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Positive-definite kernels, length functions on
groups and a noncommutative von Neumnann inequality

by
MAREK BOZEIKO (Wrodaw)

Abstract. We present a methoed of construction of a large class of positive-definite
operator-valued kernels. As an application we show that the distance function on an R-tree is
a negative-definite kernel and an abstract length function in the sense of Chiswell on a discrete
group is a negative-definite function. Moreover, & noncommutative version of von Neumann's
inequality is given. )

1. Introduction. Let S be a set and L(H) the space of bounded linear
operators.on a Hilbert space H, Let N be a kernel on §, i.e. a function on § xS
whose values belong to L{H). We say that N is a negative-definite kernel if

Nx,y) =Ny, x)*
and

Y (NG, Y alx), 2()> <0

x,ye5

for all finitely supported functions a: §—H such that ersoc(x) =0

An operator-valued kernel N on a set § with a metric ¢ is called convex if for
x,v,ze8 such that g (x,y) = g (x,2)+e(z, y) we have N(x,3) = N(x,2) +N{(z,)
(in particular, N (x,x} = 0), N(x,y) = N (v, x)* and N (x, y) is a dissipative operator.

In the note we show that every convex kernel on an R-tree is almost
positive-definite (see definition in Section 2) and hence every metric on an
R-tree is a negative-definite kernel. ' .

In Section 3 we give some properties of positive- and pegative-definite
kernels connected with the Schur product on L(H).

The main result of this paper is the following theorem concerning
a construction of positive-delinite kernels: :

If K, (i=1,2) are positive-definite kernels on S, ‘and 8, NS, = {x},
K,(x, x)= I for all xe§,; US,, then the kernel. defined by ’

K(5,,8,) = K,(x0,8,) Ky {51,%0)  for s,€5;.
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108 M. Bozejko
K(Sz’ S1) = K(S1 » 5.2)*:
K{SixsizKi (::1:2):

is a positive-definite kernel on §; U S,

Next, in Section 6 we consider abstract length functions L on a discrete
group G introduced and studied by Lyndon [25] and Chiswell [13]; L is
a real-valued function on G which satisfies the following properties: L(e) = 0,
Lix)=L(x™") and d(x, y) = min{d(x, £).d(z,y)) for x,y,zeG, where d{x, y)
= 3 (L0 + L)~ Lixy ™)

We show that each length function on a group G is negative-definite and
for each A 20, ¢"*™ is a positive-definite function on G.

This is an extension of the theorem of Haagerup [20] who showed the
above results in the case of a free group.

In Section 7 we present some theorems on operator-valued positive-
definite functions on free products of groups. We prove that if G = @}":1 G;is
the free product group and u;: G;-»L(H} are positive-definite functions, then
the free product function u defined as

n
u(ﬂ]_‘j‘ az'jz'.. . 'au,j") = H ujk (ak’jk),
k=1

where ay, ; € G, and j, # i + 1, Is a positive-definite function on G. This theorem
is a generalization of the author’s result [9] in the case of scalar positive-
definite functions. '

As an application of cur main Theorem 4.1 and the free product theorem
we get the following noncommutative von Neumann inequality:

If p=p{x,,....x,) is a polynomial in the noncommutative indeter-
minates X, ..., x,, then for arbitrary contractions A4; (ie. 4] < 1) on
a Hilbert space

lptdy, ..., A < sup {llp(U,, ..., U)ll: U, unitary, finite-dimensional,
1< k< nj.

2. Positive-definite operator-valued kernels. Let § be a set and H a Hilbert
space. Denote by F(S, H) the set of finitely supported functions «: S — H. Its
subset consisting of functions o such that 3" _a(x)=0 will be denoted by
Fo(S, H).

A function K (x, y) defined on the product space $x § whose values are
bounded linear operators on H is called a positive-definite kernel, respectively
an almost positive-definite kernel, if for x, ye$§

K{x, y) = K(y, x)*

Positive-definite kernels 109

and the inequality

YK,y alx)a()y =0

X, ye8
holds for all aeF{S, H), respectively acFy(S, H).
A typical example of a positive-definite kernel is the Gram kernel, which is
of the foliowing form: K(x, y}=f(y/*f(x) for a mapping f* §$-»L(H).
In some sense every positive-definite operator-valued kernel is the Gram
kernel (see Aronszajn [5] and Kunze [24] for the proof of this fact).
In the sequel we need the following lemma:

LEMMa 2.1, Let K be a positive-definite operator-valued kernel on S such
that K(x, x) =1 for each xeS. Then for every veF (S, H) and x,e8

(K (x, p) alx), )y 2 | Y Kixg. W a )|

x,ye8 yeS

Proof Define a bilinear form [-,-] on the linear space F(S, H} as
follows: For «, fcF(S, H) we put

[a, f1= 3, (Kix, yhalx), ().
x,ye8

Since K is a positive-definite kernel, the form [,-] is a positive-definite
scalar product and the Schwarz inequality bolds. _ _
Fix x,€8 and a vector heH and consider the following function from

F(S. H)

. _h i s=x,,
Bran(h =1 if 5 % x,.

Then by the Schwarz inequality we get
I[ots Broll® < [, 2] K (xq, xg) b, ).
On the other hand, -

Lo, Bl = [C T K (s xg) ), ™.

xel

If we choose a vector heH such that [|hfj =1 and

|»

xe§

(T K(x, xoya(x),h) = i’l%ﬁ:(x, %) @ ()

then the proof of Lemma 2.1 is complete.
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The following lemma and corollary are simple generalizations of scalar
case results so we omit the proofs (see Domoghue [18] for details).

LemMa 2.2, Let N be an almost positive-definite kernel on S and fix z in §.
Then the function :

K(x,))=N(x,)~N(z, )=N(x, +Nz, 2)
is a positive-definite kernel on 5.

CorOLLARY 2.3, Every almost positive-definite kernel N on § is of the
Jollowing form:

N(x,y)=K(x, )+ Vx)+V(p)*,
where K is positive-definite and V(x)e L(H) for each xeS§.

3. Schur product on L(H). Fix a complete orthonormal basis {¢;},s in
a Hilbert space H and consider the Schur product on L(H) defined as follows:
If 4,BeL(H) and a;={Ae;, e;>, b= {Be;, e, then there exists
a'unique bounded linear operator C on H such that (Ce,, ;> = ayby; for all
i,jel ’ .
The operator C = 40oB is called the Schur product of A and B.
For a nice explanation and some properties of the Schur product we
propose the paper of G. Bennett [6].
For AeL(H) we define AeL(H) in the following manner: {Ae,, e;
= {e;, Ae;y for i, jel.
Now we present without proof the main properties of the Schur product.

THEOREM (Schur). (1) If A and B are positive operators in L(H), then so is
AoB.

(2) The linear space L{H) with the Schur product and the operator norm is
a x-comtmutative Banach algebra. In particular, for A, Be L(H) we have

l4oBll < i4lllIBll, {(AoB)* =A*cB*.

Lemma 3.1, (i} If K|, K, are positive-definite kernels on S, then so is the
kernel K, (x,y)0K,(x, y).

(i) If A(x)e L(H) for xS, then the kernel A(x)o A(y) is positive-definite,

Proof (i) Let acF (S, H) and a(x)=3 _ a/(x)e, Then we have for
Ki(x,y) =K (x, y)oK,(x, y} the following equality:

F

Y (K(x,¥) 2(x), a()p

x,ve8

Z Z a;(x) aj(y)<K1(x’ »e, ej> <K2(x> y)eis ej)-

x,ye8 1, jef
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Since K; (i=1,2) is a positive-definite kernel, therefore by the Aron-
szajn—Kolmogorov—Kunze Theorem there exist a Hilbert space Hy, > H and
a mapping f;: §- L(H) such that

. K;(x,y) =f,(0)*f;(x) for j=1,2.
This implies that

P= 3 % ai(x)aj(y)<fl(x)ei®f2(x)ei5f1(y)ej®f2(y)ej>

x,ye8 i, jef

= ” 2. (%) bi(X)H2 )
el
where b;(x) = [, (x)e,@f; (x)e..
In order to show (ii) take as before a(x) = ¥
the following formuja:

.1 3:{x) e; Then one can verify

T (Ao AM) (), 20 = ¥ | T a: <A@ e, el

x,ye8 i jel xeS

and the proof of Lemma 3.1 is complete.

4. Main construction theorem. In the present section we give a cqnstruction
of a large class of positive-definite, respectively almost positive-definite kernels.

Let K; be a kernel on §; (i=1,2) and let $;nS§,= {xo} a.nd
K, (xg, Xo) = K, (xq, Xp). We define a kernel K on §, U S, i the following
way:

1) Klsxs, =K, (i=1,2). _

(2) (Markov property) For s;€8; (i=1,2)

K5y, 8,) = K;(xg, 85) K1 (51, Xq), K(sy, 51)=K(s;, sq)*.

The kernel K is denoted by K, #,, K, and called the Markov product of K1

and K,.
Analogously we define the Markov sum: Let N; be a kernel on §, and

N {xg, Xo) = N3 (Xq, Xo). The kernel N on §, U S, such that:

(1) Nlgxs,=N; (i=1,2);
(2) For s,€8; i=1,2)

N sy, 85) = Ny (81, %)+ N2 {Xo, 83), N(sy, 8;) = N (s, 52)%
is called the Markov sum of N, and N, and is denoted by N=N;+.,No.

Tuporem 4.1. () If K, K, are positive-definite kernels on Sy, S,
respectively, and K;(x,x) =1 for all xeS§, US,, then the Markov product
K = K%y, K, is also a positive-definite kernel.
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(i) If Ny, N, are almost positive-definite kernels on S,, S,, respectively, and
N{xg, xo} = 0, then the Markov sum N = N+, N, is almost positive-definite.

Proof (i) Since K; is positive-definite, therefore by Lemma 2.1

(+) Y AK(x. ) alx), amy = || T Kilx, xg) aly)]|*
x,yeS; xe8;
for all xe F(S,, H).
Take feF (S, uS,, H). Then we can decompose f# as f = a, +u,, where
supp(a,) < §;, i =1,2. Moreover, we clearly have

2
Q= 2 (K& DA, FON= T A

x,yef; 08, Ljw

where -

A= ¥ LK (x, 3 B(x), BOYD.

xe8;
ye§;

If we set 4, = ersiK {x, xg)a;(x), then by the definition of the Markov
product we get A4; = {4,, A for i % j and by (x), A; = (A;, A,>. Therefore
Q2|4+ A,|I* and the proof of (i) is complete.

(i Choose fe Fo{S, v S,, H). Since only Xo€8; N §,, we can decompose
B=a,+a; in such a way that supp(a)< S, and el (S, H), i=1,2
Putting .

xe8;
yes;y

By= T NG B, BOD  (,7=1,2)

and using the fact that N is the Markov sum we infer that B;;=0for i#j.
Hence we conclude that

Y, AN, p) B(x), B =B+ By 20,

x,ye8 US>z
since Ny and N, are aimost positive-definite kernels.

5. Trees and R-trees. By an arc in a metric space we tmean & subset which ig
homeomorphic (in the metric topology) to a (possibly degenerate) compact
interval in R. _

An_ R-tree is & nonempty metric space in which any two points are joined
by a unique arc, and in which every arc is isometric to a compact interval in the
real line. _

A tree is a one-dimensional simply connected simplicial complex. Every
tree 1s a metric space with the metric dist(P,(Q) given by the length of the

geodesic from P to Q. We have dist(P, Q) =1 if and only if P and Q are
adjacent.
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By Theorem I1.1.9 of Morgan and Shalen [26]], every tree (1T, dist} can be
embedded isometrically in an R-tree T,. The R-tree T, is the geometric
realization of the tree T

Now we introduce two natural classes of kernels on a metric space.

Let (S, o) be a metric space. An operator-valued kernel ¢: §x S§— L{H)is
called quasi-multiplicative if:

(1) o(x,x)=1 for all xe8.
(2) ex, M=oy, x)* for all x,yeS.
() lo G, Il <1 for all x, yes.
(4 For all x,y,ze$ such that g(x,y) =e(x, 2)+a(z, y) we have
@x, y)=1o(z, ¥ olx, 2).
A function : § x §— L(H) is called convex on a metric space (S, g} ift

(1) yix, x}=0 for xe8S.

@) wix, y=yly, x)* for all x, yes.

(3% W (x, y) is a dissipative operator for all x, yeS.

(4) For all x,y,zeS, if o{x.y)=e(x,2)+¢(z,y), then ¥ix,y)
=y x,z2}+ (2, )}

ExampLi 5.1. Let (S, ¢) be a metric space and let 4 be a hermitian
operator on a Hilbert space which is a positive contraction. Then the kernel
A,(x, y) = A is quasi-multiplicative on §.

ExaMPLE 5.2. Consider the group of integers Z with the natural metric and
a contraction 4 cn a Hilbert space. Then the kernel

F Aw-m ifnzm,
n,m= ,
aln, m) A*n iy <om,

is quasi-multiplicative on Z.

The following result will follow from what has been proved in the earlier
sections. :

Tueorem 5.1, Let (T, ¢) be an R-tree '
(i) Every quasi-multiplicative kernel @ on T is posmve—deﬁmt_e.
(i} Every convex function y on T is an almost positive-definite kernel.

Proof. (i) It is sufficient to show that g isa positive-fieﬁpite kerncl_on each
finite subset of T We proceed by induction on the cardinality of a finite set E
in .

Fix ackE and for x, yeE put

(JC, y)a = %(Q ()C,a)—l—Q (yaa)":'\@ (x1 _}”))
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Let
Eoax = {(x,)eEXE: x# y and (x, y), = max {(u, 5),: u # s, u, SeE}}.

Then we have two possibilities:

(I} There exists (x, y) € Ep,, which belongs to a unique geodesic coming
from the point g, ie. E = (E\{x})u {x, ¥} or E = (E\{y}) v {x, ¥}, Now we can
apply Theorem 4.1 and the induction assumption.

_ () There exist {x,y}€En, and zeT\E such that Eu [z} =
Eul{x,z} u{y, z}, where |Ej = |[E|~1, En{x, z} = {z} and En{y, z} = {2},
As before we can apply Theorem 4.1 and the induction hypothesis. t

It remains to prove that ¢ is positive-definite on each two-element set
T, ={a, b}. Take neF(T,, H) and set C=o(a, b}, ala)=a, a(b)=1b
Consider now * ’ .

W = ZT Cp s Yaulx) o (1) = IC@)+bI> +lall* ~ 1€ ()|
x,yeTs
since by the dc-fﬁni'tion of quasi-multiplicative kernel C is a contraction, the
proof of part (i) of the theorem is now complete. ,
The proof of (ii) is exactly the same, we only need to id
g Sahat] _ y consider the case of

Since the operator i (a, b) = D is dissipati
y(a, pative and W (x, x)} = 0, ]
for each aeF(T,, H) we have v e find that

We= Y, P(x, ) ax), a()) = —2Re{D(a), a> 2 0,

x,pals
where a= W(a). b=y(h) and a+b =0.
This completes the proof of Theorem 5.1.

QOROLLARY_ 5.2. If (T, ) is an R-tree, then the metric (x, y) is a negative-
definite kernel and for each 12 0 the kernel ™=y jg positive-definire.

Remark. (i) In the case of trees the last corollar i )
. ¥ was obtained by man
authors _and by different methods (see e.g. Haagerup [20], Alperin [2]}’
Wata_t‘am ['31], and Julg and Valette [237). ’
(i} Using a theorem of Schoenberg (see Donoghne [18], p. 136) and

Corollary 5.2 we find that every R-tree can be i i led i
o Tilbeny s y e 1sometrically embedded in

el 6'1A]:15tfmc‘ .length functions on groups. 1. M. Chiswell [13] considered
-valued functions on a group G which sati ollowi avi
Lyndon [25]. P ich satisfy the following three axioms of
(1) L(e) = 0.
(2) L(x™Y = L{x) for all xeG.

Puositive-definite kernels i1s

(3 If d(x,y) =1 (L(x)+L{—Lixy™"), then for all x,y,zeG

i
d(x,y) > min{d (x, z), d(z, ¥)).

The function L on a discrete group G is called a length function on G, If a group
G acts by isometries on an R-tree (T,g), then a based length function L,
associated to a base point peT is defined by L,(x) =¢(x-p, p)

1t is not difficult to verify that each based length function L, on a discrete
group G is a length function.

Conversely, given a length function L on a discrete group G, Chiswell [13]
has constructed an action of G on an R-tree Tand a point pe T'such that the
based length function L, is equal to L. '

We recall that a function fon a group G whose values are linear operators
on a Hilbert space is positive-definite, respectively negative-definite, if the
corresponding kernel K ,(x, y) = f(y~ ! x) is positive-definite, respectively nega-
tive-definite on G.

The classical Gelfand-Naimark-Segal-Nagy theorem (see [27]) says that
for every positive-definite function f on a group G such that f(e) = and
f(x)eL(H) there exists a unitary representation = of G on a Hilbert space
Hq = H such that for seG

J(8) = Py (sl
where Py, is the orthogonal projection from H, onto H.
Now we can state the following theorem:

THEOREM 6.1, Every length function L on a discrete group is negative-definite
and for each 1= 0 the function v,(x) = e *"* is positive-definite.

The proof follows immediately from the theorem of Chiswell and
Corollary 5.2.

Remark 6.2. If a group G has a length function which is unbounded, then
G does not have the Kazhdan property. This follows immediately from the
theorem of Akemann and Walter [1] which says that a group has the Kazhdan
property if and only if every negative-definite function on G is bounded.

Remark 6.3. In [12] it is shown that the natural length function I(x) on
a Coxeter group is also negative-definite (see N, Bourbaki [8] for definitions
and main properties of Coxeter groups). It is not clear when the length function
I(x) comes from an action of the group G on an R-tree.

7. Free product operator-valued functions on a free product group. Using
Theorem 5.1 one can obtain a large family of positive-definite functions on
a free group or a free product of groups (see also [91. [10], [16).

Now we extend and give other proofs of the resuits of the author [9], {10]
in the vector-valued case.
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Let G;, jel = N, be discrete groups and let G = @ G, be the free
product group. Consider functions u;: G;~ L(H) such that u;(e) = const. We
define the free product function u on G in the following way: If xeG, x # e
and x has the vnique representation as

(**) ) X = al,il "'ak,fk!

where a;;. e Gy, and §;# iy, j=1,..., k=1, then we put
k
wlx) = [T u,(a;s)
j=1
and u(e) = u, (e).
The free product function u will be denoted by o u;
If we introduce the block length function || || on the free product group
G = ® s G; putting {lefl = 0 and ||x|| = k if xe G is of the form (x=), then one
can verify that || ]| is a length function as considered in Section 6 {see also [14]).
It comes from the natural action of & on a corresponding tree T (G) (see Serre
291, p. 32
Next it is easy to. observe that for each free product function u = o4,
with u;(e)=1I on the free product group G = ®,;G, the kernel
u(y™'x) = K,(x, y} is quasi-multiplicative on the tree T(G).
Therefore as another application of Theorem 5.1 we get & simple proof of
the following theorem, which in the scalar case was given in [9], [10]:

TueorREM 7.1. Let G; be- discrete groups. If up G,~ L(H), u;(e) =1, are
positive-definite operator-valued functions, then the free product function
U = Oprt; is positive-definite on the free product group G = @& ;; G,

Remark 7.2. If we consider the amalgamated free product group
G = @, ;s G, then by the Baas-Serre theorem G also acts by isometries on
a suitable tree T(G) (see [29]), and again by our Theorem 5.1 we can obtain
a result of M. A. Picardello [28] about positive-definite functions on the
amalgamated group G.

8. Noncommutative von Neumann inequality. If p = p(x,, ..., x,) is a poly-
nomial in the noncommutative indeterminates x, , ..., x,, then we can consider
p as a function on the free group F, supported by the free semigroup generated
by the free generators x,,..., x :

n

TuroreM 8.1. Ler 4, (k=1,...,n) be contractions on a Hilbert spuce
H and p a polynomial as above. Then :

(A oo AN < Ipllesern
= sup{[lp(Uy, ..., UJIl: U; unitary finite-dimensional, 1 < j < n},

where |pllcwr,y = sup{lle (p)||: ¢ a unitary representation of F.}
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Proof Take the group of integers Z (or the tree Z). By Example 5.2 and
Theorem 5.1 we know that for each contraction operator A on a Hilbert space

the function
4 frz0,
P4l =9 i g <o,

is positive-definite on Z (see also [27] for other proofs of this fact).

By Theorem 7.1 we can form the free product function ¢ = of-| @4, on
the free group F, which is a positive-definite function. By the Gel-
fand--Naimark-Segal-Nagy theorem there exists a unitary representation # of
F, on a Hilbert space H; = H such that

@(x) = Py, ex)y for xeF,

where Py, is the orthogonal projection from H, into H.
Note that if x = x{*-...-xJs, where m; >0, i, i;,,, then

@y = ARt . AR

Therefore

A, d) =Y p(x) @(x) = Py ( 3, plx) =)

xXe&y, xaFy

Hence we get

Ip(Ays s AN <Y 20w = IO < plicwr,.
On the other hand, the free group is maximally almost periodic (see [221,
(22.22)(d)). This means that for all functions f with finite support on F,

W erg = sup{llw(f)]: @ anitary finite-dimensional}.

This proves the theorem.

Reflerences

[{] C. A Akemann and M. E. Walter, Unhounded negative definite functions, Canad. J. Math.
33 (1981), B62- 871,

2] R. C. Alperin, Locaily compact groups acting on trees and property T, Monatsh. Math, 93
{1982), 261 -265. B .

[3] R. C. Alperin and H, Bass, Length fimctions of group actions on A-trees, to appear.

[4] R.C. Alperin and K. M oss, Real-valued Archimedean length functions in groups, to appear.

[5]1 N. Aronszajn, Theory of reproducing kernels, Trans, Amer. Math. Soc. 68 (1930), 337-404.

[6] G. Bennett, Schur multipliers, Duke Math, 1. 44 (1977, 603—6%9.

[7] C.Berg and F. Forst, Potential Theory on Locally Compact Abelian Groups, Ergeb. Math.
Grenzgeb. 87, Springer, New York 1975



118 M. Boziejko

[8] N. Bourbaki, Groupes et algébres de Lie, Chap. IV, Groupes de Coxeter et systémes de Tits,
Hermann, Paris 1968.
[93 M. Bozejko, Positive definite functions on the free group and ike noncommutative Riesz

product, Boll. Un. Mat. ltal. (6) 5-A (1986), 13-21.

[10]1 —, Uniformly bounded represemations of free groups, J. Reine Angew. Math. 377 (1987),
170-186.

[11] —, Positive definite hounded matrices and a characterization of amenable groups, Proc. Amer.
Math. Soc. 95 (1985), 357-360.

[12] M. Bozejko, T. Januszkiewicz and R. Spatzier, An infinite Coxeter group is not
Kazhdan, J. Operator Theory 19 (1988), 6368,

[13] L M. Chiswell, Abstract length functions in groups, Math. Proc. Cambridge Philos. Soc. 80
(1976), 451-463.

[14] —, Length functions and free producis of groups, Proc. London Math. Soc. 43 (1981), 42-58,

[15] M. Culler and ). W. Morgan, Group actions on R-trees, to appear.

[16] L. De Michele and A. Figd-Talamanca, Positive definite functions on free groups, Amer.
J. Math. 102 (1980}, 503--509.

[17] P.G. Dixon and 8. W. Drury, Unitary dilations, polyromial identities and the von Neumann
inequality, Math. Proc. Cambridge Philos. Soc. 99 (1986), 115-122.

(181 W. F. Denoghue, Ir., Monotone Matrix Functions and Analytic Continuation, Springer,
Berlin 1974. .

[19] A.Figd-Talamanca and M. A. Picardello, Harmonic Aralysis on Free Groups, Lecture
Notes in Pure and Appl. Math. 87, Dekker, New York 1983,

[20] U. Haagerup, An example of a non nuclear C*-algebra, which has the metric approximation
property, Invent. Math. 50 (1979), 279-293,

[21] N. Harrison, Real length functions in groups, Trans, Amer. Math, Soc. 174 (1972), 77-106.

[22] E Hewitt and K. Ross, Absiract Harmonie Analysis, Vol 1, Springer, Berlin 1963

[23] P.Julg and A. Valctte, K-theoretic amenability for SL,(Q,), and the action on the associated
tree, J. Funct. Anal. 58 (1984), 194-215.

[24]1 R. A. Kunze, Positive definite operator-valued kernels and unitary representations, in:
Functional Analysis, Proc. Conf,, Irvine 1966, Thompson and Academic Press, 1967, 235-247.

[25] R. C, Lyndon, Length functions in groups, Math. Scand. 12 (1963), 209-234.

[26] J. W.Morgan and P. B. Shalen, Valuations, trees, and degenerations of hyperbolic structures,
1, Ann. of Math. 120 (1984), 401-476. ‘

[27] B. 8z.-Nagy and C. Foias, Harmonic Analysis of Operators om Hilbert Space,
North-Holland, 1970,

[28] M. A. Picardello, Positive definite functions and I convolution eperators on amalgams,
Pacific J. Math., 123 (1) {1986), 209-221,

[29] J.-P. Serre, Trees, Springer, Berlin 1980.

[30] J. Tits, 4 ‘theorem of Lie-Kolchin’ for trees, in: Contributions to Algebra: A Collection of
Papers Dedicated to Ellis Kolchin, Academic Press, New York 1977, 377-388.

(511 Y. Watatani, Property (T) of Kazhdan implies property (FA) of Serre, Math. Japon, 27
(1981), 97-103.

INSTYTUT MATEMATYCZNY UNIWERSYTETU WROCLAWSKIEGO
INSTITUTE OF MATHEMATICS, WROCEAW UNIVERSITY
Pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland

Received November 10, 1986

(2240)
Revised version October 27, 1988

icm

STUDIA MATHEMATICA, T. XCV (1989)

Incomplete mormed algebra norms on Banach algebras
by

BOHDAN J. TOMIUK (Ottawa, Ont.) and BERTRAM YOOD (University Park, Pa)

Abstract. Let 4 be a sernisimple Banach algebra. In various analytic situations one considers
(incomplete) normed algebra norms on A and the completions of A in these norms, A study is made
of all possible normed algebra norms and complotions for classes of semisimple Banach algebras.

1. Introduction. An original impulse for this investigation came from the
theory of generalized almost periodic functions. Let A = AP (G) be the set of all
almost periodic functions on a topological group G considered as a Banach
algebra under the sup norm, pointwise addition and convolution multi-
plication. For the classical case G = R, the reals, and 1 < p < oo the Stepanov
S7-almost periodic functions can be considered as the completion of AP (R} in
an incomplete normed algebra norm {|f||s» on AP (R). Likewise the Besicovitch
BP-almost periodic functions arise in this way. Similarly we may consider
completions in the, noncommutative situation of AP (G). The question naturally
arises whether there are any interesting properties shared by all possible
completions'of AP{G) in all possible normed algebra norms. Of course the
same question occurs for the completions of other Banach algebras.

It is easy (see §4) to exhibit a commutative semisimple Banach algebra
B with no nonzero idempotent and a normed algebra norm on B where the
completion of B contains such an idempotent. For AP(G), or more generally
any semisimple annihilator Banach algebra A4, any idempotent in the comp-
letion of 4 in a normed algebra topology must already be .ilil A.

Let |x|, and |x|, be two normed algebra norms on a semisimple Banach
algebra 4. We say that these normsé are consistent _if |xn—x|% —+0 and
|x,— yl, 0 imply that x = y (where all the elements are in A). In view of the
closed graph theorem the uniqueness of the norm theorem [4, Theorem 9, p.
1307 can be expressed as saying that any two complete norms |x[, and x|, are
consistent, )

On the other hand (see §3), it is easy to find two incomplete normed
algebra norms on the disc algebra which are not consistent. Nevertheless, for
many of the usual examples of semisimple Banach algebras, any two r}o._rmed
algebra norms are consistent. This is the case for C*-algebras, annihilator
algebras, regular commutative Banach algebras and other instances as shown .
in §3. '



