, e} is a radical Banach algebra which is a closed ideal in M(R", w). Let
S be a subgroup of R, and let $* = S n R*. Then I'(S™, w) is the subalgebra of
M(R", w) consisting of those discrete measures f =y {f(s)8,: seS8™} for
which | f]| = Y {f(s)|o(s): se8*} < 0. _

Let 9 be a commutative Banach algebrd, and let M be an Y-module
(so that the module operations satisfy a-x = x-a (aeW, xeMN)). Then M is
a Banach W-module if M is a Banach space and if the module operation
(@, x)—ra-x satisfies

lax] < llal %] (ae¥, xeM).

For example, one can regard U as a Banach 2%-module over itself, where, of
course, the module operation is the product in . Then the dual A -of
U becomes the dual module with respect to the operation (a, A)i—a-A, where

(a-2)(b) = Aab) ~ (a, be, ieW).



