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0. Introduction

This paper is really about continuous maps of the circle onto itself of degree
one. However, it is usually much easier to work with their liftings instead.
We shall call such liftings old maps (see [M2]; old stands for degree one
liftings with the order of letters changed). They are characterized by the
property F(x+1) = F(x)+1 for all xeR.

For any old continuous map F: R — R, the set

L(F) = closure {lim sup %(F"(x)—x): X ER}
is a closed interval (perhaps degenerated to a point) and it is called the
rotation interval of F (see [NPT], [BGMY]). We shall denote the left and
right endpoints of L(F) by g,(F) and g, (F) respectively. By (" we denote the
space of all old continuous maps with the C° topology (uniform); by (" the
space of all old C" maps with the C" topology (uniform) (r =1, 2, ..., o, w,
where by C® we understand real analytic).

If .o/ is some space of old maps, we shall say that Fe.o/ has an .o/-
persistent rotation interval if there exists a neighbourhood U of F in .o/ such
that L(G) = L(F) for all GeU. Bamon, Malta and Pacifico proved the
following theorem [BMP] for r =1, 2, ...

(1) The set of all maps with ('-persistent rotation interval is open and

dense in (7,
(i) If F has ("-persistent rotation interval then o,(F) and o,(F) are
rational.

The aim of this paper is to generalize the above result to other spaces of
old continuous maps. Even more important than the generalization itself is
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showing that the whole phenomenon of persistence of the rotation interval
has nothing to do with the smoothness of the maps under consideration.
Some related results were obtained independently by L. Jonker [J].

The translation of the results into the language of maps of the circle is
very simple and I leave it to the reader.

The natural projection’ x - exp(2nix) of R onto S will be denoted by e.

Whenever the fractions like P winl appear, it will be understood that p and ¢
q

are relatively prime integers and g > 0. Any rational number can be written
uniquely in this way.

This paper was written essentially during Warwick Symposium on
Smooth Ergodic Theory 1986. I am grateful for the hospitality of Mathemat-
ics Institute of Unmniversity of Warwick and the support from the British
Science and Engineering Research Council.

1. Old continuous non-decreasing maps

We shall denote the space of all old continuous non-decreasing maps with

C° topology (uniform) by 4. For « €R, by R, we shall denote the translation

by a: R,(x) = x+a. If Fe© then we set F, = R,0F, ie. F,(x) = F(x)+a.
We shall use the following simple observations:

(1) If F, Ge® and either F or G belongs to 4" then F < G implies
F'<G"for al n=>0. ,

(2) If F e then g,(F) = g,(F) (to prove it, look at the standard proof
of the existence of a rotation number for a homeomorphism).

Because of (2), we shall write ¢(F) instead of g¢,(F) or go,(F) if FeA.

(3) If Fet" then F, et for all aeR and ¢(F,) is a non-decreasing
function of a.

(4) o(F) depends continuously on F €A
5) ZeL(F) if and only if there exists z €R such that Fi(z)—p = z. .
q

LEMMA 1. If FeA, a >0 and n>1 then F} > (F"),.
Proof. We have
Fi(x) = F,(F; " (x))+a = F(F" '(x))+a = F"(x)+a = (F),(x). =

Lemma 2 ([I], [M2]). If F e A" and o (F) is irrational then a > O (respec-
tively o < 0) implies o(F,) > o(F) (respectively o(F,) < o(F)).

We shall say that F €A4" has a stable rotation number p/q if there exist
x, y€R such that Fi(x)—p <x and F(y)—p > y. Clearly, this property is
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open (i.e. for a given p/q, the set of F € 4" having stable rotation number p/q
is open) and if F has a stable rotation number p/q then o(F) = p/q. These
properties justify the name.

If F has no stable rotation number then at least one of the following
three cases occur:

Case 1. o(F) is irrational,

Case 2. o(F) _P and Fi(x)—p < x for all x€R,
q

Case 3. o(F) =% and Fi(x)—p > x for all xeR.
q

LEmMA 3. (a) If Case 2 occurs but Case 3 does not then for every ¢ > 0

there exists 6 €(0, €) such that Fs has a stable rotation number g

(b) If Case 3 occurs but Case 2 does not then for every ¢ > 0 there exists
o €(—e, 0) such that F; has a stable rotation number p/q.

Proof. We shall prove (a); the proof of (b) is analogous. Since Case 3
does not occur, there is y €R such that Fi(y)—p < y. If § is small enough,
then also Fi(y)—p <y. Since o(F) = p/q, there exists zeR such that Fi(z)
=z. For 6 >0 we have by Lemma 1,

Fi(z)-p> Fi(2)+0—p=z+6>z
and therefore F; has a stable rotation number p/q. =

Remark 1. If both cases 2 and 3 occur then F? =R,.

2. Endpoints of the rotation interval

For F € © we define the maps F and F by F(x) = inf F(y), F(x) = supF(y)
y2x ) yS€x
(see [M1], [CGT], [M2]). Make again simple observations:
(6) F, Fen,
() Fs=Fs, Fs=F,,
(8) F and F depend- continuously on F € 0.

The following fact was stated without proof in [M1]; it was proved in a
more general situation in [M2]. We are going to:give a simple proof below.

Lemma 4. If Fe 0 then L(F) = [o(F), o(P)].

Proof. Since F < F < F, then by (1), L(F) = [o(F), o(F)]. To prove the
equality it is enough to find points y, z €R such that F"(y) = F"(y) and F"(2)
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= F"(z) for n =1, 2, ... We shall show the existence of such y; the proof for
z is analogous.

Assume that such y does not exist. Then for each x €R there exists n > 0
such that F"(x) # F"(x). Since F(t) # F(t) only if t is in the interior of one of
the intervals on which F is constant, this means that for some k < n, F*(x)
= F*¥(x) and F*(x) is in the interior of one of such intervals. Then there exists
a neighbourhood U (x) of x such that F*® is constant on U(x) (k(x) = k).
From the cover U (x): x€[0, 1]} of [0, 1] one can choose a finite subcover
tU (x;))i=, and then for m = maxk(x;), F™ is constant on each U (x;). Hence
F is constant on the whole [0, 1] — a contradiction since F is old. =

THEOREM. Let .o/ be a topological space whose elements are old maps.
Assume that:

(@) If Fe.o/ and U is a neighbourhood of F in ./ then there exists ¢ > 0
such that Fs;eU for all 6 e(—¢, ¢).

(b) If U is an open subset of () then U N <« is an open subset of o (in the
topology of ).
(c) If for some p/q and Fe.o/ N4 we have F?= R, then for every

neighbourhood U of F in .o/ there exists GeU and x, y €R such that G*(x)—p
=x and GA(y)—p # .
Then:

(1) The set of all maps with .o-persistent rotation interval is open and
dense in .

(ii) F €.o/ has .of/-persistent rotation interval if and only if F and F have
stable rotation numbers.

Remark 2. Clearly, if F and F have stable rotation numbers then g, (F)
and g,(F) are rational

Remark 3. It follows from (ii) and from the fact that ¢ satisfies (a)<(c)
(see Proposition later) that if .o/ satisfies (a)+(c) then F €.o/ has .&/-persistent
rotation interval if and only if it has C-persistent interval.

Proof of Theorem. We start by proving (i)). If F and F have stable
rotation numbers then by (8), F has (-persistent rotation interval. Hence, by
(b), F has also .o/-persistent rotation interval. On the other hand, if F has .&/-
persistent rotation interval, then by (a), for some ¢ > 0 we have o(F;) = o (F)
and g(F,;) = o(F) for all §e(—e¢, ). This cannot occur in any of the three
cases when F (respectively F) has no stable rotation number. This proves (ii).

Now we prove (i). The set of all maps with .&/-persistent rotation
interval is open by the definition. Suppose that it is not dense in .&/. Then
there exists F €.o/ and its neighbourhood U in .¢/ such that no element of U
has .o/-persistent rotation interval.
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Assume first that F €.4". By (a), there exists ¢ > 0 such that F;eU for all
de(—e, €). By (ii), these F; have no stable rotation number. By Lemma 2,
one of them has rational rotation number. By Lemma 3, both cases 2 and 3
occur for it. Hence, by Remark 1 and (c), there exists G €U for which either
G ¢.4 or exactly one of the cases 2, 3 occurs. The second possibility is ruled
out by Lemma 3. In such a way our situation is reduced to the case of
F¢n.

If F¢ A then F and F have intervals on which they are constant and
therefore neither F§ = R, nor F}= R, is possible. Then, by (a) and Lemmas
2 and 3, there exists é such that F;eU and F; has a stable rotation number.
By the same argument, there exists »n arbitrarily close to 6 such that F,eU
and F, has a stable rotation number. If 5 is sufficiently close to 4, then F,
has the same stable rotation number as F; and hence by (ii), F, has .«/-
persistent rotation interval. Thus the set of all maps with .o&/-persistent
rotation intervals is dense in .&/. = '

ProOPOSITION. For .o = (, of = (1, of = (2, ..., o = (® and < = (®
the assumptions of Theorem are satisfied.

Proof. The assumptions (a) and (b) are obviously satisfied. Assume that
Feod n.4" and F? = R,. The function &: R — R given by

q-—1

®(x) = [] (1—cos(2n(x—F‘(0))))

i=0

is non-negative, periodic of period 1, real analytic, and @(x) = 0 if and only
if x = F™(0)+n for some m,neZ, m>0. If ¢ >0 then G = F+¢® is an old
map, Ge.o/, G > F and G4(0) = p. Moreover, if y is not of the form F™(0)
+n, then G(y) > F(y), and thus G(y) = F* ' (G(y)) > F* ' (F(y) =y+p
(the strict inequality is due to the fact that F is strictly increasing, a
consequence of the assumption F? = R)). By taking & small enough we can
get G arbitrarily close to F. This shows that (c) is also satisfied. =

Remark 4. It would be nice to have (c) replaced by a simpler assump-
tion, for example

(¢) In each non-empty set U — .o/ there is F which is not of the form
R,. '

The natural idea to do this seemed to be to prove

(») If Fe#, F*=R, for some p/q and F # R,, then for every ¢ >0
there exists 6 €(—e¢, ¢) and r/s such that o(F;) =r/s and F* # R,.

Unfortunately, as was shown By J. Graczyk, () is false even for analytic
F. This leaves the question about simplifying (c) open.
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