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DERIVATIONS SATISFYING POLYNOMIAL IDENTITIES

BY

ANDRZEJ NOWICKI (TORUN)

0. Introduction. In [7] Posner proved that if d,, d, are derivations in a
2-torsion free prime ring R such that the composite d, d, is a derivation, then
d, =0 or d, = 0. It is natural to ask whether an analogous statement is true
for any finite set of derivations. One can show that it is not true in general
(see the Remark in Section 3). In this paper we prove that if R is a
commutative ring, then the answer to the above question is in the affirm-
ative. Moreover, the answer is in the affirmative if we consider a derivation
which is a special type polynomial function in several derivations (Corollary
3.7).

It is well known (see [1], Section 0.6, Ex. 17) that if d is a nilpotent
derivation of a domain R, then d'= 0 (under some restriction on the charac-
teristic of R). We prove that this is also true for a derivation d such that

d"(@)+r,d" '(a)+...+rqa=0 for any a€A4,

where A is a d-ideal of an n!-torsion free reduced ring R and Anng 4 =0
(Corollary 4.4). Moreover, we get (Theorem 4.2) some generalization of
a Jacobson result for differential fields (see [2]). Further, we prove that if
d'(d(A)*) =0 for i+j=n and some k, where 4 is a d-ideal, then d =0
(Corollary 4.5).

In the paper we study derivations in commutative rings satisfying
polynomial identities for differential modules.

Let R be a.commutative ring with identity, and D be a family of
derivations of R. If M is a D-module (Section 1), then M is a left R[D]-
module (Section 1), where R[D] is the ring of differential polynomials over D
with coefficients in R (see [8]). Denote R[D] by S.

The paper is concerned with the study of ideals Anng M of the ring S.
They play an important role in describing the properties of derivations
satisfying polynomial identities.

Section 1 contains basic properties of S. In Section 2, for any ideal A4 in
R [D] we show some class of elements which belong to A " R (Theorem 2.1).
This result will often be applied in further parts of the paper.
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The main results are contained in Section 3. We prove first (Proposition
3.1) that

Anng(SA) = S Anng (A4),

where A is a D-ideal in R, and next (Theorem 3.2) that if AnngR =0 and
Anng M = 0, then Anng M = 0. Next we study the constant term of polyno-
mials in Anng A (Theorem 3.3, Corollary 3.4) and we generalize the theorem
of Posner [7]. '

Section 4 gives some properties of Anng M in the case D = d}.

1. Notation and preliminary results. Throughout this paper, R is a
commutative ring with unit and D is a family of derivations of R. A D-
module is a left R-module M together with a specified mapping

~: D »>Homz (M, M)
such that
d(irm) =rd(m)+d(r)m

for deD, reR, meM. An ideal 4 in R _is called a D-ideal iff d(A) < A for all
d eD. Every D-ideal is a D-module by d(a) = d(a). If A, B are D-ideals, then

AxB={reR:rBc A

is a D-ideal.

We denote by R[D] the ring of differential polynomials over D with
coefficients in R (see [8]). This is the ring of polynomials in non-commuting
indeterminates, one for each derivation in D, with coefficients from R written
on the left. Here the multiplication is defined by tr = d(r)+rt, where ¢ is the
indeterminate corresponding to the derivation deD. For d,,...,d,eD let
ty, ..., t, denote the indeterminates corresponding to d,, ..., d,, respectively.
By an easy induction we get

Lemma 1.1.

tl tz...tnr=rt1 tz t + z Z dll...dik(r)tl...i:'l...t‘;k...tn.
k=1ip <... :

Every element U of the form U =t,...t, will be called a monic monomial
of degree n (if n =0, then U = 1). Let f be a polynomial in R[D]. If f # 0,
then f has a unique representation

f=rl Ul+'°‘+rkUk’

where r,, ..., r, are non-zero elements in R and U,, ..., U, are distinct monic
monomials. The degree of f (denoted by deg f) is the maximum of the degrees
of Uy, ..., U,. Forf =0, deg f = —o0. A polynomial f will be called singular
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iff it has exactly one monic monomial of degree equal to degf The
coefficient at the monic monomial of degree zero in f will be denoted by
w(f). Further, we denote by S the ring R[D].
If M is a D-module, then M together with the multiplication
*> SxM-M
defined by
tl...t"*m =Jl ...(?,,(m)
for monic monomials and
(rl U1+"‘+rk Uk)*m=rl(Ul*m)+...+r,‘(Uk*m)

for arbitrary polynomials is a left S-modulg.
Conversely, if M is a left S-module, then ~: D —Hom,(M, M),
d(m) = tm, makes M a D-module.

LEmMMmA 1.2. If f€S and reR, then
w(fr—rf) = fxr—rw(f).
Proof. We may restrict ourselves to monic monomials. If U = 1, then
w(Ur—rU)=0=Ux*r—rw(U).
If U=t,...t,, then Lemma 1.1 implies
w(Ur—rU) =w(Ur)—w(@U) =d,...d,(r)-0=U xr—rw(U).
For a subset X of R let X denote the set
rUi+...+nUgeS: ry, ..., eX).

Lemma 1.3. Let A, B be D-ideals of R. Then

(1) A is an ideal in S and A = SA;

2 ANR=A4;

(3) AB = A4B,;

4) A:x B = A5 B.

Proof. By the definition of the multiplication in R[D] we have im-
mediately (1)—3).

(4) The inclusion < is trivial. Conversely, assume that feA:B. We
prove, by induction on n =deg f, that f €A:B. Let

f=riUi+...+rU,+g,

where U,, ..., U, are monic monomials of degree n and degg < n. Then, for
every beB, we have fbeA and, by Lemma 1.1,

fb=r1bU1+...+rkbUk+h,
where heS, degh < n. This implies that r, b, ..., r,beA, ie,r,,...,r, €A:B,
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whence
ryU,,...,n,U€A:B c A:B.

Therefore g eA:B and, by induction, g€ A:B, so f€A:B.
Remark. Lemmas 1.1 and 1.3 hold also for non-commutative rings.

2. The operator E. In this section we prove the following

THEOREM 2.1. Let A be an ideal in R[D] and f be an element in A such
that deg f =n = 1. Assume that

k
f= Z aitil"'tin+g’
i=1

where t;y, ..., t;, for i =1, ..., k are distinct monic monomials of degree n, and
degg <n, a,,...,a,€R. Then, for any r,, ..., r,€R, the element

k
Z Z a; dio'(l) (rl) v did(n) (rn)a

o i=1
where o runs over all permutations of the set |1, ..., n!, belongs to A R.
This theorem will be often applied in the sequel. Before the proof we
introduce some operator E and prove four lemmas. Let E: S - Hom,(R, S)
be an R-linear mapping such that
0 for n=0,

EUR =42 X
) Y d(ty...5;...1, for n>0,
=

where U =1t,...t,. Denote by L% (R, S)' the set of n-multilinear (over Z)
mappings of R into S. We define the sequence {E": S — L% (R, S)} as follows:

E'= E, En+lf(rl’ cees ru+l) = E(E"f(rb tees rn))(rn+l)’
where f €S, ry, ..., r,+1 €R. By the above definition we get immediately the
following properties of the mappings E":

LEMMA 2.2.

(1) deg Ef (r) < (deg f)—1 for f €S, reR.

() E'f(ry,....,r) =E"XEf(ry, ... 1))t 15 --s 1) for 1<k <n.
() E*f(ryy ..., r) =0 if n>degf.

Now we give some other properties of E".

LEMMA 23. Let f€S, ry,...,r,€R. If t is the indeterminate correspond-
ing to the derivation d €D, then

E*(ft)y(ry, ...,r) = E"f(ry, ..., r)t

+ Zn: dr)E" 1 f(ry, ..., F;y ... 1.
i=1
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Proof. This result follows from the equality E(ft)(r) = Ef (r)t+d(r) f
and from the definition of the mappings E".

LemmAa 24. If ry,....r,€R, then
E"(tl "-tn)(rl’ ey n) = Z da(l)(rl) d(n)(rn)

acS,

Proof (by induction on n). The case n =1 is trivial. Suppose that the
lemma is true for some positive integer n. Then, by Lemma 2.3, we have

E Nty ooty )(ryy oy Fas ) = E" 0ty o 8Py ooy Pat 1) Ensd

nt+1

+ ) Ay (P E (gt Py ey Fiy ooy Fas 1)
i=1

The first summand (by Lemma 2.2 (3)) is equal to zero. The second
summand, by induction, is equal to

n+1
Z dyiq () Z Aoy (r1) .. dgi— 1y (ri- l)da(n)(rl+l) dony(Tns 1)
: ageS,
= Z Aoy (r1) . dogns 1y (Tus 1)-
Gesn+l
LEMMA 2.5. Let A be an ideal in S. If feA, degf =n> 1, then
E*f(ry.....r)eAnR for every r,,...,r, R

Proof (by induction on n). If n =1, then
Elf(r1)=fr1—r1f€AﬁR.

Let feA and degf =n Then g=fr,—r, f€A and, by Lemma L1,
g = Ef(ry)+h, where heS, degh < n—2. By induction we have

E"lg(ry,...,r)EANR.
Therefore, by Lemma 2.2,
E'f(ry,...,r) =E"" Y (Ef(r))(rz, ..., 1)
= E""Y(Ef(r))+h)(ry, ..., 1) = E"" 'g(ry,...,r)EANR.
From Lemmas 2.5 and 2.4 we get the assertion of Theorem 2.1.

3. The differential annihilator of a D-module. Let M be a D-module. In
this section we give some properties of the ideal Anng M
By definition
AnngM = feS: f+m=0 for any meM!,

ie, the polynomial f =3 r;t;;...t;, belongs to AnngM iff

Yridiy...dy, (m)=0 for any meM.
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Notice first that AnngM N R is a D-ideal in R equal to Anng M. The
proposition below describes Anng M in the case M = SA4, where A is a D-
ideal.

ProrposiTiON 3.1. If A is a D-ideal in R, then
Anng(SA) = SAnng A.
Proof. By Lemma 1.3 we have

SAnng A = Anng A = 0:3 A = Anng(A4) = Anng(SA).

Now we are going to study main properties of the ideal Anng M.

THEOREM 3.2. Let R be a ring such that AnngR =0, and let M be a D-
module. If Anng M =0, then Anng M = 0.
Proof. Suppose that AnngM 0. Let f be a non-zero polynomial in

Anng M of minimal degree. Since for any r eR we have deg(fr—rf) <degf
and fr—rfeAnng M, by the minimality of f the equality fr =rf holds.
Therefore, by Lemma 1.2,
0=w(fr—rf) = frr—w(f)r =(f—w(f))*r
for any reR, ie,
f=w(f)eAnngM "R = Anng M =0,

which contradicts the fact that f # 0.
THEOREM 3.3. Let A be a D-ideal. If f e Anng A, then
w(f) €Anng(A"*!), where n = deg f.

Proof (by induction on n). If deg f =0, then f eR "Anng A = Anng A.
Let n > 0 and assume that the theorem is true for polynomials of degree less
than n. Let f eAnngA and deg f = n. Then, for every acA,

fa—afeAnngA and deg(fa—af) <n.

Therefore, by Lemma 1.2 and by induction we have

w(f)a=w(f)a—(f+a) = —w(fa—af) eAnng(4")

for any a€A, ie, w(f)eAnng(A™*1).
CoRrOLLARY 3.4. Let A be a D-ideal such that Anng A = 0. If f eAnng A,
then w(f) =0.

We shall prove other properties of the ideal Anng M using the following

LEmMMA 3.5. Let R be an (n—1)!-torsion free ring without zero divisors. If
d,, ..., d, are derivations of R such that

di(x)dy(x)...d,(x) =0

for any x€R. then d; =0 for some i.
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Proof. Let A; = |xe€R: d;(x)=0!, where i=1,...,n. The sets
A,, ..., A, are subgroups of the additive group of R and have the following
properties:

(1) A,u...UA4,=R;

(2) if kx€eA;, where 1 < k <n, then x€A,. :

By a theorem of McCoy [4] we have R = 4; for some i.

THEOREM 3.6. Let R be an n!-torsion free ring without zero divisors, M a
D-module such that Anng M =0, and f a singular polynomial in Anng M of
degree n. If f = at, ...t,+g, where degg <n, 0 #a€R, and t,, ..., t, are the

indeterminates corresponding to the derivations d,, ..., d, €D, respectively,
then d; =0 for some i.
Proof. Theorem 2.1 (for r, =r, =...=r, = x) and the equality

RnNnAnngM = AnngyM =0
imply that
nlad,(x)...d,(x) =0 for all xeR.

Therefore d, (x)...d,(x) = 0 for all xeR and, by Lemma 3.5, we have d; =0
for some i.

The corollary below is a generalization of the Posner theorem [7] for
commutative rings.

CoroLLARY 3.7. Let R be a commutative n!-torsion free prime ring and let
h be a singular polynomial in R[D] of degree n > 2 such that h = at, ...t,+g,
where 0 # a€eR, degg <n, and ty, ..., t, are the indeterminates corresponding
to the derivations d,, ..., d,€D, respectively. Moreover, let 5: R = R be the
mapping defined by 5(r) = hxr. If § is a derivation of R, then d; = 0 for some i.

Proof. Apply Theorem 3.6 to the polynomial f = h—t of the ring
R[D’], where D'=Du |8 and t is the indeterminate corresponding to 6.

Remark. If R is a prime non-commutative ring, then Corollary 3.7
is not true in general. For example, let R = M,(Q) be the ring of (2 x2)-
matrices over the field Q of rational numbers, and let d: R =R be the
inner derivation

00])

01
d(X) =AX—-XA, where A =\ l

Then d® =0, d*> #0 and d # 0.

4. The case of one derivation. In this section we get some additional
information about AnngM if |D| = 1. Throughout this section D = \d},
where d is a fixed derivation of R. The terms D-modules and D-ideals are
replaced by the terms d-modules and d-ideals, respectively. Now the ring
R[D] of differential polynomials is equal to the well-known Ore extension
R[t,d] of R (see [6] and [3]). We denote R[t, d] by S.
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If M is a d-module, then
AnngM = {r,t"+... +r t+ro€S: r,d"(m+...+r,d(m)+rom =0,
for any me M.

Some of the properties of AnngM in the case M =R are given in [5].
Using methods similar to those in [S] we can prove the following two
theorems:

THEOREM 4.1. Let M be a d-module such that AnngM =0,
AnngM # 0, and let f be a non-zero polynomial in AnngM of minimal
degree. If f is monic, then Anng M = Sf.

THEOREM 4.2. Let A be a d-ideal such that Anng A = 0, Anng A # 0, and
let f be a non-zero polynomial in Anng M of minimal degree. Assume that

f=r1t"1+...+rktnk,

where ny>...>m, r#0 for i=1,...,k. Then there exists a prime
number p such that

uq ug
n=pl,...,m=p and uy,...,u = 0.

Moreover, if char R =n = 0, then p|n.
By Theorems 4.1 and 4.2 and by the theorems of Sections 2 and 3 we
obtain the following corollaries.

CoOROLLARY 43. Let A be a d-ideal such that AnngA =0.

If AnngA # 0, then there exist a non-zero element beR and a prime
number p such that p‘bd(R)=0 for some k=0. Moreover, if
charR =n > 0, then p|n.

Proof. Let f = bt™+r,_,t" '+...4+r,, where b # 0, be a non-zero
polynomial of AnngA4 of minimal degree. Theorem 4.2 implies that m = p*
for some prime number p. If reR, then

fr—rfeAnngA and fr—rf = p*bd(r)t" ' +g,

where degg < m—2. Therefore, by the minimality of f, we get p*bd(R) = 0.
We say that a ring R is reduced if it has no nilpotent elements except 0.

CoroLLARY 4.4. Let R be an n!-torsion free reduced ring and let A be
a d-ideal of R such that Anng A = 0. If there exists a polynomial f € Anng A
of the form f =t"+g, where degg <n, then d =0.

Proof. By Theorem 2.1 we have n!(d(r))" = O for any r €R, so the proof
is completed. '

We end this paper with the following

CoroLLARY 4.5. Let R be an n!-torsion free reduced ring and let A be
a d-ideal of R such that AnngA =0. If d'(d/(A))=0 for i+j=n and
some k, then d = 0.
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Proof. Let a,,...,a,€A4 and a =d'(a,)d’(a,)...d*(a,_,). Since
0 = d'(ad’ (a})) = ad"(a)+id(a)d" " * (a) +...,

the polynomial at"+id(a)t""'+... belongs to AnngA. Hence, by
Theorem 2.1, we have n!ad(r,)" =0 for any r,eR. Let

b= n!dj(al)...dj(ak_z)d(rk)”.

Then bd’(a;-,) =0 and, by Theorem 2.1, we have j!bd(r,_,) =0 for any
r«-1 €R. Therefore

nljld(ay)...d (@) d(r- Y d(r)" =0
for any a,,...,a,_,€A, r,_,, r,€R, ie,
cd’(a,_,) =0 for any a,_, €A,
where
c=n'j'd(a,)...d (@ _3)d(r,— Y d(r)".
Continuing this process we get the following equality:
(Y d(ry...d(r,_,Yd(r)"=0 for any r,, ..., r, €R.
In particular, for r, =... =r, = x we have
n(jhYd(x)* =0, where s=(k—1)j+n,

which completes the proof.
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