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EXCHANGE PROPERTIES AND BASIS PROPERTIES
FOR CLOSURE OPERATORS

BY

PETER R. JONES (MILWAUKEE, WISCONSIN)

Let % be a closure operator on a set 4. A subset X of A is (%-)
independent if x¢ % (X — \x!) for all xe X; in this case X is a (%-) basis for its
closure % (X). It is a rare occasion that a closure operator has what we call
the (7-) basis property: that any two ihdependent subsets with the same
closure have the same cardinality. In the standard instances when this is true,
for example for the generating operator % on a vector space (considered as a
universal algebra — see [1]), it is usually a consequence of the well-known
exchange property, which for a closure operator ¥ may be stated as:

(1) If yet(X U \x!) and y¢ € (X), then xeC (X U \y).

However, there are other situations where the basis property holds, for
instance when any closed set has a unique basis (this being true for % on a
meet-semilattice, for example), but the exchange property fails. Motivated by
the author’s study of basis properties in various classes of semigroups we
introduce here the following weak exchange property:

(2) If 4(Y) =% (X U ix)), then xet(X U ly}) for some yeY.

Clearly, the exchange property itself implies that (2) holds for all yeY,
and therefore (1) implies (2).

The purpose of this note is to show that, for an algebraic closure
operator % (i.e., such that if a €% (X), then a €% (X’) for some finite subset X’
of X), the weak exchange property is equivalent to the strong basis property,
introduced by the author in [3], and which we now define.

Let % be any closure operator on the set A and let D be a %-closed
subset of A. A subset X of A is D-independent (with respect to %) if
x¢6(Du X—x)) for all xeX; in that case X is a D-basis for its D-closure
(D v X) (and is clearly minimal with respect to the property that its D-
closure is that closed set).

DEeriniTION. The set A has the (%-) strong basis property if any two D-
independent subsets with the same D-closure have the same cardinality.

Denoting by M the minimum closed subset % (Q) of A4, it is clear that an
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independent subset of A is just an M-independent set, and the M-closure of
any subset is just its (%-) closure. Hence the basis property is a consequence
of the strong basis property. As often occurs in mathematics, the strong basis
property is in practice more amenable to proof, owing to the “inductive”
property inherent in (iii) of the following theorem. Commentary on the
theorem will follow. The reader is referred to the survey paper [2], Section 2,
for the literature on %-independence and other forms of “independence”.

THEOREM. Let ¢ be an algebraic closure operator on the set A. The
following are equivalent:

(1) A has the weak exchange property (2) with respect to %.

(ii)) A has the %-strong basis property.

@ii) If (D v ia, b)) = 4(Du \cl) for some -closed subset D of A and
elements a, b, ¢ of A, then either ce ¢ (DU \a}) or ce?(Du \b)).

Each is implied by the exchange property (1) and implies the %-basis
property.

Proof. We prove (i) = (iii) = (ii) = (i). The last statement has already
been demonstrated.

(i) = (iii). Putting X =D and Y = D U \a, b} in (2) it follows from (i) that
either ce4(Du \a}) or ce4(Du (b)) or ce% (D) =% (Du a)).

(iii) = (ii). (The idea is implicit in the proof of [3], Theorem 2.3.) It is
sufficient to show that for any %-closed subset D of A and any subsets X and
Y of D for which

IX|>|Y] and %(DuX)=%{DuY)

we have x€% (D u X — |x]) for some x € X. Moreover, since ¢ is algebraic, it
is further sufficient to suppose that X and Y are finite (and nonempty, the
case Y = () being trivial). Put

f f
X= 1X1s cony x,,,: and Y= WYis -0 yk:'

The proof is by induction on k.
Suppose k = 1. Set £ = 4(DuX — !x,, x,!). Then
DcEc%(DvuX),
SO
“DUX)="%DuU y)) CEU Iy SEDUX)
and
CELV ) =CDuX)="%EU xq, X,)).
By (iii), either y, €% (E u |x,!), whence

X €6(EU 1x,}) =6(DUX—ix,]).
or
y1€4(EVL \x,)),
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whence
X1 € (EU :X2}) =% (DU X—- ',xl ;').

Next suppose that k = n > 2 and that the result is true for kK <n. Set
F=%DuY-ly).
Then
tDuX)cb(FuX)yc6(FuY)=6DuY)=%4(FuU iy
and
C(FUX)=C(Fuiy).

Applying the conclusion of the case k = 1 sufficiently many times leads to the
conclusion that y, €% (F U !x;!) for some i, 1 <i<m. Thus

€(Fuix}) =€(Fu i}) = €(Du X),
which may be rewritten in the form
F(B(D U x;}) (Y- 1)) =%4(€Du ix)u(X- {x:}).
Now |[X—ix;!|]=m—-1>k—1=|Y-y,]|, so by hypothesis there exists
xeX—|x;! such that
x €% (6(D U x) L (X —x) = 6 (DU X—x)),

as required.

(ii) = (i). Suppose % (Y) = 4 (X U {x]) = G, say, and put D = % (X). Then

CDuY)=%(Xu \x)).

Since % is algebraic, xe%(Du Y’) for some finite subset Y’ of Y. By

discarding elements from Y’, if necessary, it may be assumed that Y’ is a D-

basis for G. If Y’ is empty, then xe% (D) = D = % (X). Otherwise, by the

strong basis property, |Y’'| =|ix}|, so Y' = |y| for some yeY. Then
x€b6(Du iy}) =C(X V).

The example of meet-semilattices, mentioned earlier, offers a rather
trivial instance of a variety of universal algebras in which the generating
operator % has the strong basis property (D-independent subsets uniquely
generate their D-closures for any closed subset, that is, subsemilattice, D), but

the exchange property fails, in general. For example, let Y be the meet-
semilattice '

x,2,0]lxAnz=0>

with three elements. Then, putting

X={z, 4X)=X and % Xui{x}))=Y
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gives
0e¥4%(Xuix!), 0¢%X) 'and x¢%Xu.0)=.z0!.

However, the failure of the exchange property in semilattices is mim-
icked in much larger classes of semigroups and associated types of algebras.
Free semigroups and free monoids provide cases in point, in the varieties of
semigroups and of monoids, respectively. In these cases “D-bases” are again
unique.

Nontrivial instances were studied by the author for inverse semigroups
and groups in [3] and [4], and more recently for semigroups and monoids in
[5].

An inverse semigroup is a semigroup with an additional unary operation
~1 satisfying the identities

1

xx 'x=x, (xHY'=x and x'xy ly=ylyx'x.

(Alternatively (see [6]), they are von Neumann regular semigroups in which
the idempotent elements commute) Subvarieties include the varieties of
groups and of semilattices (where x~! = x). In [3] it was shown that every
free inverse semigroup has the strong basis property (with respect to %). In
[4] those inverse semigroups with the strong basis property were found, at
least modulo the analogous problem for groups.

In [4] it was also shown that every finite p-group has the strong basis
property (generalizing the Burnside Basis Theorem) and that any finite group
with the basis property is solvable. There exists a group with 20 elements
which has the basis property but not the strong basis property. The reader is
referred to [4] for further results.

Various classes of semigroups with the strong basis property (with
respect to %) are found in [5].

We conclude with an interesting demonstration of the power of the
strong basis property (with respect to the generating operator). If an algebra
A = (A, F) has the strong basis property, then so does A’ = (4, F'), where
F’ is obtained from F by the adjunction of a set of nullary operations. For if
D <= A is a subalgebra of A4, then it is also a subalgebra of A and, conversely,
any subalgebra of 4 containing D is then a subalgebra of A’; thus the D-
independent sets are the same in 4 and A'.

For example, if a monoid (semigroup with identity element) has the
strong basis property as a semigroup, then it has the strong basis property as
a monoid.
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