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On algebraic characterization of coercive linear
partial differential operators with constants coefficients

by J. Tervo (Jyviaskyld, Finland)

Abstract. Let ¥ denote the Hormander class of weight functions k: R" — R and let p be in
the interval [1, x). Define a norm ||[|,, and a scalar product (-, ‘), by

ol = (20" | UF @) k(P dE)'?
'rl
and

(@, V) = 20" [ (FQ) O (FY) (O k(D dE  for @,y €CF(G),
I 4

where .# denotes the Fourier transform and where G is an open set in R". The paper considers
sufficient and necessary algebraic conditions for the validity of the following estimates

n IL(D) @llpx = Cill@llpax~ — Ca lloll
and
(9] Re(L(D)@, ok = C, "(0"21“;‘_‘— C, ||‘P||,§,h

where L(D) = Y a,D” is a linear partial differential operator with constant coefficients «, €C.
jo| <r

Especially, an algebraic characterization of (1) is verified when G is an open strip or bounded.

Also a characterization of (2) is obtained when Re L($) > 0 and when G is an open strip or

bounded.

1. Introduction. Denote by ¥ the class of positive weight functions such
that for each ke .# one can find constants C >0 and N eN with which
(1.1) k(E+n) <(1+C[EPVk(n) for all &, neR™

Furthermore, let p lie in the interval [, oc) and let G be an open set in R".
In the space Cy(G) we define a norm [|-]l,x and the scalar product (-, -),
through the relations

(1.2) 9l = (2m) " [ UF ) k(E)I7dE)'"
R
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and

(1.3) (. ¢) =(2m)"" \( OVENFY)N O k(&) dE,
R"
where .Z# is the Fourier transform [rom the Schwarz space S into itself. The
completion of Cg(G) with respect to the norm [[-][,, (with respect to the
scalar product (-, -),) is denoted by #4,,(G) (and 4,(G) resp.).
Let p be in [1, o) and let A and k~ be two weight functions in .#. A
linear partial differential operator

(1.4) L(D)= ) a,D° (D=(D,.....D,): D;= —i=-)

lo| <r ox
of order r (e N) with constant coefficients a, € C is called k™~ -coercive (and
strongly k~-coercive) in the space 4,, (G) (and in the space 4,(G) resp.) if
there exist constants C; >0 and C, > 0 such that the inequality

(153) ”L(D)(p”pk C ”(p“phk CZ”‘p”p,k’
TESP.
(1.5b) Re(L(D) @, o) = C, llolli == Callolli,

is valid for all ¢ eCT(G). Here we denoted |||, = (@, @)i/%.

In [4] (pp. 5-8), Louhivaara and Simader proved that in the whole
space case (G = R") an operator L(D) is ky-coercive in the space .4, (R")
= [*(R") if and only if there exists two constants E > 0 and R > 0 such that
the algebraic condition

(1.6) ILQI:=| Y a, & > EIE*,  reN,
lal<r
is valid for all ZeR" with |&| = R. Here k,, € # such that k,, (&) = (1+]|¢?)
They also remarked in [S] (p. 340) that in the case of an arbitrary open set G
this condition (1.6) is sufficient for the k,,-coercivity in 4, ,(G) = L*(G).
Combining the method of [5] (pp. 340-342) with the fact that, when G is
bounded, for every x€N" there exists a constant C, > 0 such that

(1.7) IL= (D) @ll2,, < CLlIL(D) @lla,4

for all @ eCF(G) (cf. [1], pp. 265-267, [2], pp. 183-185), one can further
prove that L(D) is k,,-coercive in the space .4, ,(G) for a bounded open set
G if and only if there exists a constant 7 > 0 with which

o L(c)
ocn

(1.8) L) := (LI @) 2 20> (12 :=

for all ¢ eR".
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For strongly k,,-coercive operators one has obtained slightly different
conditions (cf. [4], pp. 4-8 and [S], 340-342).

In this paper we shall consider analogous results mentioned above for
some classes of unbounded open proper subsets G = R" and for k™~ -coercive
and strongly k ~-coercive operators.

2. On the k~-coercivity of L(D).

2.1. For the first instance we consider the case where the open set
G < R" has the following property:

ProperTY A;. For a fixed number jell,....n) there exist a constant
a >0 and numbers xY€R (k =1, ..., j) such that the strip

(2.1 A= x=(xy, ..., X) R |x, = x| < a for k=1,...,)
is contained in G.

In the sequel we use for a =(ay, ..., x,) €N§ the decomposition

a=ao+a",
where 2" = (2}, ..., %;, 0, ..., 00 and «” = (0, ..., 0, a4, ..., a,). Similarly we
write for ¢ eR"

E=g+e

Tueorem 2.1. Let G = R" be an open set with Property A; and let L(D) be
a k~-coercive operator in the space #,,(G). Then there exists a constant 7 > 0
such that

2.2) (3 I @) +1 2 5K (@)
la’|<r
for all ééR" (here the summation is taken over such ' =(a,, ..., a;, 0, ..., 0)

for which | <r).

Proof. Let ® eCZ(R’) such that supp® < (xeR’| |x,— xP| < a for all
k=1,...,j) and & # 0. Furthermore, let 8 CZ(R""/) be chosen so that
6(0) = 1. Define a function 6,€C§(R") by

(2.3) 6,(x) =~ ITEDP P (x L, x)0(x54 /L, .o XD,

One sees that the inclusion supp 8, = K = G holds and then 6, lies in C (G).
For a fixed £ eR" we define a function ¢, from CJ(G) by

(24) @1(x) = 0,(x) ">,
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Then one has

(25 (Fe)() =177 Fd(xy, ., x) 000 /L, - xa/D)
R
x e i =8lx) p=itn” =8 x) gy
= [tn=Dip ‘ ¢(,V1s e }’j)e(}’j+1, ey yn)e-im'-é".y')e-i(fln”-é").y”) dy
R’
— l(n-j)/P i‘l(pg)(nr — C’I+I(’1N_§u)),

where @0 cCy (R") is defined by (80)(y) = ®(V1s ..., Y)OWje1r -omr Vi)

We now consider the norms |[¢,l|,, and ||@,/|,u~. In virtue of (2.5) and
(1.1) one obtains

(2.6) oz = @m0 [ | Z(86) (' =& + (1" — &)k (]° dn

2—-;

Pdr.

\)

(@0) (1) k(¢ + & +7"/1+E")

=Q2m7" | |9
R

<Q2m k(&) [|/(¢6)(r)(l+C|r +1/IYMP de
R

<(2n)”"k(E)F [ [ r)(l +C(t'|+|t")) V|"d1:

Hence there is a constant D, > 0 with which
(2.7) ledlsx < DY k().
Furthermore one sees that (cf. [3], p. 34)

(28) @il ~ = Q@0 [ 17 (B0 () kk ™) (@' + & +1/1+ &) dr
R’

> (2m)""(kk ™) (&) [ | (®0) () (1 +C, [' + /1)~ V1|Pde
R?

2(2n)'"(kk~)(«f)”f| (@0) (1) (1+ C, (1T +[2D) V| dr,

where C, >0 and N, eN are chosen so that
(kk~)(E+m) < (14 C 1E)" (kk ™) ().

Inequality (2.8) shows the existence of a constant D, > 0 with which
(29) ldl” - > D3 (kK ™) (2P

Finally we consider the norm [|L(D)¢)l|,,. For all neR" it holds

(2.10) Z (L(D) @i)(n) = L(m (F ) (n)
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and then we get
(211)  IL(D) @i

=Q2m" | | # (B0) (1) k(T + & +1" /14 EY L' + & + 7"/l &P de
R

<) "k@P | .77(4?9) @OA+C(rI+ D) L'+ & +1/1+ é")l" dr.
TR"

In view of the Lebesgue Dominated Convergence Theorem the right-hand
side of (2.11) is converging to

(2m) "k (&) [ | F (80 @) (1 +C eI+ ")) Lz’ + &) dr.
R
Hence by the assumption (1.5a) and by inequalities (2.7), (2.9) ang (2.11) we
obtain by letting [ — = the inequality
(212) €, Dy (kk™) (<)

S C, D k(Q)+k(©)(@m)™" | |;?(a?0) @1+ C (| + ") L(z' + &)|P dr)'P.
. 4

In virtue of the Tayloris formula,

1 | R .
(2.13) L +¢ =Y _er((:)tla: Y —,'l,‘a)(g)ﬁ

la| <r la’|<r

and the validity of (2.2) follows from (2.12).

2.2, In this subsection we deal with open subsets G < R" satisfying the
following condition:

ProPerRTY B;. For a fixed number je 1, ..., n} there exists a constant
b > 0 such that
(2.14) Gaoilx=(x,...,X)JER |x;,| <b for k=1,....j.

Let C; be a subspace of C" defined by
Ci=1\zy,....2,0,...,00€C" z;eC for 1 <k <.
Denote by #¢ the Fourter-Laplace transform of a function ¢ €C§ (G). Then
we obtain for pe[l, o) and ke ¥

LemMMA 2.2. Assume that an open set G < R" satisfies Property B;. Then
there exists a constant K > 0 such that

(2.15) (L) (x+2) k()" dr < K loll} 4
”l
for all peCF(G) and z =& +in'eS;:= l1eC)| 1] < 1.
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Proof. Let ¢'eC¥(R) satisfying 0<y' <1 and ¢'(x)=1 for
xelveR!| |yl € b!. Furthermore choose " from Cg(R" /) such that ¢"(x)
=1 for xe'lyeR"J| |yl <1). Define functions &, eCT(R") through the re-
quirement

(2.16) Bx) =Y (Xga ooy XU (5010 0 X)),

Then for every ¢ eC§ (G) there exists e N such that @,¢ = ¢.
For every /eN and z =& +in'eS; one has

(2.17) (1L (®,0)(t+2)k(1)Pdr

R
= | |7 ("D @)t + &) k(n)|"dt
R
SM (=&)Y [|F (" Do)t + &) k(z+ )P dr

R
= (21" My (= &)7 || @, ¢li5

< (2m)" My (= &)1 Dy [1F N0l

where we used inequality (2.2.3) revealed in [3], p. 39.
We now consider the norm ||e"* @/ .. One has for all teR".

(2.18)  F (" P,)(1)

e N Xy, ooy XYW (X 1y <oy X)) €TV dX

",

%

ey

N (xy, .., x) e O dxy L dx;

= | j X

®

[ (e ns oo X)) e VX L dx,
R

= P F Y @y, ey D (F ¥ (Ears o 1),

where .7 (and .#,_ ) denotes the Fourier transform in R’ (and in R"™/ resp.).
Let C >0 and N,, N,eN be numbers such that

(2.19) M, (x) < C(1+ 1) 2 (L+ )"
= Chky, (t)ky,(z") for all 1 =1"+1"€R"
(cf. [3], p. 34). For each [eN one gets

(2200 1" W Fu Ty s T ke, () iy, -, d,
R
= | [(Fai¥ W @a1s oot kny @D dej s oy dr,
RV

< | WFu i W@ rs s Tk, @) dTjey,s ooy dr, =1 C.
RJ
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Furthermore one has
221y Fi Y L ) = (LY T ),

where &, denotes the Fourier—Laplace transform in C'. Let 4 be a number
such that suppy’ e !yeR’| |y| < A). In virtue of the Paley-Wiener Theorem
one can find a constant C’' > 0 with which

—(+Ny+1))2 .
1 el

222) (L) (g, T +ilny, o m)) S CU+TP+I%)
for all (ty,...,7)€R’ and (n,, ..., n) eR’. Since |#'| <1, the supremum

sup ]‘I.?,-(e"’"*"l//’}(tl, o ldry, L drg

Inlst

is finite, say C,. Hence we see by (2.18) and (2.20) that
||e("""’) ¢’||l‘["k < CZ Cl for all |l”l < 1 and leN

and then the validity of (2.15) follows from (2.17).
The previous lemma yields us the following one.

Lemma 2.3. Assume that an open set G < R" satisfies Property B;. Then
for each o =(x;, ..., 2; 0,...,0) there exists a constant C,. >0 such that
(2.23) (D) ol < Co IIL(D) @l .
for all @ eC§(G).

Proof. Let 1 €R" be arbitrary and let ¢ lie in C§ (G). Define functions
H, R and y: ¢/ - C through the relations

H(z) =(Lo)(t+(zy,....2;, 0, ..., 0)),
R(z) = L(t+(zy, ..., 2, 0,...,0)
and
1 for |7 <1,
z(z)=§0 for |z > 1.

Let ¥eNJ, such that F =(r, ..., r). Then we have

(224)  [HOYD* R)(O) | [z*Ix(2)dz < (FY(F—2)!) | |H)R()|x(2)dz

[HER! HEX!
(cf. [6], Lemma 3, p. 186). In other words, one has
(225 (F@) (D) L ()| E,
S(FYF=a)) | |L(LD) o)t +(zy. ..., 2;, 0, .., 0) dz,
HE!

o IR
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where E,. = | |z¥|dz > 0. Hence by the Holder inequality and by the
lz] <1
Fubini Theorem we obtain

(2.26) I (D) oll} . EX

S (FYF=a)pme=t [ [ | L(LD @) (t+(zy, ...r 25, 0, ..., Q)P dzdr
=<1
= (FYF—aNym=t [ | (L(D)¢)(t+(zy, ..., 2;, 0, ..., 0))|" d dz,
lz|S1 gn
where m; denotes the integral j' 1dz. Combining inequalities (2.15) and
lz| €1

(2.26), we get the assertion (2.23).
We are now ready to show

THEOREM 24. Assume that an open set G < R" satisfies Property B;.
Furthermore, assume that there exists a constant 7y > 0 such that the inequality

(2.27) (Y L QP41 2 9k~ (&)
|2’| <r

holds for all (e€R". Then L(D) is k~-coercive in the space A,,(G), that is,
there exist constants C; >0 and C, > 0 such that the inequality
(2.28) lIL(D) (P”p.k 2 C, ||(P||p.kk'” -G, ”(P”p,k
is valid for all ¢ eCZ(G).

Proof. For every ¢ eC§(G) one has by (2.27)
(229)  PUF Q) Kk)EP <27( Y I O(F ) kEP+(F) (DK

la’| <r

=2°( Y |Z(L(D) @)@k ()P +I(F ) (&) k(E)IF).

ENE4

Integrating over R” and using inequality (2.23), we get the validity of
(2.28).

Combining Theorems 2.1 and 24, we obtain

CoroLLARY 2.5. Assume that an open set G < R" has Properties A; and
B;. Then the operator L(D) is k~-coercive in the space #,,(G) if and only if
there exist a constunt 7 > 0 such that the inequality

(2.30) (2 L) +1 2 9k~ ()

la’| €r

holds for all (eR".

Applying Corollary 2.5 with j = n, we see that for a bounded open set G
the operator L(D) is k ~-coercive in the space 4, (G) if and only if with some
constant y >0



Coercive linear partial differential operators 217

(2.31) (T (L@ P +1 =9k~ (&) for all EeR".

la| r
More generally, the open ‘strip
(2.32 G=\yeR" |y,—ydl <afor k=1,...,]j

}

has Properties 4; and B;.
The partial differential operator P(D) = D, (D#+ D3+ D3) satisfies
(X PP PYO@) >R for all £eR?.

l(x1.0.0)| <3

Hence P(D) is k,-coercive in the space .4,,(G), where G is the strip
(x = (xy, X5, X3) ER?| |x;| < b].

3. On strongly k ~-coercivity of L(D).

3.1. This section deals with strongly k£~ -coercive operators. Applying the
proof of Theorem 2.1, we get the following necessary algebraic criterion for
the strongly k~-coercive operators L(D).

THeoREM 3.1. Let G = R" be an open set with Property A;. Furthermore,
let L(D) be a strongly k~-coercive operator in the space A,(G). Then there
exists a constant 7 > 0 such that the inequality

3.1 (Y LR 2+1 25,70
la’|sr
holds for all £eR", where Ly ():= Re L(S).
Proof. In virtue of the strongly k™~ -coercivity of the operator L(D) we
have for all @ eC§(G)
(3.2 Cillollii= < Re(L(D) g, 9l + C1llolii = (Lp (D)@, ok +C:ll0ll;.

Let ¢, be functions in C§(G) defined by (2.4) (with p = 2). Then by the proof
of Theorem 2.1 one sees that there exist constants D, > 0 and D, > 0 with
which

(3.3) ol < D} k(&)?
and
(34 2 i< = D3k (&) k™ (2).

Furthermore, we obtain
(3.5) (LR.:(D) PDi» (Pl)k
=Q2m "y Lae('i)l-f(¢9)('7'—¢'+1(n"—€”))k(n)lzd'1
R
=2 " j' l.#”(tf()) (‘t)lz(k (T,+é/+‘[”/[+l£”))2 [Lg (T + & +1"/1+ &) dT
R

<(21) k(&2 | | F(P0) (1) (1+ C (7| + [t D] | Ly (€ + ' + 7Y dr,
R
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where the right-hand side is converging to
(2m) "k (&)? | |.é‘°'(d>~0)(r)(l +C(Ir’]+|t”|))N|2|LRC(§+T’)| dr.
R

Hence the assertion follows from (3.2), (3.3), (3.4) and from the Taylor
formula (2.13).

3.2. A sufficient condition for the strongly k~-coercivity follows from
Theorem 2.4 by choosing p=1.

THeorem 3.2. Assume that an open set G < R" has Property B;. Further-
more, suppose that there exist constants v >0 and # €R such that

(3.6) Ly (&)= #  for all ZeR"

and

(3.7 (Y L) 2+ 129k~ (&) for all (R
la’| <r

Then the operator L(D) is strongly k~-coercive in the space #,(G).

Proof To a function ¢ eCJ(G) we define ¢ ¥ eCT by ¢ (x) = @(—x).
Then one has

(3.8) suppe” < ~G:= \yeR" —yeG)|
and
(39 supp(@ x@ ") < suppo+supp¢” < G+(—G),

where % denotes the convolution

(@x@ ) (x) = [ o(Me(x—y)dy.

RN
Furthermore, we have for all neR".
(3.10) |7 (@ x @™y = LF @) (F o ")l = (F @) ().

The open set G +( —G) satisfies Property B;. Hence in virtue of Theorem
2.4 there exist constants ¢, >0 and C, > 0 such that
(3.1 Cillo*o VIl 2~ < N DN @ @ N1 k2+ Collo* || 42
in other words,
(312 C,2m)7" [ F@) k> k™ (ndn
”l

S2r7" [ Lee MIF Q) MI* k2 () + C22m) ™" | IF @) () k (m)]* dn.
R R
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Inequality (3.12) yields us for all ¢ eCT(G)
(3.13)  Clloll =

<27 [ (Lec ()= H)NF @) I* k2 () +(Co + [ A D lloll
R"

= Re(L(D) ¢, @) +(Co+|#1— H)olli.
This shows our assertion.

Combining Theorems 3.1 and 3.2 one sees that when G is the open strip
(2.32), the operator L(D), for which L, (&) > 0, is k~-coercive in the space
#,(G) if and only il there exists a constant 3 > 0 such that

(Y L&) 24123  for all £eR".

la’l<r
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