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We use the renormalization approach to study one parameter families of
maps f,: I =1, pe[—1, 1], close to the unstable manifold of Feigenbaum’s
fixed point.

Suppose u =0 is the limit point of doubling bifurcation parameter
values and for y <0 f, has zero topological entropy. Assuming that for u > 0
a certain transversality condition is satisfied we prove (Theorem 3) that in
any interval [0, &] the relative measure of u corresponding to f, with an
absolutely continuous invariant measure is not less then c-¢ where ¢ depends
neither on ¢ nor on the family under consideration.

§ 1. Universal behavior for one parameter families

1.1. We begin by formulating the main results of the Feigenbaum’s universa-
lity theory (see for example [1]). For a given domain 2 < C let ", be the
Banach space of bounded analytic maps from 2 to C equipped with the
norm

Ifll, =sup ilf @): ze2}.

We suppose that I = [—1, 1] = 2. Let M, be the subset of A", consisted of
f satisfying the following conditions:

(1) f<l,

2 fO=1, f@©O=0 f0=#0 0>f(1)>-1.

Let us write a(f) = f(1) and define the doubling transformation by
Tf(x)=a () fof (x(f)-x)

30 — Banach Center t. 23 [465]
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Then:
I. There exists a domain 2, > I such that the equation

Tf=f
‘has a solution ¢, in My . There exists a neighbourhood % = 5 of ¢, such

that 4 is a C? transformation and ¥ < X', .
II. DT, is a compact operator from X', into itself. D.7, restricted

to {Y(0) =0, y'(0) = 0} has one eigenvalue § > 1 and the remainder part of
the spectrum is inside the unit circle.
III. Seq(x) <O where

S7(x) 3 (f (%) )2
Sf(x) = -z
T0=Fw 27w
'is Schwarzian derivative.

From now on we consider the restriction of 7 to smg,,l. Using the stable

manifold theorem for hyperbolic maps in Banach spaces (see for example [2])
we obtain

IV. In a neighborhood %, of ¢, a local unstable one dimensional
manifold W*(¢,) and a local stable manifold of codimension 1 W*(¢,) are
defined. Besides the one dimensional map J|yu,, may be linearized and in
the appropriate coordinate system W*(p,) may be identified with the one
parameter family of maps @: u —¢,, pe[—1, 1], so that

TPy = Psy-

Notice that S¢q(x) <0 implies that for any map sufficiently close to
©o(x) in C3 topology the Schwarzian derivative is also negative. We chose
the neighborhood %, so small that Sf(x) <O for any f € %,.

1.2. Define an operator similar to the doubling transformation but acting not
on maps but on one parameter families of maps (see [3], [4]).
Let 9t be the set of one parameter families:

F:u-f,edy,, pel—-1,1]

normalized by the condition f, e W*(¢,). We assume that f,(x) = f(u, x)
coincides with the restriction to Q =[—1, 1] x[—1, 1] of an analytic boun-
ded map

f: @0 X @1 -C

where 2,>[-1,1], 2, o[—1, 1] are some domains in C.
We consider M as a subset of the Banach space of analytic maps
equipped with the norm

/1l = suplf (4, x)I.
(ux)
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Let X, c %, be some surface of codimension 1 which transversally
intersects W*(¢p,) at the point ¢, and let X;!=7"!'2, n %, For any
family F sufficiently close to @ a parameter value y, (F) is uniquely defined
by the condition f, r€Z1 . .

We define the transformation .7, acting on families by the formula

T (F) H _"-77;,.”1(1:).

It follows from the definition of .7, and from ¢, = ¢;, that & is a
fixed point of .7,.

ProposITION 1. There exists a neighborhood ¥~ — R of the family & such
that ,v < ¥ and T, is contracting an ¥ thus ® is the unique stable fixed
point of T 4| .

The proof of Proposition 1 is similar to the proof of the stable manifold
theorem (see [2]).

V. Let &(u, x) be the polynomial approximation of ®(u, x) = W*(¢,)
constructed in [3]. When u varies & (u, x) = @,(x) behave like a family of
polynomial-like mappings of degree two.

For a certain parameter value, which after rescaling may be chosen
equal to 1, the straightforward calculation shows that @,(x) maps some
interval I, = [ —x,, Xo] twice onto itself and satisfies the following condi-
tions:

(V¥ |9 (1, xo)l = 4p > 1,
P, (1, xo)
b ’ — [
V) Bl 0= g -

where the unstable fixed point — x,(x) and its preimage x,(u) are the ends of
Io() > @, 1o ().

It is natural to assume that ®(u, x) satisfies (V*) as well as its
approximation & (u, x). Then (V®) would mean that W*(¢,) has a point of
transversal intersection with the surface of codimension 1 consisting of
transformations which map some interval twice onto itself. A similar trans-
versality condition concerning the intersection of W*(¢,) with the surface,
consisting of maps which have a neutral fixed point, is proved in [4]. Here
we formulate an assumption concerning only a local part of W*(¢p,) (if the
local unstable manifold may be extended up to the global one, then both
assumptions are equivalent).

(V*). %, contains a point @, of transversal intersection of W*(®,) with

some surface 2, = {f: there exists an interval I, = such that fI,,

ie[0, 2"°—1], are disjoint, 2" maps I, twice onto itself} and for q>2"°|10
(V*), (V*) hold.

Below we shall use X; to denote X, N %,.
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1.3. According to Proposition 1 for any family F e¥" the sequence J%F
= F, converges to @ in 9. Because of the analytic dependence on u and x
this implies that F, converge to ¢ with all partial derivatives. We shall use
the convergence of derivatives up to the third order.

It follows from III and V that for the family @ the measure of the set of
parameter values corresponding to the stochastic behavior is positive. Name-
ly, the following is true (see [5]):

THEOREM 1. There exists a positive measure set .# of parameter values
such that for pe #|®, has absolutely continuous invariant measure with

positive entropy, with the support inside 2"° cyclically permuted intervals.

According to Ledrappier’s theorem ([6]) the natural extension of <155"°|, o

is Bernoulli. If a family F is sufficiently close to @ in C3 topology then f, also
have negative Schwarzian derivative and Theorem 1 is true for F. But we
shall prove a stronger result.

THEOREM 2. For any ¢ > 0 there exist 5, > 0 and a C?* neighborhood ¥ ',
of @ such that if F: u—f, is in ¥, f; cyclically permutes 2" intervals
Jos .oy J and flznOIJO doubly covers J,, then for any positive 6 < d,

Ol mes {M-n[1-6,1]} > 1—¢

2"0

where .#y is a set of parameter values p such that f, has an absolutely
continuous invariant measure.

Theorem 2 which essentially relies on the inductive construction of .#
from [5] will be proved below. Now we shall use it to make some
conclusions about the relative measure of stochastic behavior near and above
Feigenbaum’s parameter value. '

1.4. Suppose F: u — f, belongs to a domain # < 9 which is uniformly
contracting under .7, to the universal family ® = .7, ®. Then X F = F,: u
— £% is exponentially converging to @ in 9, and F, satisfy the conditions of
Theorem 2 for sufficiently large k. '

Let us denote by .#(F,) the set of parameter values p such that £* has
an absolutely continuous invariant measure supported by cyclically permuted

2" intervals. It follows from Theorem 2 that there exist ¢, and k, depending
only on the domain # such that for k > k,

mes .# (F,) > c,.

Let u,, u,, ..., 4 be a sequence of renormalization parameter values arising
from the definition of .7,. If f® has an absolutely continuous invariant
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measure supported by 2" intervals, then Juuy..s, has the corresponding
a.c.i.m. supported by 2"** intervals. Thus we obtain:

THEOREM 3. For any neighborhood W' of the universal family @ where T,
acts as a contraction there exist constants ¢y, €3 > 0 such that if F: p - f, is
in %, then in any interval [0, €], & < g, the set of parameter values y such
that f, has an absolutely continuous invariant measures is not less than c, .

Remark. A similar reasoning shows that a fraction of parameter values
p€[0, €] such that f, has an attractive periodic point (say a point of period
3) is also uniformly bounded away from zero. Thus in any neighborhood of
Feigenbaum fixed point the maps with stable periodic behavior and those
with stochastic behavior coexist both with positive probability.

§ 2. Proof of Theorem 2

2.1. The set .#p of u corresponding to the stochastic behavior of f, is

a0
constructed in [S] as the intersection .#r = ()| .#,, where .#, is the set of
n=0
parameter values allowed at the nth step of the inductive construction. The
decay of mes .#, and mes .#, are defined by the preliminary (zero) step of
induction, ‘which was only sketched in [5]. Here we shall expose it with more
details.

Let Jo(u) be the interval invariant under f;2". After a change of variable

depending on u and a change of parameter, and using again f, instead of f,f",
we reduce the problem to the investigation of a family of maps f,: [-1, 1]
—[-1,1], ue[—1, 1], satisfying the following conditions:

(i) f,(x) = f(u, x) is a C* map defined on [—1, 1] x[—1, 1];

@) f,(=1) = f,(1) = —1 for all y;

(i) £,(0) = 3

(V) Dy f(1,0) = —so <0;

(v) D, f(, —1)= A4, > 1.
For u sufficiently close to 1, f, has a fixed point t, € (0, 1). Let us denote by
t, ! the preimage of t, and set I, =[t, ', t,]. Consider the induced (the first
return) map T,: I, —I,. The map T, has an even number of monotone
branches T,,, ne[l, N—1], and a central branch of parabolic type Ty,,
where T, , is the composition of n+1 iterates of f,. When 4 —1, N —» o0, and
when u =1 there is no parabolic branch and the number of monotone
branches is infinite: The following proposition is a consequence of the
implicit function theorem and straightforward calculations.

ProprosITION 2. I. There exists a sequence of parameter values uy, N — oo,
such that for u = uy the central branch Ty, subdivides into two monotone
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branches and the new central branch Ty, , is born. When u varies from uy to
Un+1> Tne1,,(0) varies from t, to t;'. There exist NoeN co >0, 0 <go <1
such that for N > N,

coAo M (1—go) <y <coAg " (1+¢&)
II. There exist ¢y, c, > 0 such that for any n the following estimates hold

1- ¢y A3 < IDxx 7;|| < C 8;

2. ¢ 3’x <|D,T] <c, A} x;
3. ¢, Ay <D, T <c, A3;

4. ¢c;nAgx <|D,, T,| <c,nAj x.

III. Let x}(w), x2(u) be the endpoints of the domain of definition of
T,(u, x). There exist constants c3, ¢, > 0 such that:

1. For the central branch Ty, (u, x)

() cs/un—p < |xu (W) <cqJun—u.

2. For n=N let d(x;(n), 0) <d(x2(w), 0); then x)(w) satisfies (1) and
x2(y) satisfies

) c3 Ag"? <|x2 (W) <cs A5
3. If n< N—1 then both x;(u), x2(u) satisfy (2).

It follows from Proposition 2 that for n < N, n sufficiently large, |D, T,|
is of order A%Y2. A priori branches with small indices may be nonexpanding.
Yet, the negative Schwarzian derivative implies (see [7])

ProPOSITION 3. For u = 1 there exist myeN and 9o > 1 such that for any
T,....T
3 D, T, 0...0T,, | > eo.

We fix some R, > 1. Let do = [log,, Ro]+1, my =myd,. For p=1 we
‘have for any composition of m, maps T,

4) ID, T, 0...0F, | > R,.
Let for u=1
(5) min inf [D,T; 0...0T | = ay,.

1Ss<my iy...0g

It follows from |D, T,| > c, A™? that there exists k, such that if one of the
maps forming the composition T; o...0T; has the index i, > ko, then

(6) ID, T;; 0...0T;| > Ro.
This implies
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CoROLLARY 1. There exists ¢, >0 such that if pe[l—eg,, 1] and N,
= No(u) is the index of the central branch, then (4) holds for any
1<iy,...,im SNo—2 Ifany T, with ko < i < No—2 enters in the composi-

tion, then (6) holds.

2.2. Construction on the X-axis

We suppose that ue[l—e¢, 1], N, is large, and in particular Ny > k.
Let divide the maps T; into several types. Fix some g, €N satisfying ko
<00 € Ny, and attribute to the first type T; with 1 <i <k, to the second
type T; with ko, <i < g, to the third type T; with g, <i < N,.
Consider T;, of the first type. If |D, T; | > R, for all u under considera-

tion, then we do not change T; . Otherwise we construct all compositions
of the form T,,0T;,, where T,, are of the first or of the second type.
If |[D,T,oT,|> Ry, then we do not change it further. Otherwise

we construct T;,0T;,0T; , where 1 <i <g,, and so on. It follows from (4)
that after having repeated this procedure no more than m; times we obtain

for any T, oT;, _ 0...0T,0T,, i;e[l, go—1], se[l, m]

7 ID, T, 0...0T; | > Ry.

For any map f we shall use 4 fto denote the domain of f. We denote by
0o = 6o(u) the union of AT, with g, < i < N,. After the above construction
we may represent I as a union

ml ml
) I=6,0(U 5" )u(U 4T, 0...0T,))
=1 s=1
where
No
55! = 7}1'10...0’1,71‘160=j_\_‘)? AT,0oT,0...0T;,
—€0

and every summand depends on .

It follows from the estimates of |D, T, |D,, T;| in Proposition 2 and from
the expanding property (4) that distortions of compositions T; o...0 T,oT,,
1 € i, < g, are uniformly bounded by a constant which does not depend on
Ry, 0o and N, (see for example § 5 in [5]).

Let f, denote any“of the maps T, 0...0T;, 0T, in (8). Then (8) becomes

9 I=60u(U55')u(UAfO).
It follows from the bounded distortion that
(10) mes (| 4/o) > (1=180| - 0™

where m, is of the order logR,, ¢ does not depend on R, or é,, and
mesl = 1.
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23. On the parameter axis we deal independently on every interval
welun, un+1], N = Ny. Let denote the central branch Ty,, by h(u, x).
When p varies in [uy, n+1] h(u, 0) runs along I.

Now we shall define some admissible domains 4 f;, (1), and we shall call
u admissible if h(u, 0)edf,(n), where Af,(u) is admissible.

According to the inductive construction of [5] h(u, 0) is not allowed to
fall into some enlarged domains d5' > 5, which we shall construct now.

Fix some a, 0 <a < 1. Without loss of generality we may consider
Ry = A%, z = N, and suppose that az € N. Now we assume that g, is so large
that

(11) q0=Q0—2aZ>ko.

Consider the interval of the length R |6, homothetic to d, with respect
to 0. The endpoints of this interval may fall inside some domains 4f,. In this
case we enlarge the interval in such a way that it encloses such 4f,, and we
denote such an enlarged interval by 8,. Since the construction may depend
on u, we do it for u = py and define §,(u) as the union of those Af, (1) which
are in d,(uy). Let estimate |d,| — R3| &o]. According to Proposition 2 we have

Ixi| ~ A5°%? for the endpoints x, of §,. Then the endpoints of R%-

. . . . - 2 - 2+
homothetic image of J, are in a distance of order Ag°%* R% =4,°%%*"*

from zero. As |4T,| decreases exponentially, |47 is of the same order that the
distance of AT, from zero. It implies

CoROLLARY 2. There exist constants cs, c¢ > 0 such that
(12) ¢s* Ao

It follows from the definition of k, that any interval §,' from (9) is

encircled by the domains of definition of fo=T,, 0T, 0...0T, with

ko < ij+; < 0o. Because of (11) §5'\85"' consists of such 4f,.

eo/2taz q/2+az

< |dol < cg* A0

2.4. Let estimate the measure of {u: h(u, 0) €|)d5'}. Let begin with 8. The
endpoints yd(u), y3(n) of this interval move with the velocities

(13) (v ()| = [dyh/d| =

e To
) +o
D. T, (&> Yo W)+ (1)
where y;, coincides with an endpoint of AT, and o'(y) is the velocity of that
two points ¢, or ¢, * which coincides with T; (yo), i = 1, 2. Using Proposition

2 we see that |vf (g)| is ‘'of order A2 and the velocity of the top of the central
branch is

d ' .
o l= ‘ﬂ Ry (0)‘ ~ A% > A ~ | ()
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Suppose h, (0) = yo(u) for p=p, and h,(0) = y5(w) for p= p, > p,. Set u
= max |v* (), vy = maxjo(y), v, = min|v(w)|, pe€lpy, py+,]. Then for Au

u [ u
= u,—u,; we have

(15) (|So(ﬂ1_)|>(l+f‘_1_>_l <A#<(|50(ﬂ1)|>(1_“_1>—1. ’
v, v, v, v,

Using (14) we obtain ,
(16) ¢ 18o(up)l Ao O (1+ A2 )1 < A
3 - 2-N
< g 180 ()l - Ag MO (1— A%,

Using the estimates of |D, F/D, F| for the compositions (see § 9 of [5]), we
see that the velocities of the endpoints of dq', [€[1, m—1] are of the same

order: const- 422, Thus the estimate of Ay = {u: h,(0)€bo'(u)} is similar to

_(16) but with 155" (u,)| instead of |5 (u,)!.

In order to show that mes|)dg" is small it suffices to notice that a1}
inclILvlde any interval AT, ko <i<g, thus &, is encircled by &,
0 -~
= U AEO’I;IO"'O’I‘:l' Settlng r0=60\60=UAT,:, ko<i<Q0_2az

j=kg
= ¢qo We have

- |0 o’(#)l (1/2)kg - a0)
A(ol/z)(ko 0 < Ir l( )I €10 A 0~
0

for any pe[uN, Uy + 1], where qo—k, may be chosen arbitrarily large. For an
interval du = u: h, (0) €8, '(u)! we have the same estimate as (16) but with
85" (u,) instead of 50(#1) Finally we obtain

(17) Co

ProOPOSITION 4. After the zero step of the inductive construction any
interval [uy, uy+1), N = Ny, may be represented as a disjoint union
Yoy -#,, where

ml—l

Vo = {u: h,(0)e ;yo 5"} is non-admissible,

Mo = {u: h,(0)e)4fo} is admissible
and

(18) mes ¥ o/mes .#, < c- A“”""° 10)

and c does not -depend on ky, qo.

2.5. If we choose q, = g, — 2z sufficiently large comparatively to ko, then we
obtain that (mes .#,) (jux—un+1))~" is arbitrarily close to 1.

The main theorem of [5] asserts that if some u is admissible at any step
of the inductive construction, then f, has an absolutely continuous invariant
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measure. The admissible set . #, — ./#,_, constructed at the nth step satisfies
(19) mes ./, >mes.#,_,(1—Ry"""

where t, > 0.

If we choose R, = A} sufficiently large, then choose g, > z, [dy|
~ Ao"°/ , and finally N, > g, then we obtain

ProposiTiON 4. For any & > O there exists No€Z, such that on any
interval [uy, pn+1), N = Ny, the relative measure of parameter values corres-

ponding to f, with absolutely continubus invariant measure is larger than 1 —e¢.

Notice that if some family |f,! is sufficiently close to |f,} then we may
take the constants Ry, 0o, Ny which define the relative measure of stochastic’
behavior for f, in [uy, uv+1] equal respectively to Ro, 0 N, .

Finally, taking into account that the union of [uy, un+1], N = Ny,
constitute a neighborhood (1—46, 1) of 1, we finish the proof of Theorem 2.
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