	500
Ц	

STUDIA MATHEMATICA, T. XCV (1989)

On a question of A. Wilansky in normed algebras

b

A. BEDDAA and M. OUDADESS (Rabat)

Abstract. A. Wilansky asked whether there is a normed Q-algebra which is not inverse closed in its completion. The answer to this question is negative. In fact, we show that every p-normed Q-algebra (0 is inverse closed in its completion.

By a p-normed algebra (0 we mean an algebra A over <math>K(K = R or C) endowed with a mapping $\|\cdot\|$ from A to R_+ satisfying:

- (i) ||x|| = 0 if and only if x = 0.
- (ii) $||\lambda x|| = |\lambda|^p ||x||$, for all x in A and $\lambda \in K$.
- (iii) $||x+y|| \le ||x|| + ||y||$, for all x, y in A.
- (iv) $||xy|| \le ||x|| \cdot ||y||$ for all x, y in A.

A p-normed algebra A is called a Q-algebra if its group G(A) of invertible elements is open.

In the following A will always be a unital p-normed algebra and \hat{A} its completion. We denote by m(A) and $m(\hat{A})$ the sets of all nontrivial continuous characters of A and \hat{A} respectively.

Recall that A is inverse closed in \hat{A} if, whenever $x \in A$ has an inverse x^{-1} in \hat{A} , then x^{-1} is in A.

Let us now state the first proposition, which characterizes the commutative p-normed Q-algebras.

PROPOSITION 1. If A is commutative, the following assertions are equivalent:

- 1° Every x in A such that $\chi(x) \neq 0$ for every $\chi \in m(A)$ is invertible.
- $2^{\circ} \operatorname{sp} x = \{\chi(x) | \chi \in m(A)\} \text{ for every } x \text{ in } A.$
- 3° A is inverse closed in A.
- 4º A is a Q-algebra.

Proof. 1° \Rightarrow 2°. Let λ be an element of spx. Then $\lambda e - x$ is not invertible. By 1°, there exists χ in m(A) such that $\chi(\lambda e - x) = 0$. Hence $\lambda = \chi(x)$. Thus spx $\subset \{\chi(x) | \chi \in m(A)\}$. But the inverse inclusion is always satisfied, whence 2°.

 $2^{\circ} \Rightarrow 3^{\circ}$. If $\operatorname{spx} = \{\chi(x) | \chi \in m(A)\}$, then $\operatorname{spx} = \{\chi(x) | \chi \in m(\hat{A})\}$ for every element of m(A) can be extended to an element of $m(\hat{A})$. Since \hat{A} is a complete p-normed algebra, $\operatorname{sp}_{\hat{A}} x = \{\chi(x) | \chi \in m(\hat{A})\}$ ([3]), so $\operatorname{sp}_{A} x = \operatorname{sp}_{\hat{A}} x$ for every x in A. This implies 3° .

 $3^{\circ} \Rightarrow 4^{\circ}$. This is trivial, since $G(A) = G(\hat{A}) \cap A$ and \hat{A} is a Q-algebra ([3]).

 $4^{\circ} \Rightarrow 1^{\circ}$. Let x be an element of A such that $x \notin \text{Ker } \chi$, for every χ in m(A). Since A is a Q-algebra and the p-normed algebras satisfy the Gelfand-Mazur theorem, the only maximal ideals of A are $\text{Ker } \chi$, $\chi \in m(A)$. Thus x belongs to no maximal ideal of A. Hence x is invertible.

Remark. The four equivalent assertions imply that the Jacobson radical of A is given by Rad $A = \bigcap_{\chi \in m(A)} \operatorname{Ker} \chi$. But the converse is false. Indeed, if we consider the normed algebra A consisting of all polynomials provided with the norm $\|P\|_{\infty} = \sup_{x \in [0,1]} |P(x)|$, it is easy to verify that A is not a Q-algebra but $\operatorname{Rad} A = \{0\} = \bigcap_{\chi \in m(A)} \operatorname{Ker} \chi$.

We now obtain another characterization in the noncommutative case.

PROPOSITION 2. The following conditions are equivalent:

1° A is inverse closed in its completion Â.

 2° For every subset of A which contains no invertible element in A, its closure in \hat{A} contains no invertible element in \hat{A} .

3° The closure in \hat{A} of a (left or right) maximal ideal contains no invertible element in \hat{A} .

 $4^{\circ} \operatorname{sp}_A x = \operatorname{sp}_A x$, for every x in A.

5° A is a Q-algebra.

Proof. $1^{\circ} \Rightarrow 2^{\circ}$. Let B be a subset of A which contains no invertible element in A. Suppose that the closure \overline{B} of B in \widehat{A} contains an element x invertible in \widehat{A} . Since \widehat{A} is a Q-algebra ([3]), there exists a neighborhood U of x such that every element of U is invertible in \widehat{A} . Since $x \in \overline{B}$, there exists a sequence $(x_n)_n$ in B which converges to x in \widehat{A} . Hence $x_n \in U$ for large n. Then x_n is, invertible in \widehat{A} and hence in A, contrary to the hypothesis.

2° ⇒ 3°. Evident.

 $3^{\circ} \Rightarrow 4^{\circ}$. The inclusion $\operatorname{sp}_{\widehat{A}} x \subset \operatorname{sp}_{A} x$ is always satisfied. Conversely, if $\lambda \in \operatorname{sp}_{A} x$, i.e. $\lambda e - x$ is not invertible, then there exists a (left or right) maximal ideal M such that $\lambda e - x \in M \subset \overline{M}$, where \overline{M} is the closure of M in \widehat{A} . Since A is dense in \widehat{A} , \overline{M} is a (left or right) ideal in \widehat{A} and by 3° , $\overline{M} \neq \widehat{A}$. Thus $\lambda e - x$ is not invertible in \widehat{A} , i.e. $\lambda \in \operatorname{sp}_{A} x$.

 $4^{\circ} \Rightarrow 5^{\circ}$. $G(A) = G(\widehat{A}) \cap A$ and $G(\widehat{A})$ is open in \widehat{A} , whence the result.

 $5^{\circ} \Rightarrow 1^{\circ}$. Let x be an element of A. If $x \notin G(A)$, there exists a maximal ideal M in A such that $x \in M$. Then $x \in \overline{M}$, where \overline{M} is the closure of M in \widehat{A} . It is a proper ideal in \widehat{A} . Thus $x \notin G(\widehat{A})$.

Remark. The last proposition shows that the answer to Wilansky's question is negative even for p-normed algebras. We point out that a negative answer for normed algebras has been given by Alberto Arosio ([1]).

We now give some examples.

1° Let $A = C^{(N)} = \{(x_n)_n \subset C \mid \exists N \in N \colon x_n = 0 \text{ for } n \geq N\}$ provided with the pointwise operations and the *p*-norm defined by $||x|| = \sum_{n=0}^{\infty} |x_n|^p$, where $x = (x_n)_n \in A$ and *p* is a fixed number such that $0 . Then <math>(A, ||\cdot||)$ is a *p*-normed (not normed) algebra. It is not complete. Its completion is

$$\hat{A} = \left\{ (x_n)_n \subset C \, \middle| \, \sum_{n=0}^{\infty} |x_n| < \infty \right\}.$$

Consider $A^{\#} = A \times C$, the unitization of A, with the p-norm $||(x, \lambda)|| = ||x|| + |\lambda|^p$. Then $A^{\#}$ is a p-normed Q-algebra which is not normed. Q^{*} Consider the same algebra A with the convolution product:

$$(x_n)_n * (y_m)_m = \left(\sum_{n+m=k} x_n y_m\right)_k.$$

The algebra A is not inverse closed in its completion \hat{A} . Indeed, the element x = (2, 1, 0, 0, ...) of A is invertible in \hat{A} . Its inverse is $x^{-1} = (\frac{1}{2}, -\frac{1}{4}, ..., (-1)^{n-1}/2^n, ...)$, which is not in A. Thus A is not a Q-algebra.

References

- [1] A. Arosio, Locally convex inductive limits of normed algebras, Rend. Sem. Math. Univ. Padova 51 (1974), 334-359.
- [2] A. Wilansky, Letter to the editor, Amer. Math. Monthly 91 (8) (1984), 531.
- [3] W. Zelazko, Metric generalizations of Banach algebras, Dissertationes Math. 47 (1965).

ÉCOLE NORMALE SUPÉRIEURE TAKADDOUM B. P. 5118, Rabat, Morocco

Received July 7, 1988 (2462)