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The connection between number and form of bifurcation
points and properties of the nonlinear perturbation
of Berestycki type

by JoLanta Przysycin (Krakow)

Abstract. In this paper we give a certain deseription of the bifurcation points in
a bifurcation interval: in particular, we prove the sufficient condition for bifurcation interval to
degencrate to point.

I. The definition of bifurcation interval was introduced by H. Berestyeki
in [1]. By a bifurcation interval is understood the interval which contains at
least one bifurcation point. This definition is too general for formulation any
abstract theory. The purpose of this paper is to give the connection between
number and form of bifurcation points and properties of the nonlinear
perturbation ol the Berestycki type.

II. Consider the equation
(1) Lu=—(puy+qu= u+F(.u u.s) in{0. n
together with the separated boundary conditions
(2) 2 u(0)—2,u/(0) =0,  B,u(m+fu(n) =0.
where . f5; 20 and (27 +23) (74 3) # 0. As usual. we assume that p is
positive and peC'[0. n]. y€C[0. n]. The nonlinear function F has the

form F = f+g. where f. ge C([0. n] x R?) and satisfly the following condi-
tions:

(98]

(3) IM>0Vxe[0, n]Vw,seR,

O<nl<1,]s)< 1V, €eR (/ .',"__.__'__‘.‘_‘.__j_,| < M.

4)  g(x,w,s, 2) = o(lw| + |s]) near (w. s) = (0, 0) uniformly in xe[0. r] and
in € A for every bounded interval A < R.
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If F =0 equation (1) becomes a linear Sturm-Liouville problem
(5)  Yu=a+u in (0. m
together with the boundary conditions (2).

As 1s well known (5). (2) has an increasing sequence of simple eigenval-
ucs ity < jt» < ... <y — . Any eigenfunction 1, corresponding to g, has
exactly k—1 simple nodal zeros in (0. n).

Let E= C'[0. =] ~(2) under the usual maximum norm

[|ul}, = max|u(x)|+ max |u'(x)|.
[0. 9 (0.1
By S, (where ve{+. —!) we denote the set of those functions in E which
have exactly x—1 interior nodal zeros in (0, m) and have fixed sign v in a
certain neighbourhood of 0 (eventual zeros in 0 or © must also be nodal). Let
S;:= -—-S;. Let ¢ denote the closure in R xE of the set of nontrivial
solutions of (I). (2).

In this notation we can give the lollowing theorem.

THeorem 1 {[1]). For cvery keN and v €+, = there exists at least one
unbounded continuum of . bifurcating from [y, — M. p,+M] x \0} and contain-
ed in (RxS}) o[~ M. 1, +M] x 0.

IlI. Look at some examples.

Exampir 1. Consider
(%) —u" = ju—u-cos(i?+u?"* in (0.n1). w(0)=u(n) =0.

Notice that

o f(x.w.os.4)
Ilm e cctentt - ——— R l’
(iwes) 20 W

Let A = 1. The equation has the family of solutions (1+cos|y[, u.), where
u.(x)=7ysinx. yeR. It is clear that (2, 0) is the bifurcation point for ().
Proceeding analogously for k = 2. 3. .... we obtain all bifurcation points for

{*x). They have the form (k*+ 1, 0). In relation to the linearizable problem of

Rabinowitz. they are translated by lim (f(x, w, s, 2)/w).
(w.s) =0

Exampeie 2. Consider

(xx) —u”" =su+ul (0, m. w0 =u(n=0.

' £ .3
) fix.w, s, 4)
~ (3 lim Lot .
. (wy) =0 W

Notice that
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Let k=1. We have the family of solutions (1—sgny.u). where u (x)
= ysinx. There are two bifurcation points (0, 0) and (2, 0) connected with
the accumulation points of f(x, w, s, A)/w in (w.s) =0.

IV. Consider problem (1), (2) again with additional assumption on
perturbation of the Berestycki type f:

(3" lim flx w, s, 4) =m Vxe[0, n] V/eR.

{w.s) 20 w

Before giving Theorem 2, we require the following two lemmas ([1]).

Lemma 1. Let j, k be integers, j = k> 2. Suppose that there exist two
families of real numbers

0=¢p<é <. <ée=mn, 0=n<ny <...<p;=m.

i

Then, if &, < n,, there exist integers | and m having the same parity. such that
S SNy SNt $E0 I SISk=1 T<Sm<j-1).

The proof is trivial (induction on j).
Lemma 2 (Sturm comparison theorem). lLer [, n] < [0.n] and
w, v (#£ 0) be rwo functions satisfying

Pw=/w
@ = e in(c, n).
where 4 > u. Suppose, moreover, that either
(@) v(&) =uvln =0,
or
(b) ayw(&—oa,w(&) =0, o, r()—ar(d)=0. v(n=
or
(c) Biwm+paw) =0, Breim+pem =0, (=0,
or

yw(@—ow(@) =0, o e(dl—x0(l) =0,

Piwm+Bow(m =0, Breim+p,eim=0.

(d)

Then there exists ( €(&, n) such that w(l) = 0.

THEOREM 2. Under assumption (3') bifurcation interval [, — M. 1+ M]
x {0 degenerates to point (u,—m, 0) for every keN.
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Proof. Fix k. Let (/. 0)e[y—M. w,+M] x 0} be a bilurcation point
for (1). (2). It means that there exists a sequence of nontrivial solutions (1),
(2). (/. u)ER xS} such that (4,.u,)®>,, 0). Dividing (1) by |ju)l, and
setting u,/llu,t, = w, yields the equation
) FAX, Uy b, 7)) (X, Uy Uy 2y)
(6) LW, = AW, F e e e
A llatall leslly

It is easy to see that w, is bounded in C?[0. n]. Thercfore, by the Arzela -

~1 " N .
Ascoli theorem, we may assume that w, <o |lw]], = 1. Notice that
weS,. Applying Gronwall's inequality we can prove that weS; ([1]).

Letting n — x., (6) yields
Lw = (£+m)w.
At the same time we consider
Ll = Wy

Now we must compare the cigenvalues y, and 2+ m. We may assume
without loss of generality that the first zero of we, to occur in (0. ] i1s a zero
of v,. Let v,(7,) = 0. We apply Lemma 2 [or functions w and ¢, in [0. 5,],
with the boundary condition (b). If A+m > g, then it must exist
J€(0. ;) such that w(J) =0 contrary to the choice of ;. So. we obtain
.+ m < . Now we use Lemma 1. We may choose an interval [,. ¢,] such
that w. ¢, have the same sign in (. &5) and w($,) = w(&,) =0 or w(s,) =0,
S»=mor ¢, =0. ¢ =mn(in case k =1). For this interval we apply again
Lemma 2 (w. v, fulfil the boundary conditions (a) or (c) or (d)). We obtain
the inequality Z+m = g and, finally. 2 = g, —m. The proof is complete.

Assumption (3') guarantees maintenance of the bifurcation points. In
relation to the lincarizable problem of Rabinowitz type (f = 0) we observe
only the translation of the bifurcation points by limiting value m. Only lack
of (3') implicates the need of considerations of bifurcation from interval
rather than bifurcation points.

V. Let us return to inquiry of problem (1), (2) without additional
condition (3). Also in this casc we can prove a theorem about connection
between a perturbation of the Berestycki type and the lorm of bifurcation
points (1), (2).

Assume that

~ o~ ~ » . ./.(,\', \F", .S-?”,
V(H'”, sn) —'03/ E( [0. T':] |Im - T

ne

/) — f(_\‘)_

W,

Turorem 3. Let (4. 0) €[, — M, p+ M] x 0! be a bifurcation point for
(1}. (2). Then there exists an fo-"accumulation function™ of f(x,w, s, 2)/w for
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(w,s) =0 such that /. is k-th eigenvalue of the Sturm-Liouville operator &
defined by Pu:= Pu— fyu.

Proof. Analogously as in the prool of Theorem 2, there exists
a sequence (4, u,) 25 (1, 0) fulfilling (6). Write
S(x. uy(x). Up{x), /Z!,_)

Sl =122

”“n”l

Let

fol) = lim” (X 4y (). Uy (x). 2,)
novo U, (x)

Hence lim f, = f,-w.
n—x

Letting n — . (6) yields
Pw = Pw— fyw = iw.

Applying the same methods as these used in Theorem 2 we obtain the
equality 4 = [, where [, is k-th eigenvalue of “translated by f,” Sturm-
Liouville problem.

Concruston 1. If f(x, w, s, A)/w for (w,s) =0 has a finite number of
accumulation functions, then the bifurcation set of (1), (2) is finite.

Concrusion 2. If we assume additionally that all accumulation points of
f(x, w, s, 2z)/w for (w, s) =0 are constant for every x e[0. n], then Theorem
3 receive the following form:

Every bifurcation point of (1), (2) has the form (u, —m, 0), where m is an
accumulation point of f(x, w, s, 2)/w for (w, s) =0 independent on x. In this
case, existence of a whole interval of bifurcation points is determined by
existence of a whole interval of accumulation points of f/w.

VI. The methods used to obtain Theorem 2 and Theorem 3 can also be
applied to nonlinear eigenvalue problems with elliptic partial differential

operators.
Consider
, "0 ou i \ )
(7) Au=— Y ——\aj(x)— |=Au+F(x,u,Du, ) in Q,
=1 0x 0x;
(8) u=0 on 0Q,

where Q is a bounded domain in R" with smooth boundary dQ. We assume
that . 1" is uniformely elliptic in Q and the coefficients of .4 are in C'(Q).
The nonlinear term F is equal to f +g, where the functions f, g belong C(Q
x R"*2) and satisfy conditions (3), (4) with x€Q and seR"

Let E= {ueC'**(Q).u=0on dQ!. A couple (4, u) eR xE is said to be

2 — Annales Polonici Mathematici 1.2
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a solution of (7), (8) if ue W?>?(Q) and (2, u) satisfies (7), (8) (« €(0, 1) is given,
p > n must fulfil the inequality « < 1-—n/p).
We define P¥:= {w€E, u has a constant sign v and éu/dn <0 on 0Q}.
The linear eigenvalue problem

9) ~tu =10 1n Q with boundary condition (8) has a smallest eigenvalue
f, which 1s simple and such that the corresponding eigenvector
r, P
Let K¥= P00,
We have the following result ([1]).

Tueorem 4. For every ve|+, —) there exists unbounded continuum
of solutions (7). (8) bifurcating from [u,—M, u, +M] x 0} and contained in
(RxK U, —M, uy+M] x 0}

Now we give analogical theorems as in Sections IV and V.

ThueoreMm S. Under assumption (3') (with x €Q), the bifurcation interval
(g, =M, iy + M] x |0 degenerates to point (i, —m, Q).

Prool. Let (4, 0)e[u,—M, u; +M]x {0} be a bifurcation point of
(7), (8). 1t means that exists (4,, u,)2>>(2, 0) satisfying (7), u,€K". Set
oy = /il

We have the equation

(10) Ci = +'[»(-x~ ,, Du,, 2,) g(x, u,, Du,, 4,)
W, =4y,
" ”un”(-l.z ”un”(vl.a

The right-hand side of (10) is bounded in C(Q), IWall.1.. =1. By the L*
estimate. w, is bounded in W2?(Q). Since W27(Q) is compactly embedded in
C'*(Q). iw,) is relatively compact. Hence after extraction of a subsequence,
we may assume that w, Zw with Wil 1.2 = 1.

Since .1 is self-adjoint, one has

0= f(vy. ¥ wy=w,  v)dp.
Q

Letting n — » we obtain

0= ((A+m—p)we,dp.
o)
Thus 2 = gy —m. This completes the proof.
Without condition (3') we formulate the next theorem.

Tueorem 6. Let (2, 0)€[u, —M, u,+M]x {0} be a bifurcation point
j'o~r (7), (8). Then 1 is the first eigenvalue of the operator .4 defined by
Awi=.t'w— fow, where f, is accumulation function of f(x, w, s, A)/w for
(w, s) —=0.
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The proof of Theorem 6 follows the same lines as that of Theorem 4.

Remark. All conclusions from Section V formulated for the Sturm-
Liouville operator may be applicable to .1 without any changes.

VII. The proven theorems and following from them conclusions may be
automatically transferred to the case of bifurcation from infinity.
Consider the equation

(1 Lu=su+F (-,u.u',2) 1 (0, m

with the boundary conditions (2).
We assume that F, eC([0, n] xR?) and F, has the form F, = f,4g¢,.
The functions f; and g, satisfy the [ollowing conditions:
(12) 3IM >0 Vxe[0, ] Vw, seR,
'fl(x_,w, s. 7))

w1, gs) =1, [P niiieom,
wn |

(13) gy (x, w, s, 2) =ofw[+]s]) at (w.s)=x
uniformly in x€[0, n] and on bounded 4 intervals.

DerinimioNn 1. We say that (u, o) is a bifurcation point for (11), (2) if
every neighbourhood of (u, 20) contains solution of (11), (2), i.e. there exists a
sequence (4,, u,). of solutions of (11), (2) such that 2, »u and |ju,|, —» =.

Let .7 denote the set of solutions.of (11), (2).

THFOREM 7 ([2]). For every keN and ve '+, — ) there exists at least one
unbounded continuum of 7, 7y, bifurcating from [y —M, p+M]x o).
Moreover, there exists on open, bounded set (' inclusive [w,—M, w+ M]
x tov) such that 7y € <(RxS)ulm—M, w+M] x{oc).

Considering problem (11), (2) with additional assumption

Jilx, w, 5, 2)

(12) 3 lim

=m Vxe[0,n] VieR
(w.§) >t w
we obtain theorem analogous to that of Section IV.

THeEOREM 8. Under assumption (12), the bifurcation interval [, — M,
W+ M] x o) degenerates to point (u,—m, o) for every keN.

Without this assumption we formulate the next theorem.

THEOREM 9. Let (4, o) €[y — M, e+ M x {oc} be a bifurcation point for
(11), (2). Then there exists fy-“accumulation function” of f,(x, w, s, A)/w for
(w, s) = o such that 4 is k-th eigenvalue of the Sturm-Liouville operator K7z
defined by Pw:= Pw— fyw.

Remark. The above results may be transferred to operator .1
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