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We give a survey about problems involving central limit theorems for dynamical systems, i.e.
results ensuring that suitable normalized sums f+foT+ ... +foT" ! converge weakly to the
normal distribution with mean zero and variance 1. In particular, we are interested in properties
of the subspace in L? consisting of those functions for which the central limit theorem holds. On
the other hand, some applications of the central limit theorem are given, which deal with
isomorphisms, Hausdorff measures and statistical analysis.

§ 0. Introduction

Throughout this paper, let (2, &, u, T) denote a measure preserving dynam-
ical system with normalized measure u on the g-algebra & and (not necessa-
rily invertible) p-preserving transformation T. The main object of our discus-
sion will be the central limit theorem: Let f be a square integrable function

(f eL?). We shall denote by S, =5,f= Z fo T, n>1, the partial sums of

£, by E(f) = u(f) = fdu the expectatlon of f and by
oi = E(S})—n*(E(f))?

the variance of S,(n = 1). We shall say that the function f satisfies the central
limit theorem (CLT) if

S,(w)—nE 1 = 1
ﬂ({w €Q: ﬂa_"_(f) < x})—\/—z_n _j'wexp <—§t2>dt

If the process (foT"),>, is independent, f satisfies (0.1) by the classical
central limit theorem. However, this situation is hardly met for functions on
a fixed dynamical system, so that one has to look for different conditions to
ensure the CLT. It is one of the important problems in probability theory to
show the CLT in quite different situations. It turns out that two of these are

(0.1).lim suR = 0.

n—w X€

3 — Banach Center t. 23 [33]
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useful for dynamical systems: the approximation by ergodic martingale
differences and the approximation by weakly dependent processes. In § 1 we
will sketch both methods to an extent which is needed in the present context.
When applied to dynamical systems it will Be clear that the results are of no
interest to probabilists. Indeed, the problem of determining the subspace of
L? of those functions f satisfying the CLT is not a probabilistic question.
Henceforth we also denote by CLT this subspace. In § 2 we discuss a special
feature of this question: when does CLT contain a sufficiently rich class of
functions? Can CLT be empty? The general problem seems to be very hard,
and nothing is known about it.

An isomorphism ¢ between two dynamical systems transforms the
corresponding CLT spaces into each other, but in general it does not follow
that the spaces of continuous functions (or Hélder continuous functions) are
contained in CLT if this is true for one system. Additional properties of the
isomorphism are needed and it follows then that new invariants can be
" formulated. As a motivation for this problem we may think of some analysis
carried out using a certain function f (like pressure) for a dynamical system
whose properties are described by an isomorphism. There are cases (e.g.
Hausdorff measures, statistical analysis of symmetry, mean, median...) when
it has to be verified that f e CLT. This kind of questions will be discussed in
Section 3. In statistical analysis very often one has to use functions in more
than one variable (i.e. f: Q™ — R). The problems we are faced here become
rather technical and it is not possible to explain the results within a
reasonable length. Therefore we can only give a rough idea of it at the end.

The normalizing constants ¢2 in (0.1) may be replaced by any sequence
a, satisfying lim (a,/02) = 1. We shall make use of it frequently without

n—a

explicitly mentioning. Moreover, one might say that f satisifes the CLT if
(0.1) holds where o2 is replaced by some other sequence a,. There are
theorems of this type (e.g. when f has no finite second moment, or the mixing
rate is too bad) but these results do not have any implication to dynamical
systems, so that we are not dealing with this case here.

On the other hand, there are stronger versions of (0.1) which are of
interest for dynamical system, the first one being the functional central limit
theorem (FCLT). Let D([0, 1]) denote the space of all functions h: [0, 1]
— R which are right continuous and have left limits. On D([0, 1]) we
consider the topology of uniform convergence (in general it is necessary to
take a stronger topology but for our purpose it will be sufficient). Given a
function f €L?, consider the random element Z, defined by

0.2) Z,@t) =0, (Spy—[M]E(f)) (O<t<1).

Then f is said to satisfy the FCLT if the random functions Z, converge
weakly to the standard Wiener process W (i.e. the sequence Z, u of measures
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on D ([0, 1]) converge weakly to the Wiener measure, which is carried by
C([0, 1]) = D([0, 1])). Recall that W is a Gaussian process with independent
increments, continuous trajectories and variances EW (t)? =t. If f satisifies
the FCLT, then it also satisfies the CLT. This is immediate observing that
n: D([0, 1]) =R, =n(h) = h(1) is continuous, so that nZ, =g, '(S,—nE(f))
converges weakly to W (1) = nW, and this is equivalent to (0.1), because W (1)
is standard normal. Conversely, if (0.1) holds (0.2) does not hold in general,
but using an additional argument for tightness, (0.2) can be verified from (0.1)
in many cases which are of interest to us.

Weak convergence may be strengthened to almost sure convergence.
Skorohod’s theorem says that if Y, — Y, weakly, then there exist random
variables Y,(n = 0) such that Y, - Y; as. and Y, and Y, have the same
distribution for each n > 0. It does not say that the common distributions of
(Y).>0 and (Y,),»o are the same. This is the content of an almost sure
invariance principle (ASIP). The FCLT is often called the weak invariance
principle.

Let f €L?.-We say that f satisfies an ASIP if there exists a probability
space (@', &, 1), a function f'eL?((2, §, ) and a standard Brownian
motion |B(t): t > 0} defined on € such that the joint distributions of
{foT*: k>0 and {f'oT*: k> 0} are the same and

03) Y f'oT*—nE(f)—B(s?) =0(0,™% as.
k<n

for some A >0, as n =0

or (at least)

(04) Y f'oT*—nE(f)—B(s?) =o0(\/ologlogsl) as. as n-—co.
k<n

It is not hard to see that f satisfies the FCLT if it satisfies the ASIP with

condition (0.3) and if

aifos =k/n(1+o(1)) (O<k<n).

Indeed, {n " '?B(t): 0<t<n} has the same distribution as
(W(): 0<t<1} and n"'2B(k) =6, ' B(6})(1+0(1)) as. Thus, dividing
(0.3). by g, it follows that

o (Y ffoT'—kE(f))—n""?B(k) =0, *(1+0(1)) = 0(1) as.

i<k

(0.4) is of course not sufficient. It turns out that the ASIP with (0.3) holds
only under more restrictive assumptions than the FCLT.

The ASIP with (0.4) implies the different forms of the law of the iterated
logarithm. We say that feL? satisfies the functional law of the iterated
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logarithm (FLIL) if the random functions Y,: [0, 1] = R defined by
Y,(t) = (207 loglogan)"2( 3} foT/—[tn] E(f))

j<[tn)
(0 <t < 1), are relatively compact in D([0, 1]) and its set of limit points is
precisely given by

= (xeC (0, 11: x0 = [%(ds, [#(0)ds < 1}

It then follows that f also satisfies the law of the iterated logarithm (LIL) by
restricting to t =1, ie.

(0.5) lim sup(262logloga?)~'/*(S,—nE(f)) =1 as.

In Section 3 we shall make use of all these generalizations of the CLT. From
a dynamical viewpoint it is not necessary to give the probabilistic back-
ground for these results; what will be said about the CLT in § 1 is sufficient
to describe the general approach to these questions. The same kind of

t

definitions can be given for flows replacing S, by j' foTdr in (0;1)—{0.5).
0

Probabilistically, the approach in this case will be the same again, so that a
discussion in § 1 is also unnecessary.

This survey paper is based on a lecture given during the Semester on
Dynamical Systems and Ergodic Theory in 86 at Warsaw. I would like to
thank the organizers of the Semester for their hospitality during my stay in
Warsaw. I am also indebted to R. Bradley and the referee for helpful
discussions and valuable comments.

§ 1. Some results on the central limit theorem problem
in probability theory

For the better understanding of many results on the CLT for dynamical
systems it seems to be worthwile to go into some probabilistic details.
Weakening the independence assumption in the classical CLT is a subject of
research for many years. Quite different approaches can be found in litera-
ture. We are going to choose two out of them which turn out to be of
particular interest when applied to dynamical systems. Certainly, we are only
able to sketch the main features and results, others might become important
for dynamical systems in the future. We restrict our discussion to the
question concerning the CLT, though results on a.s. invariance principles are
needed later on. However, the step in understanding the more advanced
theorems is not so big (but the proofs are much more complicated).

In this section, let (X,),>, be a (strictly) stationary process with E(X,)
= [Xodpu =0. We define S, = Xo+ ... +X,_; and o7 = E(S?) = [S2du. We
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also shall use ||X,|[, for the p-norm in L°. As before we shall say that
(X )n>o satisfies the CLT, if S,/6, converges weakly to the standard normal
distribution. Similarly, (X,),>o satisfies the FCLT if the random functions ¢
-0, ! iy converge weakly in D ([0, 1]) to the Wiener process. We note that
(Xa=o always can be represented by a transformation T, i.e.

X,=X,0T" (n>0).

Thus the results of this section immediately apply to functions defined on a
dynamical system.

1.1. Approximation by ergodic martingale differences

The classical CLT for stationary ergodic martingale difference sequences
applies to dynamical systems, but in general it is hard to check the
martingale property. It turns out, however, that some processes (on dynam-
ical systems) can be approximated by ergodic martingale differences and this
can be verified for concrete examples. This approach will be discussed first.

A process (X,),>0 is called a martingale difference sequence with respect
to the filtration {§,: n> 0} of g-algebras &, = & if for each n>0

() &< &nsers
(2) X, is &,-measurable and X,eL!;

(3) The conditional expectation of X,., given @, vanishes, i.e.
E(X,+1] &) =0 as.

The classical CLT for ergodic martingale difference sequences is this (see
Billingsley 1968, Ibragimov 1963).

THeEOREM 1.1.1. Let (X,),>o be a stationary, ergodic martingale difference
sequence with respect to the filtration {§,: n>0}. If Xo€L? then o}
= n||Xoll; and the CLT holds.

A short proof of this can be found in Holewijn, Meilijson (1983). Once
having established Theorem 1.1.1, we obtain the CLT for stationary proces-
ses having a “good” approximation by ergodic martingale differences. This
observation was first made by Gordin (1969), and this direction was investi-
gated by him and others in subsequent years. The book of Hall and Heyde
(1980) gives a good idea of it up to that time. Recently, Dtirr and Goldstein
(1985) among others took up the subject again. At this point I should make
a comment on Corollary 5.3 and the proof of Theorem 5.4 in the book of
Hall and Heyde (1980). Both do not seem to be correct. For example the
corollary makes this statement:

If for some 6 =0 || Xollz45 <00, n7'62 =262>0 and if (X,),20 iS
. 1+6 -~
strongly mixing with mixing coefficients o (n) satisfying ) «(n)2+4 < oo, then

then the CLT holds. (For the definition of strong mixing see section 1.2, (1.2.2).)
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Given the stationary sequence (X,)mso, We define sub-c-algebras ;i
=0(X,: k<u<) for 0<k <!< o0, and consider the coefficients

|u(A N B)— u(A) u(B)|
: ’ 00+m k>0
(#(A))s(#(B))t Ac s, Be & > }

(1.21) a0 = sup{

_ for 0<s,t<1 and n>1.
The process (X,)m>0 is called:
(1.2.2)  strong mixing (a-mixing), if lim agq(n) = 0;

n— o

in this case we shall write a(n) = g o(n); this notion is due to Rosenblatt
(1956); '

(1.2.3)  uniform mixing (@-mixing), if lim a, o(n) = 0;

in this case we put (p(n)' = 0ty o(n); this notion is due to Ibragimov (1959);
(1.24)  reversed uniform mixing, if lim oo, (n) = 0.

We put ¢*(n) = ay,(n); this notion has been first used by Halverson and
Wise (1980) (to my knowledge) and later by Denker, Keller (1983) and

Peligrad (1983);
(1.2.5)  yY-mixing, if lima, ,(n)=0.

n-—a

We put ¢ (n) =a; , (n).
It is immediately clear that for t <t’, s<s' and all n

(1.2.6) %,s () < a5 (n);

consequently, every y-mixing sequence is ¢- and ¢*-mixing and every ¢- or
¢*-mixing sequence is a-mixing as well. But all four notions (1.2.2)1.2.5) are
not equivalent. Counterexamples are given in Bradley (1982) and the litera-
ture given there.

Another type of weak dependence is defined by the correlation coeffi-
cient. Denote by L2(</) the space of square integrable, ./-measurable
functions. Setting

(1.2.7

o) = sup{ (/@) —u(f) @)

If=uNNlg—n@l’
we shall say that (X,)n>0 is @-mixing if lim g(n) = 0.

The correlation coefficient was studied as early as 1935 by Hirschfeld,
the notion of g¢-mixing is due to Kolmogorov and was first studied by

Rozanov (1960, 1985).

feLl’(§), g eL*(FS ), k > 0},
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Due to a theorem of Bradley (1983) one knows that ¢(n) — 0 if and only
if ay/5,1/2(n) 0, and Theorem 4.1 (ii) in Bradley, Bryc (1985) even implies
that ¢(n) =0 if and only if a, , _,(n) =0 for any 0 <t < 1. In the same paper
it is also shown that for t,s > 0, s+t <1 a(n) =0 if and only if a, (n) =0.
Thus in the lower triangle {(z, s): 0<s, ¢t <1, t+s < 1} there are only four
equivalence classes of dependence notions: a-, ¢-, ¢- and ¢*-mixing. For s
+t > 1 the situation is not at all as nice (Bradley, Bryc, Janson 1985),
fortunately these notions, except for s =t = 1, do not play any role in our
further discussion.

There is another dependence notion to be discussed here. (Certainly a
few more are known in probability theory, but they are of minor interest.)

Define the coefficient of absolute regularity (B-mixing coefficient) by

(1.2.8) B(n) = [sup {|u(B| F)—u(B)l; B€ Fn k > 0} du.
The process (X,),>0 is called absolutely regular if lim (n) = 0. This defini-

tion goes back to Volkonskii, Rozanov (1959). This mixing concept is not
equivalent to any of the «, (-mixing conditions. (Bradley, Bryc, Janson 1985,
Theorem 3.1) On the other hand, it is immediately seen that ¢- (or ¢*-)
mixing implies absolute regularity and the latter implies strong mixing. From
a dynamical viewpoint absolute regularity for countable state processes is
equivalent to the weak Bernoulli property in the following sense. Let P
=P,,P,,..) be a finite or countable partition, P
=Pv T 'P...v T "' P For given n > 1 let w(n) be the infimum over all
¢ = 0 with the following property: For each k, [ > 1 there exists a collection
€ of atoms of P* such that

(1.292) u(U 4)>1—¢

Ae€

and for all A €€ one has

(1.2.9b) Y |u(BlA)—u(B) <.

BeT ~n—kpl

If w(n) >0, as n = 00, P is called a weak Bernoulli process (cf. Ornstein 1974)
and wo(n) is its rate. It is not hard to see that w(n) = 28 (n).

The situation for very weak Bernoulli partitions P is in general un-
known. Denote by u( |4) the conditional measure given 4 and by d(v, v)
the Wasserstein distance of the two measures v and v'. Let w* (n) denote the
infimum over all ¢ > 0 with the following property:

For each k > 0, there exists a collection € of atoms in P*, such that

(1.2.10a) p(U 4)>1-¢

Ae€
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and for every Ae€
(1.2.10b) d(pa( 1 A4), p,) <e

where u,, = u|T~*~! P denotes the restriction of u on the o-field generated
by T°*"1p

If w*(n) -0 then P is called very weak Bernoulli (cf. Ornstein 1974).
Generalizations of this notion to general stationary processes are due to
Gray, Neuhoff and Shields (1975), Eberlein (1983) and Dehling, Denker,
Philipp (1984).

Certainly weak Bernoulli implies very weak Bernoulli. On the other
hand, if liminfnw*(n) = 0, then the partitions {T~'P: i > 0} are independ-
ent (i.e. Yy(n) =0 for all n > 1) (Dehling, Denker, Philipp 1984). It is also

1
shown in this paper that mixing Markov shifts have the rate w*(n) = 0 (—)
n

1
and if w*(n) = 0(;), then B(n) =0, provided P is a finite partition. In

general, the very weak Bernoulli property need not imply even strong mixing
(Bradley 1984).

Finally, to complete this discussion of mixing concepts, let us mention
that strong mixing implies the K-property. It seems to be unknown whether
a transformation admitting a strong mixing generator (any rate) is Bernoulli
(see Martin 1974).

The needs of ergodic theory concerning the CLT problem are covered
by the monograph of Philipp and Stout (1975), where the martingale
approach discussed in Section 1.1 is used to prove various results for mixing
processes. Also the book and articles of Ibragimov and Linnik (1971),
Iosifescu, Teodorescu (1969), Iosifescu (1980) or Ibragimov and Rozanov
(1978) may serve as a general reference. Nevertheless it seems to be necessary
to sketch the border line’ at which the CLT fails to hold. What will be said
below also holds in most cases for weak and a.s. invariance principles and
the law of the iterated logarithm. In order to keep this survey within a
reasonable length we will omit these generalization, though we will need
some of them in later sections.

The CLT problem for weakly dependent stationary sequences can be
stated as follows: Under which mixing rates and moment condition does the
CLT hold?

The first theorems are due to Rosenblatt (1956) and Ibraglmov (1959,
1962, 1975). (Sinai’s theorém (1960) will be discussed in § 2.

THeEOREM 1.2.1 (Ibragimov). Let (X,),>o be a stationary process
(@ If Ya(n) <o and ||Xo||°°<oo then o —||X0||2+2z E(X, X))
exists and if 6* >0 then (X,,),,>0 satzsﬁes the CLT with o? = n02(1+o(1))
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(b) The assertion of (a) remains true if Y a(n)?**% < 0o and || Xo|l5+5 < o©
for some 6 > 0.

© If Yo(@2) <0, 62 >0 and ||Xol|> <o then (X,),>o satisfies the
CLT. Moreover (X,),>o has a continuous spectral density f and o2
= 2nf (0)n(1+o0(1)).

(d) If o(n) =0, 62 > 00 and || X|lz+5 < 0 for some & > 0, then (X,),>0
satisfies the CLT.

The functional form of assertions (a) and (b) have been obtained by
Davydov (1968) and Oodaira, Yoshihara (1972). Slight generalizations are
due to Herrndorf (1983). The conditions in Theorem 1.2.1 (a) and (b) are
nearly sharp. Davydov (1969, 1973) showed that the imposed rate on a(n)

2+35
essentially cannot be weakened: If for some ¢ >0 a(n) =0(n~ 3 "~ ?) (resp.
a(n) = 0(n~179), then there exists a stationary strongly mixing sequence (X,)
with a-mixing coefficients < &(n) and with u(|X;|?>*% < oo such that ¢2 - ©
and the CLT does not hold: The assumption ¢% > 0 in (a){(c) means, of
course, that X, is no coboundary. If one needs to avoid this assumption in
(a) or (b), just assuming a2 — o, it is necessary to strengthen the mixing rates
to Y na(n) < oo (resp. ) na(n)”?*% < co). This has been shown by Bradley
(1985). He also showed that these conditions are almost optimal.

The statement in (c) and (d) hold in particular in the ¢-mixing case. In
(c) the condition 62 — oo can be replaced by 62 > 0 (Bradley 1981, Peligrad
1982). Examples showing that (c) and (d) are almost sharp are known
(Bradley 1980) but not in the ¢-mixing case. In fact Ibragimov conjectured
that ¢(n) =0, 62 >0 and || X,|l, <o suffice to ensure the CLT. (The
functional form of this conjecture has been posed by losifescu.) Recently,
some progress has been made towards a solution, proving equivalent condi-
tions.

Tueorem 1.2.2 (Denker (1986), Dehling, Denker, Philipp (1986)). Let
(X )nso be a strongly mixing stationary sequence of random variables such that
I Xoll, < oo and a2 — o0.

Then the following are equivalent

(1) (X,)u>o0 satisfies the CLT;

(2) {S2/6%: n> 0} is uniformly integrable;

(3) limsupa,/|IS,ll; < (n/2)"/%.

Condition (3) can be understood from an interesting characterization of
normality. Let Y have an infinitely divisible distribution and assume that Y
is symmetric. Then ||Y]|,/||Y]l; = (n/2)"/* and equality holds if and only if Y is

normal.
In the uniform mixing case Peligrad (1985) obtained
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THEOREM 1.2.3. Let (X,),>0 be a uniformly mixing stationary sequence of
random variables such that ¢ -0, ¢(1) <1 and ||Xo|l, < oo. Then the
following are equivalent

(1) (X,) satisfies the FCLT;
(2) (X,) satisfies the Lindeberg condition, i.e.

lim—ni [ X3du=0 for every ¢ >0.

n—ow Oy {|X0|'>ea,,}
In particular, a uniformly mixing sequence satisfies the CLT if liminfa2/n > 0.

Compared to the results on the CLT in Section 1.1 it should be noted
that parts of Theorem 1.2.1 can be proved by martingale approximation
(Theorem 1.1.2), but not all of it. This is essentially true, if the mixing rate is
fast enough.

In case of a very weak Bernoulli prpcess the CLT is known only in a
very special case, due to Eberlein (1983).

THEOREM 1.2.4. Suppose that (X,),> o is a very weak Bernoulli process with
a compact state space and at a rate of O(n~?!). If the exceptional sets in the
definition of very weak Bernoulliness are empty, then &% =|X,|?
+2 Y E(X,X,) exists and if 62 >0 the CLT holds with 6% = no?(1+0(1)).

21
(In fact it is shown that even the FCLT and an a.s. invariance principle
hold.) :

D. Fiebig (1988) recently showed that the rate O(1/n) already implies
that the exceptional set is empty.

It is certainly an interesting problem to prove a CLT for very weak
Bernoulli processes in general, in order to apply it to dynamical systems.
One way ‘might be to recode finitarily the vwB process into an absolutely
regular one such that the code has fmite expected code length and such that
the B-mixing coefficients are decreasing fast enough.

Finally, we need to discuss the class of functions for which one can
obtain the CLT out of the mixing rates. The existence of

(1.2.11) 6® =|IXol*+2 ) E(XoX) = [f?du+2 ) [f-(foT)du

t21 21
if Xo=fand X, = foT*(t > 1) turns out to be essential. Certainly 62 does
not always exist, but Theorem 1.2.1(a), (b) says that o2 exist if ) a(n) < oo
(resp. Y a(m¥?*? < o0). In the g-mixing case this is true if ) o(n) < oo and
| X,ll?> < o0, since

(12.12) E(XoX) < 001Xl

and since ¢(n) < @(n)'%, o(n) < *(M'/* and o(n) < max (@(n), p*(n) we
deduce also the necessary condition in the uniform mixing case. (For
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completeness let us note that if ||X||2+¢s < oo, then by Davydov’s lemma
(Davydov 1969)

(1.2.13) E(XoX) <a()**°||XollZ+5.)

Now let fel?, {fdu = 0. In the o-mixing case (strong mixing is similar) let
us assume that

(1.2.14) Y [E(f-E(fI §))*]V? < .

nz1

Using (1.2.12), it is not hard to show that

E(f-(foT)=0 ((e ([g])+w<f-s<f| 3‘5‘))’)“2)'” ”2)

so that o2 in 1.2.11 still exists for (f0T"),s,. The same holds true with f
replaced by f—E(f| &7), so that

lim limsupn™'/2|| Z (foT*—E(fI &) oTY|.=0.

m-—@® n—awo
These two basic observations together with the CLT for each function
E(f| &3) permit to prove the following theorem (cf. Ibragimov, Linnik 1971).

THeOREM 1.2.5. (a) Let (X,),>0 be @-mixing satisfying 2 o(n) < oo. Assume
that f€L? satisfies [fdu=0 and (1 2.14). Then o2 in (1.2.11) exists and if
02 >0 the CLT holds for f with 6% = ne*(1+o0(1)).

(b) Let (X,),>0 be strongly mixing satisfying Y a(n)***% < oo for some 6
< 0. Assume that f € L**° satisfies | fdu =0 and

2 If=E(f] Fl2+s < 0.
n21 -
Then o in (1.2.11) exists and f satisfies the CLT with o2 = ne*(1+o0(1)) if
62> 0.

This theorem permits to obtain CLT for large classes of functions (cf.
the following section). In case of a.s. invariance principles (or FCLT) the
reader is referred to Philipp and Stout (1975). Concluding this section we
should mention investigations on the CLT for subadditive processes, initiated
by Ishitani in 1977. Sufficiently strong results are derived by Wacker (1983),
including ASIP. The mixing concepts for these processes can be easily
adapted from the previous definitions observing that the time delay plays the
important role. Using an additional approximation by a stationary process
Wacker obtained the following result. '

TueoreM 1.2.6. Let {X,,: m=>n= 0} be a subadditive strongly mixing
process such that h(n) =n"'(EX},~(EX,,)?) is a slowly varying function.
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Assume that there exists a stationary sequence |Y,: n> 1} such that ||X,,
— z Y||; = o((nh(m)"/?). If the sequence {(nh(n))™'(Xon,—EXon)*: n>0) is
umformly integrable, then {X,,) satisfies the CLT, i.e. for any x€R

tim p((nh(n)™Y2(Xo,,— EXo,) < X) in exp(—1t3/2)dt.

1
n—awo ’ ' N —\/2_1'['—@

§ 2. Central limit theorems for some dynamical systems

From a probabilistic point of view the important mixing conditions are
uniform, correlation and strong mixing. This was discussed in some detail in
the last section. From a dynamic viewpoint, however, y-mixing and very
weak Bernoulliness play the essential role. Thus CLT’s for ¢- and a-mixing
processes apply in these cases (provided the mixing rates are fast enough).
This will be one of the main ideas of this section.

2.1. The CLT for geodesic flows

The first (non-trivial) CLT for a dynamical system was proved by Sinai in
1960 for geodesic flows on manifolds of constant negative curvature. Later
proofs of CLT’s also use the essential ideas of Sinai’s approach (1960, 1962)
which is based on the K-property and the fundamental approach of Rosen-
blatt (1956, see Section 1).

Let (X,: t €R) be a continuous time, (strictly) stationary process and put
& =0(X,: s<u<t) as in Section 1.

DeriniTioN 2.1.1. The process (X,: teR) is called locally Rosenblatt
mixing if for any & >0 there exist t >0, an integer n and a partition
{A¢, Ay, ..., A,} of the probability space such that each 4; is F° -
measurable, P(4,) <¢ and for each i=1,...,n

(2.1.1)  sup {|u(B N C|A4)—u(B|4) p(ClA): Be F*,, Ce F°} <e.

We note that this definition is ‘weaker than strong mixing. (It reduces to
strong mixing if n and A4,, ..., A, do not depend on ¢.) If the process (X)) is
mixing (ergodic theoretic sense) and locally’ Rosenblatt mixing, then it is
regular (ie. a K-flow): () &', is trivial. It does not imply that (X is

t>0

regular in the other time direction, i.e. () &> trivial. This was noted by
t>0

Krengel (1971) (and also by Sinai). However, if (X,) is also regular in the
forward time direction then it is strong mixing.
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THEOREM 2.1.2 (Sinai, 1962). Let (X,: teR) be a (strictly) stationary,
mixing and locally Rosenblatt mixing' process with

(Xodu=0 and o?=[[{X,dt]*dy—>c0 as T —>0.
0

Then (X,) satisfies the CLT

T 1 x u2
lim [su X, dt <x /a_,— exp——du{=0
fim jupu([Xdt <x/a)=—= | exp=3

for some sequence a, —» o0 (1t — ) provided (X,) satisfies the Lindeberg
condition: For any ¢ > O there exists a constant N = N (¢) such that

1 T
(2.1.2) limsup— | ([ X.dt)dp <e.

oo O 1{0Xdt| >Naz ) O

Now let (T;: t eR) denote a geodesic flow on a manifold of constant
negative curvature. Using the previous theorem, Sinai (1960) obtained

THEOREM 2.1.3. The space CLT contains all functions f having the
following properties: ||f|lo < 0, (2.1.2), limt~!'6¢2 > 0 and:
t—a
there exist numbers a, €,, €,, ¢; >0 and c, > 0 such that for all a (with
respect to the metric d on the space of linear elements)

yd(x,y)<a 0 al

e13u(] sw_ [0 GO~ TN > b )<t
llog" !al. log

Condition (2.1.3) is certainly satisfied for continuous functions with modulus
of continuity 1/]log!*¢a| and also by certain indicator functions. In the case
of dimension 2 Sinai’s paper (1960) contains conditions (similar to the
functions of mixing processes) to ensure (2.1.2), i.e. essentially thé CLT in the
spirit of Theorem 1.2.5.

The method of proof for Theorem 2.1.3 was developed by Bunimovich
(1974) to show the CLT for a class of billiards. Under certain conditions
billiards in a domain Q < R? are at least K, so that the above method seems
to be appropriate. These conditions are the following (see Bunimovich 1973
for details):

(2.1.4)  the scattering components of its boundary 0Q intersect transversally
(2.1.5) the curvature of each focusing component I'; (1 <i > ) is constant
(21.6) circles |0, > I';} do not intersect each other,

(2.1.7)  the arc O, —T; is contained in Q (1 <i<)).
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THEOREM 2.1.4 (Bunimovich 1974). If (T;: t €R) denotes the billiard flow
in a domain Q satisfying (2.4)2.7), then CLT contains all functions f satisfving
Ifllo <0, imt~'6? >0, (2.1.2) and (2.1.3), where now x and y belong to the

t—ao
same element of the K-partition for (T) and where d denotes the metric on the
elements of the partition induced by the metric on M.

Sinar’s result has been extended by Ratner (1973) to non-constant
curvature. She used a representation of the flow as a suspension over a
Gibbs measure (cf. Sinai 1972).

Let 2 denote a (one-or two-sided) topologically mixing subshift of finite
type over the alphabet |1, . Recall that a Gibbs measure u on X is
speaﬁed by a constant PeR and a function ¢ eC(2) satlsfymg

var, (@) = sup |l (x) = ()|: x; =y; for |i| <k} < Co*
(@« <1, C » 0). The condition

.u([a07 a13 REE} an—l])
exp(—nP+S,0(y)

for all points y in'the cylinder set [aq, ..., a,_,] = 2 determines pu uniquely
(cf. Bowen, 1975). Here C, and C, denote two constants. It is known that the
process X,: £ —{1, ..., a} defined by X,((xcz) = X, (n€Z) is Y-mixing with
coefficients  (n) decreasing exponentially fast (cf. Bowen, 1975). Thus we
have an immediate corollary to Theorem 1.2.5.

(2.18) 0<C, <

<C, <

THeEOREM 2.1.5.

CLT > {feLl*(w): Y (E(/—E(f1 &))" <©i.
nz0

We should note at this point that the definition of a Gibbs measure in (2.1.8)
also makes sense on other spaces than subshifts of finite type. In this case,
and even if the system is mixing, the coordinate process for a Gibbs measure
need not to be strongly mixing, to that in this case it is not clear whether
Hoélder-continuous functions satisfy the CLT (which holds in the situation of
Theorem 2.1.5). Certainly, in the situation of the previous theorem one also
has invariance principles and laws of the iterated logarithm (Philipp, Stout
1975, p. 81, remark). This result can be used in a randomized version to
prove CLT’s for flows under a function and with base (X, p). This gives
Ratner’s result and the extension by Denker, Philipp (1984).

Let (2, u) be as before and let [I: ¥ =R, be a Holder-continuous
function with inf/(x) > 0.

xeX
Let Q= {(x,s): xeX0<s <Hlx)}, dv=({lduy)”'ds xdu and-let (T),cg
denote the corresponding flow under a function. This flow serves as a model
for smooth invariant measures for transitive C2-Anosov flows (even Axiom A
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flows) including geodesic flows on manifolds of negative curvature relative to
the invariant Riemannian volume.

THeorReM 2.1.6 (Denker, Philipp 1984). Let f be a measurable function on
Q with | fdu =0 and ||fll,+5 < o for some 0 <6 < 1. Suppose that

(2.19) Hf=E(f17ll24+s = 0(n™2777)

where 7y, denotes the a-algebra generated by the sets of the form {(x, s): 0 <s
< I(x), x€A} where A c X is a centered cylinder of length 2n+ 1. Then

6? = limt~ !¢}

t—w

exists and if a*> > 0 then there exists a standard Brownian motion B(u, x)
(x€Z, u > 0) defined on the probability space (X, u) such that

2110 sup []£(Ti(x, 9)di—B(a*u, 9] = 0w~

0Ss<l(x) 0
for u aa. xeX and for some 0 < A < %388

Unfortunately, (2.1.10) does not imply the CLT for f, however the LIL.
In order to obtain the CLT for f also, (2.1.10) can be replaced by the same
assertion when B is defined on (2, u*) where

du* = ([ldp)~" ldp.

This means that B is no longer Gaussian with respect to u but with respect
to u*.

In fact, considering B as a function on Q constant on fibers, for 1R we
have

@111 v({(x, weQ: jf T,(x, w)dt < 6 /T 4})
({(x u) eQ: j'f(T(x u))d a\/_l ij T (x, u)d
B(@*T, %) < T%‘)
+v({(x, weo: jf T(x w)dt <o /T 1; |jf(T(x u))dt

—B(o? T, x)| > TT})
<v(i(x, WeR: B@*T, <o /TAL+T ¥267117Y))

+v({(x, weQ: I}f(T:(x, u))dt—B(a? T, x)| > le;l}).
0
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The second term tends to zero as T — oo by (2.1.10). Since B(c*T, ") is
normal with mean zero variance o2 T with respect to u*, the first term equals
I(x)
(fldp)~1 { | dtu(dx)

(xeZ:B(@2T. ) <o TA(1+T~M2g=1;-1), 0

=#*({er: B(O'ZT, X)O'ﬁl(l-i-T_)'/zO’—ll_'l)})

1 AQ+T—AH2,-13- 1 2
= | exp (—E)dv.

Letting T — oo and using a similar estimate to obtain a lower bound for
(2.1.11), the CLT follows.

Using the existence of Markov partitions for Axiom A diffecomorphisms,
it follows immediately from Theorem 2.1.5 that CLT contains. all Holder-
continuous functions. Clearly they also satisfy the ASIP with remainder"
n'/2=4 (1 > 0). It is also immediately clear that the correlation function for
two Holder-continuous functions decreases exponentially fast. This is not
true for Axiom A flows (Ruelle, 1983). Pollicott (1985) has shown that in
order to have an exponential decay it is necessary that the Zeta function of
the flow has an analytic extension to a domain {zeC: Re(z) > P(F)—¢} for
some & >0, where P(F) denotes the pressure of the Hélder-continuous
function and where F defines the Gibbs measure (equilibrium for P(F)).
Condition (2.1.9) in Theorem 2.1.6 does not hold for all Holder-continuous
functions, since it is necessary for (2.1.9) to hold that the function f is
constant for a while in the flow direction. Nevertheless the assertion of
Theorem 2.1.6 holds for all Holder-continuous functions g: X — R. Indeed,
the function f defined by

I(x)
fx,0=1x)"" [glx,)dt (xeX, 0<t>1(x)
0

satisfies the assﬁmptions of 2.6, and hence satisfies the ASIP. Consequently it
is sufficient to show that

}g(?;(x, u))dt—}f(’l;(x, w)dt =0(1) as T oo for all (x,u)eQ. .
V] 0

For fixed '(x, u)eQ and T > 0 write

T= "il 1(S*(x))—u+1

k=0

where 0 <t < I(S"(x)) and where S: Z —Z denotes the shift transformation.

4 — Banach Center t. 23
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Then
T n—1 i(Sk(x))
[9(T(x,w)dt =Y [ g(S*(x),t)dt
0 k=1 0

I(x)

+ [ g(x, t)dt+}g(S"(x), t)dt

0

n—1 KSk(x))

= | f(8%(x), t)dt+0(1)

2.2. The CLT for maps of the interval

In the previous section we discussed several examples where the y-mixing
property has been established and hence the CLT holds using the results of
§ 1 about uniform mixing sequence (or at least strong mixing). For expanding
maps on the interval one can only use the weak Bernoulli property in
general, thus the strong mixing results of § 1 apply.

Neglecting some results in probabilistic number theory the first results
on the CLT question for expanding piecewise C?-mappings on the unit
interval were established by Ishitani (1976) and more generally by Wong
(1979). Wong considered transformations T: [0, 1] =[O0, 1] having the fol-
lowing property: There exists a finite partition of [0, 1], R = {(0, a,),
(ay, ay), ..., (a,_1, 1)} such that for each i T, = T|,,_,.s) can be extended to
the closed interval [a;_,,4;] as a C2-function. Moreover, inf{|T’(x):
x€(@_,a), 1<i<r}>1

If T denotes such a transformation there exists an invariant absolutely
continuous probability u on [0, 1] by the result of Lasota and Yorke (1973).
Moreover, if p is weak mixing then it is unique, and Bowen (1977) showed
that in the latter case the partition R is a weak Bernoulli generator. Using
this result, Wong showed that for all Hélder-continuous functions f: [0, 1]
— R for which ¢2/n =-¢? >0 the CLT holds provided S, f satisfies a Lin-
deberg condition (similar to Sinai’s and Bunimovich’s result). Wong’s CLT is
of the type of Theorem 1.2.2, and stronger results are immediate from § 1.

Boyarsky and Scarowsky (1979) have a CLT in their paper for a
subclass of piecewise C2-mappings. They observed that the results of § 1 can
be applied, but incidently their Theorem 2 does not seem to be completely
correct. Other special cases of maps of the interval are treated by Jablonski,
Malczak (1983).
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These results are all contained in the Hofbauer-Keller theorem.
A function f: [0, 1] =R is said to be of bounded p-variation if

(2.2.1) sup _Z |f (@) =S (a;-1)IP <0

where the supremum extends over all finite collections 0 < a, <a; <...
<a,< 1.

THEoREM 2.2.1 (Hofbauer, Keller, 1983). Assume that the expanding,
piecewise C> map T on [0, 1] is weakly mixing. Let f: [0, 1] 2R be a
function of bounded p-variation for some p>1 and |fdu=0. Then

o’ =|f*du+2 i [f(foTYdu
k=1

converges absolutely. If 6% > 0 then we have an ASIP with a Brownian motion
B(t) such that

6™ 'Sy —B@) =0("*"% as.
for some 1 > 0.

In the non-weak mixing case Ishitani (1986) has proved CLT for
functions f with bounded variation together with convergence rates in this
theorem up to the error term O(n~ ') which is best possible. It turns out
that if u is not weak mixing one obtains a convergence theorem in which the
limiting distribution is a mixture of normal distributions. It is also worth
mentioning that T-invariance of u is not necessary for the CLT to hold.
Therefore one can replace the measures u by absolutely continuous prob-
abilities.

The essential part in the proof of Theorem 2.2.1 (and assumed by
Ishitani and others) is the estimate

(2.2.2) var(foT") < avarf+B|flly (f €L, (dx))

for some n>1, 0 <a <1 and B > 0. Special transformations with this
property are f-transformations (the CLT was obtained by Ishitani 1976),
unimodal linear transformations, Wilkinson’s piecewise linear transform-
ations, continued fraction, piecewise convex mappings (defined in Lasota,
Yorke (1982). CLT is due to Jabloniski, Malczak (1983)).

An elegant presentation and an extension of the Hofbauer, Keller result
can be found in Rychlik (1983). The definition of the expanding, piecewise
C?-map can be extended to a countable number of intervals if one assumes
in addition that only a finite number of intervals appear as images of the
partition-intervals and if 1/|T’| is of bounded variation. The paper of
Jabtonski, Malczak (1985) deals also with this type of extension as well as
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that of Rousseau-Egele (1983). He obtained a CLT with convergence rate
O(n~'?) and a local limit theorem. It is remarkable that his method of proof
is different. The idea goes back to Doeblin and Fortet and was further
developed in a recent paper by Guivarc’h and Hardy (1986). They show the
convergence of the Fourier transforms of S, f by applying the theorem of
C. Ionescu-Tulcea and Marinescu directly to the operators P,g(x)
= P(e*g)(x) = [e***?g(y) P(x, dy), where ¢ is a fixed function and P a
transition kernel (this is the more general set up of Guivarc’h and Hardy).

At this point it should be noted that Keller (1980) used Gordin’s
approach to give a satisfactory description of functions satisfying the CLT for
expanding maps of the interval. Gordin remarked that it is sufficient to show
that ‘

T [[IT o T* f]2dm]"? < oo
k=0

in order to have the CLT for S, f. Then CLT contains all functions f € L2,
{fdp =0 such that there exist functions f, of bounded variation satisfying

Y. (JIf=fl?d4)? <0 and

nz1

lim var(f)(1+h)~"=0 (for all h > 0).

n> o

The essential condition in these theorems is the bounded variation of 1/|T’|
which ensures (2.2.2). Keller (1985) extended Theorem 2.2.1 to transforma-
tions T for which 1/|T’| is of bounded p-variation (see (2.2.1)), proving (2.2.2)
for p-variations. ,

There are still important classes of transformations of the interval not
covered by the previous discussion. Misiurewicz (1981) showed the existence
of absolutely continuous T*-invariant measures (and exactness) of certain
maps T of non-positive Schwarzian derivative. Ziemian (1985) proved an
ASIP for the maps using the basic idea of Hofbauer and Keller (1983). The
assumptions on T are as follows: T is continuous and there exists a finite set
A < [0, 1] containing 0 and 1 such that T is monotone on each of the
subintervals of A° and such that T/A° has the following 6 properties:

(Ml) Tis C3;

(M2) T=#0:

(M3) (T"/T'—=3(T"/T")?*) < 0 (non-positive Schwarzian derivative);

(M4) if T?x = x then [(T?) (x)| > 1;

(M5)  there exists a neighbourhood U of A4 such that for all n > 0 and
acA T'(a)eA or T"(a)¢ U (Vm = n);
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(M6) For every aeA there exist a neighbourhood U,, constants
o, w,0>0 and u = 0 such for all xeU,

@ alx—a <|T' (0 < o|x—a*";

(b) IT"(x)| < dfx—al*~".

THEOREM 2.2.2 (Ziemian 1985). The assertion of Theorem 2.2.1 remains
valid for T* where T satisfies the above conditions and where k is such that T*
is exact with respect to the absolutely continuous invariant measure.

Concluding this section, we pose a problem. Ledrappier (1981) has
shown that certain differentiable maps on the unit interval are weakly
Bernoulli. The argument does not seem to permit to compute mixing rates.
So, it is an interesting problem to show CLT’s in this case.

2.3. The CLT for general dynamical systems

In this section we consider a general dynamical system and we want to get
some insight which functions satisfy the CLT. The only question to which we
can make a contribution is to show that CLT # @ and that CLT is dense if
T is ergodic. If T has positive entropy then clearly, CLT # @ since there are
Bernoulli factors. So the interesting case is entropy zero.

Among the entropy zero transformations let us first consider a Gaussian
system. The first one has been found by Girsanov (1958). Since linear images
of n-dimensional normal measures are again normal we clearly have a CLT if
the variance do not vanish on a subsequence (a non-typical case). Maruyama
(1967) gave a weak mixing entropy zero Gaussian system and using this
result produced (1975) an example of such a system with sufficiently many
functions satisfying the CLT. The idea is to use a kind of multiple stochastic
integral to produce these functions (like for self-similar processes).

Conze raised the question whether an irrational rotation has a function
satisfying the CLT. Since the sequence (S, f} is relatively compact in L? (for
f€L?), it seems to be surprising that the answer is positive.

THeoreM 2.3.1 (Burton, Denker, 1987). Let T be an irrational rotation of
S'. Then CLT is dense in L>.

This result cannot be a corollary to the limit theorems in § 1 because of
the relative compactness property. If turns out, however, that it can be
proved using the Salem-Zagmund (1947) CLT for lacunary sequences and a
fine choice of the growth of the variance in this theorem. The result of Salem
and Zygmund can be proved using variants of the limit theorems in § 1 (non-
stationary versions). It says the following (this is not the strongest form,
which has been given by Erdds, but it suffices here): Let n, € N be a lacunary
sequence satisfying n4, >3m (k=1,2,..). Let C,, D,eR and af = C}

+D;. If A2 =% C}+D?} -0 and a,/A,, —0 then (with respect to Lebes-
j=1
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gue measure L)

1
A,

(x €[0, 1]: Z C, cos (2nn, x)+ D, sin(2nn, x) < u )

1 ( tz)

- | exp| ——=Jdt as m —> 0.
A /211’ — 2

Having established this result, one obtains the idea to prove Theorem 2.9 in

general.

THEOREM 2.3.2 (Burton, Denker, 1987). Let T be an aperiodic transform-
ation. Then CLT s @. If T is in addition ergodic, then CLT is dense in L>.

The first example of a non-Gaussian, entropy zero transformation, I
believe, has been known to Rothstein (1984) (oral communication to Burton).
He has a construction of a class of Vershik processes with CLT # Q.

The density statement follows from the fact that coboundaries are
dense in L? in the ergodic case (see Gordin, LifSic (1978) or Bhattacharya
(1982)). By a construction due to Ornstein (oral communication by A. Katok)
one can show that every f € L2, { fdp = 0 is cohomologuous to a continuous
function (if the dynamical system is compact, metric and T continuous). It is
not known whether one can always obtain a Hdlder-continuous function in
CLT.

It remains to determine CLT, especially for irrational rotations. Is it
possible, for example, to find an f eCLT such that the variance ¢? behaves
linearly? The examples of Rothstein do have this property, while the con-
structions in Theorems 2.3.1 and 2.3.2 can not provide such a function.

§ 3. Some further investigations using CLT

Theorems on the central limit problem certainly are of general interest in
itself. However there are also results which can be proved using information
about the CLT, for example concerning entropy and the information func-
tion (cf. Philipp, Stout (1975)). Here we give three of these applications.

3.1. Isomorphism theory

Given two dynamical systems (X, T, u) and (Y, S, v) and a measure preserv-
ing homomorphism ¢: X =Y, then clearly ¢ (CLT(Y)) = CLT(X), ie. if
f: Y R satisfies the CLT so does f 0. It is of particular interest in various
situations to show the CLT for Holder-continuous functions on Y; one way
of doing this is to show that the class H of Holder-continuous functions
satisfies ¢ (H) = ¢ for some ¥ < CLT(X). Candidates for ¥ are given in
§ 1, for example if g: X =R is continuous and |goT": n >0} is strongly
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mixing with rate a(n) = O(n~!79, then all bounded functions h on X with

(3.1.1) Y lh—E,(hlgoT’: 0<j <n)ll, <0

n20
satisfy the CLT. Then it is easy to see that the homomorphism has to be
finitary, and the problem is to find a condition to guarantee the above
condition.

This is the idea behind the CLT in Denker, Keane (1979). Let X and Y
be subshifts. The finitary homomorphism ¢: X —Y is said to have finite
expected code length if the random variable T on X is integrable, where 7 (x)
denotes the minimal length of a (centered) cylinder around x whose image
under ¢ is completely contained in the cylinder {yeY. y, = (¢(x))o}.

A function h: X »R is called sequential if h= ) h (in L') for some
k=1
functions h, measurable w.r. to the centered cylinders of length 2k + 1, and if
X |kEh,| < oo. Similarly sequential function for Y are defined. Denote by ¥y
and %, the class of these functions. Then, if T has finite expected code
length and if L denotes the class of all Lipschitz functions, ¢ (L) € $%. Thus,
if the coordinate process on X has a good mixing rate, the CLT holds for all
f eL. Using a slightly stronger notion of finite expected code length one can
even show ¢ (¥y) < ¥x. For higher moments of 7 one obtains the corres-
ponding statements for the law of the iterated logarithm (Denker, Keane
1980) and even for the ASIP (no proof exists for this).

In particular, under the strong mixing assumption for example, the
variances of functions in .¥y behave linearly and hence linearity of the
variances in .y resp. ¥y is an invariant for this type of isomorphism ¢.
Parry (1978) has investigated a more sophisticated invariant than this one
(cf. also Parry, Tuncel 1982). If the function f: X — R is cohomologuous to a
function hog (h: Y —R) then clearly the asymptotic variances (if one of
them exists) have to be the same. If a, § denote the natural partitions on X
and Y, respectively, the information cocycles are defined by

Ip=1@|T ') @=av T 'av..)

and ) ) o
Is=I1BIS™'p) B=BvT 'Bv..).

Denote by I3 and Ig their centered forms. Their asymptotic variances are
called’ information variances (Fellgett, Parry 1975).

Parry showed that the information cocycles are cohomologuous if @ is a
regular isomorphism (i.e. an isomorphism ¢ such that for some p>1
@ 'B<Trd and @d < S? ).

Thus the information variance is a regular isomorphism invariant (if it
exists) and the CLT holds for one information cocycle if it does for the other.
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This result is also true for quasi-regular isomorphisms, block codes (Bowen
1975, Parry 1978), and finitary isomorphisms ¢ with finite expected code
lengths for ¢ and ¢~ ! (Parry 1979). As a consequence certain Markov chains
are seen to be non-isomorphic in any of these senses (Parry, Schmidt 1984).
The idea of using the CLT as an isomorphism invariant can be found for the
first time in Bowen (1975b) and Fellgett, Parry (1975).

3.2. The CLT and Hausdorff measures

Let U be a neighbourhood of a compacf set X (card X = 2) in a differen-
tiable manifold M. Following Ruelle (1982) a differentiable map T: U = M is
called a mixing repeller if

(1) T(X)=X;
(i) T is expanding on X (i.e. |[DT"(v)]| = KA"||v]| for some constants
K>0 A>1and all veT, M(x€X), n=>0;
(iii) X is a repeller for T, i.e. there exists a neighbourhood V, X c V < U
such that (O (T/V)""V = X,

nz0

(iv) T is topologically exact, ‘i.e.‘for every open non-empty W < X there
is an n> 0 such that T"W o X

If T is a mixing repeller then (X, T) is an almost one-to-one continuous
factor of a one sided topologically mixing Markov chain, generated by a one
sided Markov partition for T. It follows that Theorem 2.1.5 applies and one
obtains the CLT, LIL and an ASIP. This situation arises especially for
expanding rational maps on the Riemann sphere.

Przytycki, Urbanski and Zdunik (1986) used the result for the law of the
iterated logarithm to study the relations between harmonic measures and
Hausdorff measures for repelling boundary domains in C. They consider a
holomorphic map T on a simply connected domain 2 in the Riemann sphere
such that Q is a mixing repeller. A harmonic measure w is defined by the
image of the normalized Lebesgue measure on S' by a Riemann map R: {|z|
<1} = Q, extended to the boundaries. Every two harmonic measures are
known to be equivalent. If ¢: R, — R, is an increasing continuous function
with ¢(0) =0, we denote by u, the corresponding Hausdorfl measure.

THeoREM 3.2.1 (Przytycki, Urbanski, Zdunik 1986). For ¢ = 0 denote by
@, the function

¢.(t) = texp[c(log 1/tlogloglog 1/t)/*] (¢ = 0).

Then for a repelling boundary domain € there exists a number c, such that the
following dichotomy holds:
If 0 <c <cgy, then the harmonic measure w and the Hausdorff measure

H,, are singular.
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If ¢ > cqy, then the harmonic measure w is absolutely continuous with
respect to the Hausdorff measure p, .

If co >0 and if T/0Q is expanding then the first case also holds for c
= ¢o, and if ¢¢ =0, T expanding on 0Q, then 0Q must be a Jordan curve.
Moreover, if co =0 and T/0Q extends holomorphically to Q, then w < u,.

The transition parameter c, is obtained from the asymptotic variance o>

2 : )
in the CLT; ¢, = d \/’_ where y is the Lyapunov exponent of f with respect
VX
to w

1
62 = lim -VarS, y,

n—wo N
Y =log|(R"'oToR)|—log|T oR|

and where the probability measure is given by the R~ !o T oR-invariant
measure on i|z| = 1}, equivalent to Lebesgue measure. We leave the discus-
sion at this point, indicating to what type of results CLT questions can lead.
For more details and information on the subject we refer to the paper of
Przytycki, Urbanski and Zdunik. Recently Denker and Urbanski (1987)
obtained similar results for expanding maps on S' restricted to compact
invariant subsets.

3.3. Statistical functionals

One of the motivations for the classical CLT is its statistical relevance for
estimating or testing procedures. It was pointed out in Denker (1982) that
these statistical procedures also make sense for dynamical systems under
suitable assumptions, and that the limit theory in various situations for
dynamical systems has to be carried out. There are many papers generalizing
the limit theory for statistical functions to mixing sequences. Contrary to the
results in § 1 it is not immediate to obtain the corresponding results for
functionals of mixing sequences. This has been carried out first in Denker
and Keller (1986). In this paper it is shown that the mean S,f is not
sufficient to obtain optimal results. Thus it is necessary to consider more
complicated functionals. One of them is called von Mises functional (more
generally, differentiable statistical functional) and can be defined by “general-
ized” sums

Vi)=Y h(foT'(x),foT?(x),....f o T™(x)

1<ll ..... im\

where f is a measurable function with values in [0, 1] and h: [0, 1]" =R is
measurable and symmetric. The limit theory for ¥V, h is carried out in Denker,
Keller (1986) in the case where heL?(A™), h vanishes on all diagonals and is
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symmetric and degenerate. It turns out that in many cases one has a CLT. If
h is degenerate, m < 2 the limit distributions are of different type (cf. Denker
(1982), Babbel (1986)). Basic to these investigations are the results of § 1
together with extensions to ASIP for empirical processes of functionals of
mixing processes. Since the details become rather technical and lengthy, we
leave it at this stage referring to the above papers.

Another type of more complicated statistical functionals is given by
ranking methods. They can be treated as stochastic integrals (like V, f) using
the formula

1

Rnf(xa y) = _(f(Hn,m(x’ y, t))Fn(x’ dt)

0

where f: (0, 1) = R is measurable,
n—1

1
Fn(xs t) = ;j;o Cin l{goTj(x)$l)

and
n—1 m—1

1
H,,(x,y,t)= ntm+1 (j;o I(gori(x)sx}+ 1=Zo l{g'oT’l(y)St))'

Here {go T’} and {g'oT'} are two observed processes (from possibly two
systems T and T') and c;, constants. The asymptotic distributions in this case
are obtained in Denker, Keller, Puri (1987) and again we refer to this paper
for details.

The paper of Denker, Keller (1986) contains only very little on applica-
tions of these limit results. Much more has to be done, especially in finding
optimal (or good) procedures for the various statistical questions arising in
the study of dynamical systems, for example density estimation, symmetry,
entropy, Hausdorff dimension etc.
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