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Denote the norm in B by {|-]|;. Using inequality (7), we can show by an
argument similar to that in [14, p. 273] that there is a norm reducing aigebra
isomorphism 7" of 4 onto a dense subalgebra of B. This completes the proof.
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Factoring the identity operator on a subspace of 7
by

PIOTR MANKIEWICZ (Warszawa)

Abstract. It is proved that a “random n-dimensional subspace E of I3, has the property that
for every factorization of the identity on E through a Banach space ¥, 8;: E—~¥and §,: Y= FE,
one has be(Y) 8,1 I1S,) = en®?/dim ¥, where ¢ >0 is a numerical constant.

A. Pelczynski ([4], Prop. 11.1) proved that for every n-dimensional Banach
space X, there is a Banach space Ywith basis constant be(Y) = 1, dim Y< n*72,
and there are operators S;: X,~ Y, §,: Y—=X_, such that §,8, =1dx and
18,11 iS4l < 3. In this context he asked whether the estimate on the dimension
of Yis optimal. Essentially the same proof yields the following more general
result:

For every n-dimensional Banach space X, and every m < nbc{(X,) there is
an m-dimensional Banach space Y, and operators S;: X, — 1,
8, Y,—Y, such that §,§, =Idy, and

1) be(¥,) IS4l [182]] < 3nbe (X,)/m.

One can ask whether the estimate (1) is optimal. S. J. Szarek (6], Prop.
5.1), using the technique introduced in [1] and developed in [5], proved that
there are real n-dimensional Banach spaces X, such that for every factorization
of identity on X, through an m-dimensional Banach space one has {in the
notation above)

cn
) be(L)11S411 1181t = EIOg"’”ﬂ,

where ¢ > 0 is a numerical constant. The complex variant of (2) was done in
a similar way in [2] by the author. The aim of this note is to show that (both_ in
the real and complex case) the estimate (1) is optimal “up to a multiplicative
numerical constant” even if we restrict our interest to the case when X, is an
n-dimensional subspace of 1%, with basis constant of order J n. The same
argument vields that (1) is optimal “up to a multiplicative numerical constant”
for n-dimensional subspaces of B, with basis constant of order ntf2=1r for
pzl : .



134 P. Mankiewicz

1. Preliminaries. Qur notation and terminology are standard. To fix the
notation we shall consider real Banach spaces only. However, exactly the same
argument yields the complex case, We shall deal mainly with linear operators
acting on R" equipped with different norms. If x = (x,,..., x,)eR", then
I, = (Si=1 x/7)!" for pe[t,o0]. If ||| is a norm on R” and X, = (R", |-},
then for Te L(R") we shall denote by {|T||x, the norm of Tas an operator from
X, into itself, while ||71|, will stand for the norm of T as an operator from

fh = (R |- [I,) into itself. If E is a linear subspace of R" and T! E —E, then trT

will denote the trace of T, and || T||ys will stand for the Hilhert-Schmidt norm of

T Note that in such a case both trTand || T}|ys depend only on E and T'(i.e. do

not depend on the way we isometrically embed E in R"). In particular, we may

identify E with R*™Z, For a linear subspace E of R" we shall denote by E* and

P the orthogonal complement of E and the orthogonal projection on E in R",

respectively. For a subset" 4 « R" by {4] we shall mean the linear hull of 4.
Let us recall the following definition ([5], cf. also [2]).

DefiviTioN. For an operator Te L(R") we write Te M, (x, B) with o, 8 > 0
iff there is a linear subspace E < R" with dimE > o such that

[Pz Txll, = Blixll,

Observe that Te M, (x, f} for some'«, f >0 iff T—Aldg.e M, (a, )} for
every AeR iff T—Aldgue M, (2, ) for some AcR

for every xeE,

2. Technical proposition. The following lemma concerning the properties of
operators on R” which do not belong to M, (5 n, 1) seems to be crucial for the
results of this paper. However, a similar argument can be found in [2], and the
lemma itself (with different numerical constants) can easily be deduced in the
real case from the results in [5] and in the complex case from the results in [71.
The proof presented here works in both cases. In the complex case one has only
to use a complex version of results in [2].

Lemma 2.1. Let Te L(R") be such that for every AcR and for every linear
subspace E < R" with dimE 2 gn we have

(T—Aldgs) |Ell; 2 1.
Then TeM, (&n, i)
Proof. Take Te L(R™ satisfying the assumption of the lemma and assume

to the contrary that T¢ M, (yn, §). Let F = R” be a linear subspace of maximal
dimension satisfying '

iPp.Tx|l, 2 4 ||xl|, for every x&F

and set E =[FUTFUT*FUT*TF]* Since T¢M,(3%n,3) we infer that
dim F < 3yn and therefore dim E > 3n. Let 1 = (dim E)~ ! tr {(P:T|E) and define
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T, = T—~Ald g~ Note that by the definition of E it is enough to find an x,€ E,
ixoll = 1, such that
WPy Ty Xoll, <%

(for every xe R" we have ||Ppy: T) x|, = ||Pq: TXll,) to get a contradiction with
the maximality of the dimension of F. Indeed, in such a case we would have

IlPFi Txll, = §lIxll, for-every xeF,,
1
where F, = [Fux,].

To this end consider T)|E. By the assumption ||T}|E||, = 1. Let x,€E,
llxoll = 1, be such that [T} x| > 1. If |{Pg. T} xpll, > 4, then since

Pixors Ty Xolts 2 [IPe- Ty Xl

we get a contradiction. Hence ||Pp T, x,ll, =% Now, if there is an x, €k,
flx,dl = 1, such that |[P; T, x,li, <% then, applying Lemma 2.6 in [2] for the
operator P;T,|E considered as an operator on RY™E, we infer that there exists
an x,€E, [|x,|]; =1, such that

1Presiene Py Ty Xl 2 '?3'-
Since trivially
1Py Ty %502 2 1Pyt ae Ty Xally = FPragpenie Pr Ty X2l

we get a contradiction once again. Thus the only remaining case is that
[P T; xll; = %lix|l, for every xeE. But in this case we have

1Py T|E||us 2 % (dim E)'/2,
while tr (P T,|E) = 0. Hence, again congsidering Py T ]E as an operator on
RImE by [2], Cor. 2.2, we obtain
1 {(dim E)'/? - 1
4(2+dim E)1? ~ 8
for some x<E. This in the same way as above yields a contradiction and
completes the proof,

WPpgene Py Ty xll, 2

In the sequel we shall need the following basic result on properties of
“random quotients of i4,” (= Gluskin spaces) due to 8. J. Szarek ([5], Th. 1.4).

PROPOSITION 2.2. There is a numerical constant ¢, > 0 such that for every
13 2 there is a norm |{|*||x, on R® such that

(i) the Banach space X, = (R",||"|lx,) is isometrically isomorphic to a quo-
tient of 13, -

G) |Ix|l, < [Ixllx, < llxlly (< /nilxlly) for every xR,

(i) | Tllx, > e1+/n for every TeM,Gzn, §).
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Combining Lemma 2.1 and Prop. 2.2 we are able to prove the following
technical fact which summarizes the basic properties of random quotients of
I3, and seems to be of independent interest (e.g. it is a starting point for the
construction in {3]).

PrOPOSITION 2.3. There is a numerical constant ¢ > 0 such that for every
n =2 there is a norm || ||x, on R" such that

(@) X, = (R" |["llx,) is isometrically isomorphic to a quotient of I3,

(i) Jixli2 < lixllx, < |IxIl; for every xeR’,

(ili) for every Te L(R") there are A €R, Voe L(R") and a linewr subspace
E, = R", with dimE, > {n, such that

(@) T=A;1dg-+ ¥y,

(b} 1dpl < T ||y,

(© Vol Eflly < cliT llx, //m-

Proof Fix n = 2 and let {|-{|x, be the norm on R" from Prop. 2.2. Then (i)
and (i) are antomatically satisfied. To prove (iii) let T be an arbitrary operator
in L(R"). Set

T = cl\/n
||T||x,,

We have [|Ti|lx, = ¢, \/n Thus, by Prop. 22(iil), T,¢M,(szn,%). Hence,
Lemma 2.1 xmphes that there are 15, e R and a linear subspace Ey, = R" with
dim ETl Zn such that

Ty — Az, Idgn) | Ex fI, < 1.
Set Vy, =T, —Ar,Idg. and define

T
PN . PP

INL e, Jn
and E; = Er . Then we have T= A, Idp.+V, and
@) Vel Exlly < e U Tilx,/y/m,

which completes the proof of (iii)(a) and {¢). To prove (iii{(b) assume that
Ay > {er* +1)||T|x,. Then for every xeR" we have

WV Xilx, = (T Az Idgn) xllx,, > ((c1 ' + DI Thx, =1 Tllx,) il
| > o7t 1Tl .
On the other hand, by (i) and (3), for every xe E, we have
Wrxlle, <1Vexlls < nll Prxlly < /BlVRIEAL I, < o7 I Tlly,lxll,
a contradiction which completes the proof of the proposition with ¢ = ¢; ! +1.
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3. Main results. The theorem below states that in the Banach spaces from
Prop. 2.3 it is impossible to represent the identity operator as a sum of a “smalt
number of operators with small rank™ in such a way that all partial sums will
have “small norms™. More precisely, we have

THEOREM 3.1. There is a numerical constant ¢, > O such that for each n = 2
there is a norm ||*||x, on R" such that the Banach space X, = (R", ||||x,) is
isometrically isomorphic to a quotient of 13, and has the property:

(¥)  whenever Idy, = S, T, with rank T, <Zn for i=1,..., k,

then
k —
max |[ Y Tl =cq4/n/k.
1€k €k|li=1 Xa
Proof Fixnz2andlet X, =(R" || Hxn ) be the space from Prop. 2.3. Let
Idyg, —2,_ T; with rank T, <gn for i=1,..., k Set
ky
= max [} T
tghskll =1 |[Xn

and observe that if T, = Aldy +V; for i=1,..,k are the representations of
T,’s as in Prop. 2.3(iii) then for xeker T, n Ep, {3 {0}) with ||x]|, = | we have

= ITxll, = li4; Idy, + V) x|l = {4 —2ebn ™12,
Thus we have |i] < 2¢cbn™'? for i=1,..., k. Therefore
WL Eq |l < 1A +2cbn™ Y2 < 4ebn ™12
fori=1,..., k

CLamM. For every j=1,..., k there are 1, and a linear subspace E; = R"
with dlmff = &n such that

j

$ = fldn 47

i=1
with |7} < 6jcbn™ Y2 and (|V)E]|, < ebn™*72,

Forj = 1 the claim has already been proved above. Assume that it is true

for some jz 1. Then

J+1 J

Z T = Z T+ Ty = A;1dy, + P+ A Wy, + Vs

=1

Thus, for every xe E ;N Er, _“(aé{O}), with ||x|l, = 1, by our assumption we
have
J+1

Y. Tix|; < 6jchn™ Y2 4 chn ™2+ dcbn ™2 = (6] + 5)cbn ™ 2.
i=1

2 =

@
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Now, if Y921 7;=1;4,1dy,+ 7 is the representation of Z X1 T, as in Prop.
2.3 (iii) and E 41 is the corresponding subspace with dim E;, 4 = §n then for
every erJ+1 with [jx]}, =1 we have

jo1
5 1
i=1
Combining (4) and (5) we-deduce that for xe E;n E; i rn Ejuq with x|, =1

(note that dim(E,n Ej;,, nEj+1) > n/2) we have

which yields the desired estimate and conclﬁdes the proof of the claim.

2 Ay | —chn™ 2,

(5)

!Z;i+l|“"'Cbn g < (6/+5) cbn™ 12,

Now, in particular we have
k

Z ’I: = IdX,, = Ildxn'l"ﬁ

i=1

with |%] < 6kebn™ Y2 and ||F,IE})|, < chn~'2 Thus | ]| = 1 —cbn™ % Hence
Tkebn™*? = 1, which completes the proof of the theorem with ¢, = (7¢) %

Remark 3.2. It is well known (cf. [3], [6]) and easy to see that for an
m-dimensional Banach space X, the property () from Theorem 3.1 formally
implies the following:

(x%)  whenever ¥ is an m-dimensional Banach space with the basis constant
be(Y,)and §;: X,— Y, and §,: ¥ — X, are linear operators such that
Sle = Idx“, thel’l

be (VIS 1Sl = & n®2/m
where &, is a numerical constant (¢, depends on c,).
The remark above and Theorem 3.1 by a standard duality argument yield

THEOREM 3.3. There is a numerical constant ¢ > O such that for every ne N
there is an n-dimensional subspace E, of IS, with the property:

whenever ¥,, is an m-dimensional Banach space with basis constant be(Y,) and
St E,—» Y, 5,0 Y, —E,_ are linear operators such that 8,5, = Idy,, then

be(F) IS, 111S,] =

Remark 34. Since a “random n-dimensional quotient of [3,” satisfies
Prop. 2.2 (cf. [3]), we infer that the comclusion of Th. 3.2 is satisfied by
a “random n-dimensional subspace of 15"

en/m.

Remark 3.5. Using a standard argument one can deduce from Th. 3.2
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and Remark 3.3 that for a “random n-dimensional subspace” E, of &,
pel2, o], one can get the following estimate:
en®? P end(E,_,12) _ cnbc(E,)
= >
m

be(T) IS, 1118l = >
m m

for factoring the identity operator on E, through an arbitrary m-dimensional
Banach space 7,

Remark 3.6. The results above remain true (with different constants) for
“random n-dimensional subspaces of If; .,,”, for a fixed £ > 0 and pe[2, oo].
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