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In 1983 the author proposed a classification of periodic functions based on
transformations of Fourier series by using multipliers and translations of the
argument. The basic idea is the following.

Let feL(O,2r) and let a, =a/(f), b, =b.(f), k=0,1,..., be the
Fourier coefficients of f. Furthermore, let (k) be an arbitrary function on
the positive integers and feR a fixed number. Suppose that the series

(1) Z m(a,‘ cos (kx + Bn/2) + by sin (kx + pr/2))

is the Fourier series of some function from L(0, 2n). We denote this function
by f(*), and call it the (Y, B)-derivative of f; the set of all functions f with
the above property will be denoted by L§. Let, moreover, 9t be a subset of
L(0, 2n). Then if f €L} and fy e 0, we say that fis of class L} 9. Denote by
Cf,’ the set of all continuous functions from LY. For y (k) =k~", r >0, the
class C§ 9 turns into the well-known Weyl-Nagy class Wy 9, which for r an
integer and f = r is the class of 2n-periodic functions whose rth derivative is
in M. In the case where Z n/z(k) cos(kt + fn/2) is the Fourier series of an
integrable function #1038 the class L% N coincides with the set of all f which
can be represented as a- convolutnon f =ao/2+¢«¥; with @€eWN; such
classes were studied by many authors (see e.g. [3], [4], [6], [7], [10], [12],
[13], [15], (18D.

Our approach permits a wide range of periodic functions to be classified,
including the ones with divergent Fourier series, the C*® functions and in
particular analytic and entire functions.

Up to the present, the author and his students have considered for the
new classes all principal problems of approximation theory which were
earlier formulated for classes of differentiable functions. The results obtained
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438 A. L. STEPANETS

are final to the same extent as the corresponding ones for classes of functions
defined by means of Weyl's fractional derivatives.

The results are formulated in terms of the parameters which determine a
given class. They embrace the known assertions for classes of differentiable
functions, but also, as was to be expected, exhibit some new phenomena not
observed earlier.

The basic method of study in C and L spaces is to obtain and
investigate the integral representations for deviations of polynomials on
function classes. When studying problems in integral norms, multiplier
theory is also used.

The approximation properties of L§ i essentially depend on the function
¥ (k). When considering problems in C and L spaces, we assume that (k) is
a convex sequence tending to 0 as k — 0 whose terms are the values of a
convex function y (v) of the continuous argument v 2 1. Denote by 9 the set
of all such functions. If Y €9k and | v 1y (v+1)dv < o0, then we write
Y €F. Further, with every ¢ e we associate a pair of functions n(t)
=n(: 1), p(t)=p(y:1) given by

ne =y 'Gy), wO=thO-1)",

and we put

W = Y €M 0< K, < ul; ) < Ka),
Mo = We 0<pu(;<Ksl.

Here and in the sequel, K and K;, i =1, 2, ..., are absolute constants.
Denote also by Wi, the subset of those y € Wi for which u(y; 1) is increasing
and unbounded from above: M, = {Y eM: uy:1n 1 oo}. It can be shown
that if Y €M, then the classes C§ consist of C* functions. If, moreover,
ny;t)—t <K, then Cy RN is a class of analytic functions.

The classes M,, M, and M, have natural representatives: ¥, (v)
=exp(—ov), r>0,6>1, for M,; o, () =v™", r>0, for M; and y,(v)
=In""(v+e), r >0, for M,.

We will take for W lhe unit balls S, in L, spaces: S, = \¢: |loll, < 1],
where [loll, = (" lo()Pdt)"” for 1<p < and lloll —eSSSUle(t)I we
then write LS, =L} ,, 1 <p < x, and C§ S, = C}, .. We will also take for
N the function classes H, and H, dehned by

H, = l¢: I|¢(X+t) ¢ (Mlc < @ (1),
H,, = ¢ llp(x+0)=oXl, < @),

where w» = w(t) is a modulus of continuity.
We will use the following approximation characteristics:
0,(f:x)=f(x)=S,-,(f; x) — the deviation of the partial Fourier sum
S,-1(f:x) from the function f(x):
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‘n(A)x =sup Mg, (f; ¥lix: f€A), where X is Cor L,, 1 <p < x, and
A is a function class;

E,(f)x — the best approximation of the function f by trigonometric
polynomials of order n—1;

E.(A)x =sup (E,(f)x: [ €A].
We now formulate some of the results obtained.

1. A representation of deviations for linear means of Fourier series

Let A ='A{"'®, be a triangular matrix of real numbers such that i{" =0
for k > n and A = 1. To every function f € L(0, 2n) with the Fourier series

S[f1=ay/2+ Y (acoskx+bsinkx) = Y A(f; x)
k=1 k=0 °

we associate the sequence of polynomials B
n—1

() Unfixs )= Y A" AlS: ).
k=0

Further, let {4,(r)}2, be a sequence of functions defined on [0, 1] such that
lalk/n) =A™, k=0,1,...

Put
(1-4,)y(), 0<uv<I/n,
(3) T,(0) = 1,(0: A;¥) = S (1=, )¢ (), 1n<v<,
Y (nv), v>1,
so that
oy 1=y k), 1<k<n-1,
@ lk/m) = %w(k), k>n,
and let
t,(t) =" [ 1,(v)cos(vr + Pr/2)dt.
0

Denote by M the set of all essentially bounded functions ¢ € L(0, 2n):
M = {peL(0, 2n): esssup|op| <o} = L.
With the above notation we have the following assertions.

THEOREM 1. If the function t,(v) = t,(v: A, ) defined by (3) is continuous
and its transform (1) is integrable on the whole real line, then for all f eC§ M,
ar euch x,

(5) S(xX)=U(f: x; A) = Tf,,*(x+t/n)f,,(1)dt, neN.
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THeoreMm 1. If 1,(v) = ,(v; A; ¥) is continuous, if its transform 1,(t) is
integrable on R, and if the function

suplt,(x)l, ¢>0,
~(o)t = x>t
= O=suple,al, ¢ <0,
x<t
is integrable on the set |t| > A for some positive A, then for all f €L} equality
(5) is valid at almost every point of any interval of length 2.

Let us point out that to obtain the representation (5) for a given
polynomial U,(f; x; A) it is only necessary to choose a function 7,(v) of a
continuous argument in such a way that 7,(v) is continuous, its transform is
integrable and (4) is satisfied. This fact may be used to choose 7,(v) so as tg
facilitate the investigation of the integral on the right of (5). In particular, to
obtain an integral representation of the deviation ¢,(f; x) of the partial
Fourier sum S,_, (f; x) from the function f €Cy M (or f eL}), it suffices to
take for 7,(v) any continuous function t}¥(v), v = 0, satisfying

0 k<n-1
* k = 2 L
= (/) {wk), k> n.
The following function turns out to be convenient:
0, O<v<1-1/n,
W) =1+n@w-)yY@x, 1-1/n<v<1,
Y (nv), v=1.

It meets all the necessary requirements and is used to obtain, with the aid of
Theorem 1,

THEOREM 2. If Y €F, then for all feCy M, at each x,

(6) enlfi %)= | I (x+t/m L (0 dt+3 A, (f; x),

where

) LO=I1PWY;)=n""! tFW(nv)cos(vt+/i1t/2)dt.
1

If y €F and f €LY, then (6) holds almost everywhere.
For B =0, (6) holds for all y €M at each x if feC{M, and almost
everywhere on the period if f eL%.

Note that the improper integrals in (5) and (6) are understood in the
principal value sense, i.e. as limits of integrals over symmetric increasing
intervals.
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For y(k)=k™", r >0, and B an integer, formula (5) was obtained by
Nagy [6]. It was then extended to all real g by S. A. Telyakovskii [18]. The
proofs of Theorems 1 and 2 are given in the papers [12] and [13] by the
author.

2. Approximation by Fourier sums in C and L,

Proceeding from equality (6), we obtain the following statement concerning

ea(f: x):

THEOREM 3. Let Yy €F and let a = a(n), neN, be any numerical sequence
with a(n) 2 ao > 0. Then we have the following asymptotic formulas as n — o0

nn

p, (n)+b: (a),

4
@®) En(CY.)c = ;z-lﬁ (m)In*

where

b@=00)[ym+ ? t" Y (nt+t)de+ Tt"(ll/(n)—lll(n+n/t))dt],

1/a(m) a(m)

and
2 4 hn

@®) 8.(CsH,) = ;j'ﬁ(n)sn(w) In m+dﬁ'(a, w),
where

dy(a, w) = 0 (1) b (@) w(1/n),

2

9) sp(@) =0, [ w(2/n)sintdt, 2/3<06,<1,

0

and O,=1 if w(t) is a concave modulus of continuity. Here In*t
= max !{Int, 0} and O(1) denotes the quantities uniformly bounded with respect
to n and .

An analogous statement is valid for the space L,. More precisely, under
the assumptions of Theorem 3, on the left-hand sides of (8) and (8’) one can
write &,(L},,) and &, (L} H, )., respectively provided that the quantity 8, in
(9) is subject to the condition 6, €[1/2, 1].

Using the freedom of the choice of the sequence a(n) and putting a(n)
= u(n) = u(y;n) in (8), (8') and in their analogues for L,, we obtain
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THEOREM 4. Let Y €M¢ o, = WM U M,,. Then for all feR we have as
n—o:

(10) 5e(Chdc = 6a(Lh 1)1 +O ()Y (n)

4
=?ln+ n(n(n)—n)+O0 () (n),

2
(11) E(CiHy)e = V(s (@) In* n(n(n)—n)+ 0 D)y (o (l/n).

On the other hand, if Yy €M, then

4
(12) Ea(Ch o)c = 6,(L51), +O(D) Y (n) = -ng(n)lnn+0(1)¢(n),

2
(13) ﬂn(Cgﬂw)c=F\Hn)sn(w)lnn+0(1)¢(n)w(1/n)-

Here the O(1) are quantities uniformly bounded in n and BeR, and n(n)
=n:n =y~ (¢ (n). In (11) and (13), the left-hand sides can be replaced
by &(LyH,,), and E(LYH, ), provided that ©,€[1/2,1].

The function ¢, (t) =t~", r >0, t > 0, belongs to M, and has n(n)—n
= (2'"—1)n. Hence Theorem 4 implies

THEOREM 4'. Let Wy = C:.‘w and Wy H,, = C:' H,,. Then for all BeR as
n—oc

(14) En(Wp)c = %lnn+0(l)n",
(15) /},,(IM{HH,)C=2—ft—"2—(nir)lnn+0(l)n”w(1/n).

Equality (14) for r being a positive integer and f = r was obtained by A.
N. Kolmogorov in his celebrated paper [5] which initiated a new trend in
approximation theory and in the theory of Fourier series — looking for
asymptotic formulas for Lu.b. of deviations of linear means of Fourier series
on fixed function classes.

For all r > 0 and B = r, equality (14) was obtained by V. T. Pinkevich
[9].-Under the same assumptions, equality (15) is due to S. M. Nikol'skii [7];
for all feR, it was proved by A. V. Efimov [4].

The function ¥, (t) = exp(—0d1") belongs to 9N for all 6 >0 and r > 0,
and satisfies n(y,: n)—n = n' ""(In2/(r6)+ O(1)). Hence Theorem 4 yields
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THEOREM 4”. Let 6 >1, r >0, BeR and Y, (t) = exp(—t"). Then, as
n — oo,

4
En(Cho)e = —exp(=&n)In* n' "+ O (1)exp(~br),

/;',,(C:' H,)c = %exp(—én’)sn(a}) In* n'~"+0(1)exp(—on)w(1/n).

The proof of Theorem 4” can be found in [14]; in the general case in
the space C, Theorem 4 was proved in [12] and [13].

An analogue of Theorem 4’ in the space L, is also known. The
fundamental results here are due to S. M. Nikol'skii [7] (see also [1], [2],
[11]). The assertions of Theorem 4 in the L, norm were proved in [17].

3. Best approximation by trigonometric polynomials
in C and L,

For lLub. of best approximations in C and L, we have the following
assertion.

THEOREM 5. Let Yy €M , and feR. Then there are absolute positive
constants K, and K, such that '

(16) Kiy(n) < 1B, (CFo)es EalL0)1) < Ko ¥ (n),
(17 K,y (mw(1/n) < E,(C} Hu)c, Eo(L} Ho)y )
< Ky (nw(l/n),
where w = w(t) is an arbitrary modulus of continuity. The estimates (16) and

(17) are also valid for Yy €M, and B = 0.

For y(k)=k™", B=r, the estimates (16), (17) are the well-known
Jackson inequalities. The proof of Theorem 5 can be found in [16]. We point
out that the required order of best approximations is realized by polynomials
generated by linear transforms of Fourier series, i.. by polynomials of the
form (2) with

0, 0<v<ec,
Yy (n)(v—cy
c = - N 1.7 3° ns sl,
AO=3 vy =<0
0, v=1,

where

co=1=(¢ "1 (3¢ (m)—n)/n.
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4. Approximation by Fourier sums and
best approximations in L, spaces

As is well known, for s€(1, o) the orders of the best approximations E,(f),
and of the deviations ||g,(f: x)||; coincide. The following assertions are true:

THEOREM 6. Let Y €M, and suppose n(Y;t)—t < K for all t 2 1. If
1<p, s< o and feL}L,, then for all neN

(18) En(f)s < “Qn(f9 x)”s < Kl W(n) En(.fﬂ*)pa
(19) K,y (n) < E,(L},), < Ky ¥ (n),

where K, and K, are absolute constants.
On the other hand, if either y €M, and n(Y;t)—t =2 K >0, or Yy e M
and 1 <p, s <o, then for all feLYL, and neN

(20) E,(f)s < llea(f; ¥)ls < C,p s ¥ (W) (n(m) = ) E,, (f),,
(21 Cps ¥ (m(n(n)—nf < E (LY ), < Coyy (n)(n(n)—nf,

where n(n) =y ' (3¢ (n), « =max(0, p~'—s7"), and C,,, C\\) are positive
constants which may depend on p and s only.

It has been observed above that the functions ¥, (v) = v™", r > 0, belong
to Mc. They satisfy n(n)—n = (2" —1)n, and then (16){21) turn into well-
known classical relations established earlier by D. Jackson, A. N. Kolmogo-
rov, S. M. Nikol'skii, B. Nagy, J. Favard, and also V. K. Dzyadyk, A. V.
Efimov, S. B. Stechkin, S. A. Telyakovskii and others. Relations (18), (19) are
proved in [16].

If § satisfies

(22) lim In |y (k)|** = o0,

k =
then all continuous functions from LY have regular extensions to the whole
complex plane, i.e. the functions from C} are restrictions of entire functions
to the real axis. This means that in this case C§ 9t and L} 0 are classes of
entire 2n-periodic functions and of equivalence classes of such functions
respectively. For these, the following assertions are valid.

THEOREM 7. Let (k) be such that |y (k)| is decreasing and satisfies (22).
Then for all felL,, 1 <p < oo, we have ae.

v }ﬁ*(x+t)005(m+ﬁn/2)dt+e..+1(f; x), neN.

(23) e.(f;¥) = o
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Moreover, for all n > ny = min k: |y (k)Y <1
2n |y () 1"
1—|y (m)*

where E, (), is the best approximation in L, of the function ¢ by trigonometric
polynomials of order n—1.
If feCyM = Cy L, then (23) holds at each point.

i
”Qn+l (fa x)”s < En(.fﬂ*)p’ 1 < P> S S oo,

If B is a function class contained in L(0, 2n), we put
A,(B), =sup||n~! | @(x+1)cos(nt+pn/2)ds|,.
@eB -x

THEOREM 8. Let Y (k) and ng satisfy the assumptions of Theorem 7. Then
for all n>= n,

bn(Ly ) =Y (M [A,(S)+7,(W5im], 1<p,s<oo,

2l ()" o
= (™~ ™

En(Ly Hy ) = ¥ (W [A,(H, ) +7,(4: n; )],
lye (¥ n; ) < Cpy,0(1/n),
where C, is a quantity which depends-on p only. In particular,

Ea(Lg )1 =¥ (M (1/n+7,(Y; n),

[y, (¥ Ml <

20,2
En(LfHy, )y = ¥ (n) (T‘” | @(2t/n)sintdt+y,(Y; n; w)>,
0 !

where ©,€[1/2,1] and O, =1 if w(t) is a concave modulus of continuity,
En(Chdc =Y (M) (d/m+7.,(im), e )l < vm

20,2
&(CyHy)e = ¥ (n) (—f [ w(/mysintdt+y5; n; w)),
0

[0 (¥ n; 0) < Ky,w(1/n),
where K is an absolute constant.

For all p, s> 1

An(S,)s = llcos x|l sup /a3 (¢)+ b3 (¢),
OESP
and if p =2 then
sup \/ai(g)+b2 (@) =n" "2

?eSy
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This yields

- CorROLLARY. If Y and n satisfy the assumptions of Theorem 7, then for all
s=>1

Ea(L2)s =¥ (M(llcos xlls ™2 4+9,(05 n),  |y2(4; n)l <
In particular, for s =2
€ (L5.2)2 = ¥ ()(1+72(¢; n)).
The results are most final in L, (see [16]).
THEOREM 9. Suppose |y (k)) < M =const and let v(n) = sup,s,|¥ (k).
Then for all neN
ﬁn(Lﬁ.z)z = En(L'g,z)z =v(n).

THeorem 10. Let f €Ly L,. Then f€L, if and only if the series
Y (WP —y* (k=) E(f):
k=2
is convergent. In the convergence case, for all neN

(24) EX(f): =¥ MEX+ Y (WP () —y*k=D)E}(S);.

k=n+1
On the other hand, if f €L, then f €L} L, for all (or, equivalently, for some)
BeR if and only if the series

(25) Y (W2 (k) -y 2 (k=) E(f),
k=2
is convergent. In that case, for all neN

EXf): =y MEXN.+ X (b2 (k—y™ (k- 1D)E(f):.

k=n+1

Observe that the first part of the theorem enables us to draw con-
clusions about the rate of convergence of E,(f), to zero from the information
about the (¥, f)-derivative of f. Such assertions are usually called direct
theorems of approximation theory. The second part is an inverse theorem —
from the properties of E,(f), we derive some properties of the function itself
and of its derivatives. In particular, (24) shows that feL, has (y, f)-
derivative with finite L,-norm if and only if the series (25) is convergent. It
follows, in particular, that for all feL, the (¢, B)-derivative for y, (k)
= E,(f), is in L, for no feR.
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