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In the theory of dynamical systems, along with open or closed sets such as
basins of sinks, nonwandering sets, centers of dynamical systems, one consi-
ders sets with more complicated structure. There appear F, sets, which are
unions of not more than countably many closed sets, such as the set of all
periodic points, G, sets, which are intersections of not more than countably
many open sets, such as the set of all orbitally stable points, F,; sets, which
are intersections of not more than countably many F, sets etc. Sometimes
instead of the above Hausdorff classification one uses Baire (Lusin—de la
Vallée Poussin) classification. In the latter, open sets and closed sets together
with all sets which are both F, and G; belong to the first class. The second
class consists of sets which are F, sets or G; but not both and of sets which
are at the same time F,; and G4, but do not belong to the first class. Further
classes are defined in a similar way.

Usually upper descriptive estimates are obtained easily for dynamical
systems on an arbitrary space with countable basis of its topology. It turns
out that those upper estimates can be reached already on one dimensional
systems. Therefore, from the point of view of descriptive set theory, one
dimensional dynamical systems can be as complicated as dynamical systems
on arbitrary topological spaces‘?). Later on we shall give descriptive estima-
tes for the sets most frequently used in the theory of dynamical systems,
which are related to such notions as attraction of points, their stability,
recurrence.

1. Let (X, f) be a dynamical system with discrete time, let X be a separable

M In some sense this statement is no surprise: the real line is so rich that it meets almost
all needs of descriptive set theory. On the other hand, if we restrict our attention to those
dynamical systems which are group actions (as opposed to semigroups) then the dynamics on
the real line is quite simple and it suffices to deal with open or closed sets only.

[447]



448 ONE-DIMENSIONAL DYNAMICAL SYSTEMS

metric space and f a continuous map X — X. We shall study mainly one
dimensional dynamical systems for which X =1 is an interval on the real

line.

The orbit through a point xe€ X, ie. {J {f*(x)!, is an at most countable

iz0

subset of X. It is always of type F,, this statement holds also for dynamical
systems with continuous time although in that case the orbit is in general
uncountable. Already in the case of X =1, as it is well known, there can
exist orbits dense in some perfect set, e'g. for the map x —»4x(1—x) of the
interval I = [0, 1] almost all orbits are dense in I and therefore they are not
G, sets.

The precise statement is as follows. Let Per(f) be the set of all periodic
points. For a map f €C°(l, I) there exists an orbit which is not G, set iff
Per fis not a closed set [1]. If f possesses a periodic point of a period # 2/, i
=0, 1, 2, ... then Per(f) is not a closed set and moreover it is not a G, set

[1].

This means in particular that the situation in which the upper estimate
(valid for an arbitrary dynamical system) is reached on an interval, is fairly
typical, so it makes sense to expect the same for other sets considered in the
theory of dynamical systems.

2. Returning points

In the theory of dynamical systems one considers different types of return of
sets and points. If return means that open sets or at least their parts return
at least once, like in the case of nonwandering points, then points with such
a property form a closed set. If we have in mind a stronger type of return, eg.
periodicity, almost periodicity, recurrence, Poisson stability, then in general
we shall obtain more complicated sets.

Recall the definitions. A point xe€X is almost periodic if for every
neighborhood U of x it is possible to find m > 0 such that f™(x)eU for i
=1,2,...

If for every i there is I, 0 </ <m, such that f™*!(x)eU, then x is
recurrent. If for an arbitrary neighborhood U of a point x one can find
m > 0 such that f™(x)eU, then x is Poisson stable®.

If the notion of an w-limit set of a point x, w,(x) = N U {f' (%)}, is

n>0i2n
under consideration, then the last two definitions may be restated as follows:
x is Poisson stable if x ew,(x); if in addition w,(x) is a minimal set (i.e. it
does not contain proper closed invariant subsets) then x is called recurrent.

@ The notion of Poisson stability is widely used in Russian language literature. In English
the word “recurrence” is used in this case. Points which are recurrent according to our definition
are referred to as almost periodic.
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Denote by Ap(f) the set of all almost periodic points, by Rec(f) the set
of all reccurent points and. by Pois(f) the set of all Poisson stable points.

The set Per(f) is always of type F, because it is the union of countably
many closed sets Fix(f™) = {xeX: f™(x) = x}. The set Pois(f) is always a
G; set — the proof of this statement is almost the same as the proof of the
analogous theorem for groups of maps in [2]. Both descriptive estimates are
reached in the one dimensional case. If a map feC°(I, I) has a periodic
point of prime period # 2, i=0,1, 2, ... then both Per(f) and Pois(f)
belong to the second Baire class, i.e. Per(f) is not a G; set while Pois(f) is
not an F, set. The last statement follows from the fact that if f has a periodic
point of prime period # 2' then there exists an invariant closed set F in
which points which are not Poisson stable are everywhere dense and there
exists an everywhere dense orbit [3]. Since Pois(f) N F is a G; set dense in
F, the set F n(I\Pois(f)) also dense in F cannot be of type G;, notice that
two G, sets dense in F always do intersect. Therefore Pois(f) cannot be an
F, set.

It is plausible that descriptive estimates for Rec(f) and Ap(f) for
general dynamical systems, can also be reached in the one dimensional case.
Up to now this remains a conjecture. We can prove only two theorems

THeoreM 1. If f €C°(X, X), then Rec(f) and Ap(f) are F,; sets.

Tueorem 2. If f€C°(I, I) has a periodic point of prime period # 2 i
=0,1,2,..., then Rec(f) is not a G4 set and Ap(f) is neither an F, nor G,
set.

We start with the proof of Theorem 2. If f has a periodic point of prime
period # 2' then there exists a closed invariant set F with a dense orbit and
with periodic points dense in F [3]. In this case the sets Rec(f) and Ap(/f)
are dense in F, because they contain Per(f). Also, the set P = {xeF: w,(x)
= F} is dense in F. Since P is a G, set [4], neither Rec(f) nor Ap(f) can be
G, sets ‘as they do not intersect P (points in P are not recurrent).

Ap(f) is not an F, set because there exist minimal sets in which all
points except a countable many are almost periodic. In such a situation
Ap(Y) is not an F, set and since the minimal sets are closed, Ap(f) is not F,
as a subset of I.

Let us go back to Theorem 1. Let 2 =lo}: s=1,2,...,5sj, 5; < o0,

Sj

j=1,2,...) be an open basis of X, let for each j =1, 2, ... ploj=X, and

let for arbitrary x € X and its neighborhood U there is j such that if j > j'
then o} = U, provided x €aj.
We are going to show that

Ap(f) = (xeX: YVU3x Im >0, f™(x)eU for i > 0

29 — Banach Center t. 23
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is always an F,; set.

(aﬁf ™(5)).

For every 6eX and every m > 0 we define 4,(c) =

“DS

For every g €2 we define an F, set A, (6) = () A,,(c) and for every j > 0 an
m=1

. %i @
F,set AV = ) A,(0j). The claim is that the F,; set A = (| A4; equals Ap(f),
s=1 : j=1

1.e.

- o]

AN =0 U U N@nf @)

j=1s=1m=1i21

In fact, if xeAp(f) and {x} = ﬂ a’ then for every j>1 there is m; >0
j=1

such that f'"f"'(x)ea" i > 0. Therefore x €A, (o) for j=1,2,... and thus

S

xeAl = U U An(0) and xed = ﬂA’ ie. Ap(f) < A.

s=1m=1

On the contrary, if x€A then xeAJ for every j = 1, so for every j there
is rj, 1 <r;<s;, mj >0 such that xeA,,,j(ajJ). This means that x eAp(f),

since a;f are sequeezed to the point x as j »co. Hence A4 = Ap(f).
In an analogous way it can be shown that Rec(f) = {xeX: VU>3x
Im>0,Un Y {f™*x)) # @ for every i > 0! is an F,; set, and moreo-

=1
ver

Rec(f) = ﬁ LJ) O ﬂ(;jmo'f-m:iﬂ(a))'
j=1s=1m=1j21 v =1

The problem of the exactness of the estimates in Theorem 1 remains open
also in the case of an arbitrary topological space X, although it does not
look too complicated.

3. Attracted points

Let F be an arbitrary closed invariant set. We shall discuss a problem of
complexity of the set which consists of all points attracted by F (“stable .
manifold”), i.e. P(F) = {x€X: w;(x) = F}. If F is an attractor which does not
contain nontrivial closed invariant subsets, then P(F) is an open set. In this
case the following more precise result has been obtained [4]:

the set |xeX: w,(x) > F} is always of type G;;
the set \xeX: w,(x) c F} is always of type F,;

and therefore P(F) is of type F,;, too.
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All these upper bounds can be reached already in the one dimensional
case even in the case of F being one point set, i.e. when F is a fixed point
[5]. For example, the set P(|0}) for the map

folx+xsinl/x if x #0, .
x—-)
0 if x=0

is not of the type G;,. The map may look somewhat strange but if F is not a
cycle then on “most of occasions” P(F) will be precisely of that type and not
of the type G;,: if and only if in any neighborhood of the w-limit set F there
is another w-limit set F' > F, P(F) is not a G, set, so it is of the third Baire
class [6]. Such w-limit sets exist iff f has a cycle of prime period # 2, in
which case most of the sets are of this sort. [3, 6] ),

Do sets of class > 3 show up among sets which appear in a natural way
in the theory of dynamical systems? It seems that unless some more precise
classifications of points are considered we shall meet only sets of class <3
(and in general, sets of class <r+2, provided f is of Baire class r).
Nonetheless, there may appear more complicated sets, too. If we are intere-
sted not only in the set P(F) but in its subset P*(F) characterized by some
special type of convergence of its points toward F, then P*(F) may turn out
to be of class > 3.

The simplest way of giving an idea of what may happen is to look at
well known arithmetic examples of sets of classes > 3. The Baire example of
a set of class 3 is an F,; set B < [0, 1] built up of points whose continued
fraction expansion [n;, n,,...] has the property that n, >0 as i —c0.
L. Keldysh example of set of class 4 is subset B* = {xeB: Vs> 03N, 2° is
a divisor of card !i: n; = n! for n > N,}. For the discontinuous map

. i/x}  if x#£0,
0 if x=0,

P(}0!) = B up to the F, set of all rational numbers, the set B* is made up of
points of P(}0!) such that for any s >0 the number of its visits to all

1 1 . .. .
intervals of type (?, ;) is a multiple of 2° begining from some number n
n

that depends on s.

) Later, analogous theorems have been proved also for expanding maps on manifolds
Sharkovskit AN, Bondarchuk V. S, Partially ordered system of w-limit sets of expanding maps,
in “Dynamical systems and stability problems for solutions of differential equations”, (in
Russian), Institute of Mathematics of Ukrainian Academy of Sciences, Kiev 1973, 128-164). For
wider classes of dynamical systems including smooth maps on manifolds, the problems of this
sort have been almost out of consideration.



452 ONE-DIMENSIONAL DYNAMICAL SYSTEMS

4. Homoclinic points

There is another set, which may have a complicated structure, namely the set
of homoclinic points [7]. Denote it by H(f) = {x€X: w,(x) is a cycle and
there exists a sequence x_, X_,, ..., f(x_;) =Xx_;+1, Xo = X, attracted to
ws(x)}. The set H(f) is always of type F,s,.

It is unknown if this estimate can be reached for one dimensional
systems or even for more general systems. For the map f, defined in section
3. H(fy) is in the third class for it is F,; but not G;, [7, 8]. The set H(f)
may belong to the fourth class only in the case of a map f which has a
countable number of cycles being attracting and repelling simultaneously
such as the point 0 in the case of f,. If the map does not have such cycles
then the structure of the set H(f) is much simpler, in general H(f) is an F,
set. If fe€CO(I, I), then H(f) # @ iff f has a cycle of prime period # 2, in
this case H(f) is not a G, set.

5. Stable orbits

In the theory of dynamical systems one considers different types of stability
such as Liapunov stability, asymptotic stability, orbital stability, stability
under permanent perturbation. Stability of the orbit through a point x
usually is equivalent to continuity at x of some map, which corresponds to
the type of stability under consideration. Since the set of continuity of a map
is always a G; set, points lying on stable orbits usually form a G4 set in X.

What maps correspond to one or another type of stability? In the case
of Liapunov stability the corresponding map is X — X%, x —(x,f(x),
f2(x), ..., in the case of the orbital stability — X —2* (x -pr,(x) =

N U f(U)), for orbital stability under permanent perturbation — X
Uaxi=0 ’

x CO(X, X) = 2%, |

ao
N =preN=N U UFU
Usx f eWi=0
Asf
and so on. It is not difficult to understand that upper descriptive estimates
for the sets consisting of points of stable orbits can be reached in the one
dimensional case. '
It is not less important to classify dynamical systems themselves than to
classify points, e.g. those, which are “globaly” stable in one sense or another.
We are not going into the details of the problem of descriptive estimates of
sets of maps, say in C°(X, X), which have these or other dynamical
properties, but it is worth to mention that such estimates (as descriptive
estimates for stable orbits) may be quite useful for proving that some other
types of orbits or dynamical systems are generic [9].
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