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0. Introduction

In this paper, we consider mappings f of a compact interval into itself which
are piecewise differentiable and expanding; we consider also f-invariant
probability measures.

Such measures always exist; but if we wish to study the statistical
behaviour of almost every f-orbit, with respect to the Lebesgue measure on
[0, 1] (the compact interval under consideration) one type of them is of
particular interest: probability measures u which satisfy

n—1 1

) lim ¥, g(f'(9) = [90)du()
n—+wo " =0 0

for x belonging to an open set in [0, 1].

These measures, called S-R-B  (Sinai-Ruelle-Bowen), when they exist,
provide some visualisation of the attractors of the dynamics of f.

We are also interested in another type of invariant measures: absolutely
continuous invariant probability measures, abbreviated a.c.i.p.m. The exist-
ence of an a.c.i.p.m. tells us that the dynamics of f is “chaotic”’. Moreover, if
an a.c.i.p.m. u is ergodic — i.e. if the u-measure of each f-invariant set is zero
or one — then it is an S-R-B measure.

We are going to discuss the existence of an a.ci.p.m. for piecewise
differentiable expanding maps of the interval.

This problem was first studied in the case of piecewise linear transform-
ations [Re]; [Pa]; [Wi]; then in the case of piecewise C? maps [La-Y].
Finally, the existence of an a.c.i.p.m. was obtained under conditions weaker.
than C? [W]; [Co]. The problem is therefore: is the C' character of

14 — Banach Center t. 23 [209]
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piecewise expanding maps of the interval sufficient for the existence of an
a.c.lp.m.?

We give a condition on the modulus of continuity of f’ which ensures
the existence of an a.c.i.p.m.; we prove that it is ergodic and Bernoulli in one
particular case. Then we construct a piecewise continuous map differentiable
except on a countable set of points, which does not fulfil this condition and
has no a.c.i.p.m. [Sc].

1. Definitions; notation

DEerFiNITION. A mapping f of the interval [0, 1] into itself is called
piecewise C' expanding if there exist a finite partition ([a;, @;+,])i=0....,—1 Of
the interval [0, 1[, 0 =ay <a; <...<a,=1, and a real constant ¢ > 1
such that

(i') flasa;4 1 18 C' and extends to a C' function on [a;, a;4 ],
(il) I(fl]ai,aH. 1[)" ? Q‘

A probability measure defined on the Borel o-algebra of [0, 1] is called
J-invariant if for all Borel sets B in [0, 1] we have

u(f™1(B) = u(B).

A measure is an a.c.i.p.m. if it is f-invariant and there exists a function h
defined on [0, 1], integrable with respect to the Lebesgue measure 4 on
[0, 1], such that

[ h(x)dA(x) =1,

[0,1]

and for all Borel subset B of [0, 1]

u(B) = [h(x)dA(x).
B

The problem of existence of a.c.ip.m. for C' transformations of the
interval has been the object of numerous articles in recent years: [La-Y];
[Wa]; [L-Y]; [B-S]; [Co]; [B]; [Le]; [Mi]; [W], etc... In the case of
piecewise expanding maps it leads to the examination of the modulus of
continuity of |f’| on each interval [q;, a;,,].

We denote by L}([0, 1]) the real Banach space of functions h defined on
[0, 1] integrable with respect to the Lebesgue measure 1. We define the
Perron—Frobenius operator P on L}([0, 1]) by its action on h:

h(y)
Ph(x) = LU
V= BT
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It is easy to verify that for all Borel subsets B of [0, 1] we have
[ h(x)dA(x) = [ Ph(x)dA(x),
() B
which implies that the existence of an a.c.i.p.m. is equivalent to the existence
of a fixed point in L*([0, 1]) for the operator P.

- We denote by 2 the partition modulo 0 of [0, 1] consisting of the’
intervals (Ja;, a;+1[)i=0,. ,—1 and by 2™ the partition

w0 = 1@,
For an atom A™ of 2™, we define the real number
d(A™) = Sup|f’|—Inf|f".
A A0
We consider the sequence (d,),cn»
d,= Sup d(4"),
A A
and inspect the condition
(iii) Y d, < +o.
nz1

Remfzrks. (1) Condition (ii1) generalizes various conditions studied
before by other authors.
(2) Let Q be the function
Q)= Sup  Sup |f'()-f"WI
ie[0,p— 1] 0<|x—y| <h

x,yela;,a; + [

Condition (iii) is equivalent to the integrability in the sense of Riemann

Q(h
(improper integral) of the function —% in a neighbourhood of zero.

Finally, we say that a probability measure u defined on Borel subsets of
[0, 1] is ergodic if.all f-invariant Borel sets have u measure zero or one.

2. Markov transformations, piecewise C' and expanding

DerINITION. Let f be a transformation satisfying conditions (i’) and (ii); it
is Markov relatively to the partition ([a;, a;+,]) of the interval [0, 1[ if for
all pairs of integers (i, j) from [0, p—1] such that

fQa, a;+,D N ]aj, ajei [ # 0,
we have

fQa;, a;1D > ]aj, aj+l[-
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The existence of an a.ci.p.m. for a Markov transformation is equivalent
to the existence of an a.ci.p.m. for an iterate f* on an f*-invariant interval.
We do not restrict the problem when we replace condition (i') by:

(i) f satisfies (i) and f([a;, a;+:]=[0,1] for i=0,1,..., p—1.

THeoREM 2.1. Every mapping f of the interval [0, 1] into itself satisfying
conditions (i), (i1), (iii) admits a unique a.c.i.p.m.

To prove this theorem, we show that the Perron-Frobenius operator P
admits a unique fixed point. We remind the main properties of this operator
in the following proposition.

ProrosiTioN 2.1. (1) P is a positive and sub-Markov operator on

L (o, 1)).
(2) If h belongs to L,([0, 1]) then

[ Ph(x)di(x) = [ h(x)dA(x).

0,1} [0.1]

(3) If g belongs to LY ([0, 1]) and h belongs to L} ([0, 1]) then
[ gofr(x)h(x)di(x)= [ g(x)P"h(x)dA(x).

[0.1] [0,1)
(4) If A is a Borel subset of [0, 1] then
A(f"(A) = [(P"1)(x)dA(x).
A

To prove the Theorem 2.1, we introduce a cone K in C* ([0, 1]), P invariant,
whose P orbits are relatively compact in L} ([0, 1]) with the usual norm. To
define the cone K we need the following concept.

DEeFINITION. Two points x and y of [0, 1] are n-neighbouring if x and y
belong to the same atom of #™; in symbols, x ~ y.

=~ We define K as the set of continuous functions h for which there exists a
real constant k(h) such that, given any integer n > 0 and any x, y with x ~ y,
we have:

hkx)
h

— < kRp,+1),
) exp( +1)
where
Rn+l = Z dm'
m2n+1

Lemma 2.1. (1) The set K is a convex nonempty cone in C* ([0, 1]).
(2) If g, hekK, then g-hek.
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(3) L, the linear span of K, is an algebra, it is either dense in C([0, 1])
with the topology of uniform convergence, or reduces to the constants.

Remark. If we replace the series (d,) by suitable convergent series (d;)
such that d, < d, for all neN, we may suppose that the algebra L is dense in
C ([0, 1]).

The condition of relative compactness in L%([0, 1]) of the orbits
(P"h, neN) for h belonging to K follows from the following uniform pro-
perty.

LemMma 2.2. If h belongs to K, then there exists a real constant M
depending only on h and satisfying the following condition, for any integers n,
p: if x%y, then

P"h(x) <
P"h(y)
The proof of this lemma is based on an idea used by P. Collet [Co] and

exp(MRp+ l)'

=
implies the next lemma, in which Q, =~ Yy P
i=0

LemMMA 2.3. If h belongs to K, then the family (Q,h), ~ is relatively
compact in L3 ([0, 1]).

We then deduce the existence of a fixed point h for the operator P, and
we can easily show that it belongs to K.

Theorem 2.1 hence follows; in fact, if we denote by u the a.ci.p.m. hdA,
we have the following property, resulting from the fact that L is dense in
C([0, 1]), in the uniform convergence norm:

ProrosiTION 2.2. Every mapping f of the interval into itself satisfying,
conditions (i), (ii), (ili) admits a unique ergodic a.c.i.p.m.

We say that a finite partition @ of [0, 1] defines a weakly Bernoulli
process for the dynamical system ([0, 1]), f, u) if for all ¢ > O there exists a
positive integer n such that for all positive integers m and p we have:

2lu(4 "B)—pu(A) u(B) <e,

: m-—1 . m+n+p
summation spreading over A€ \/ f7'Q, Be \/ f‘Q.
i=0 i=m+n
Moreover, if the partition Q is generating, then the natural extension of
dynamical system ([0, 1], f, p) is isomorphic to a Bernoulli scheme.
Using the results of P. Walters [Wa; Th. 13 p. 26] we obtain.

ProrosiTION 2.3. If f fulfils conditions (i), (i1), (iii), then _the unique
a.ci.p.m. is ergodic for f*, for any positive integer k, and the partition defines a
weakly Bernoulli process.



214 THE EXISTENCE OF A.C.LP.M.

3. The general case
TueorReM 3.1. Every mapping f of the interval [0, 1] into itself, satisfying
conditions (1), (ii), (iii) admits an a.c.i.p.m.
The proof of this theorem is based on a criterion of precompactness in
L4 ([0, 1]) due to Fréchet-Kolmogorov [Yo]. It uses the inequality resulting
from the proof of Lemma 2.2 if x "<’y then

Y (0 12
o) S &P [P 2z, d]

This proposition relies on two lemmas, which are adapted from those given
in [Co].

LeMMA 3.1. There exist two reals ¢, >0 and y > 0 such that, for any
integer n, any x belonging to [0, 1] and any real ¢, 0 <€ <g,, we have

f P"1(x)dA(x) < &".

[0,1]A[x—¢&,x+¢]

LemmMma 3.2, If f satisfies conditions (i), (i), (iii) then

lim | |[P"1(x)—P"1(x+7n) 1 1(x+n)|dA(x) =0.

n—0[0,1)

The proofs of these lemmas are omitted here; the reader can refer to
[Co]; [Sc].

The assertion of Lemma 3.2 is also satisfied by the sequence Q,1
1 n—1

2% P

ni=o
All that remains is to apply the Fréchet-Kolmogorov criterion for
precompactness to obtain Theorem 3.1.
In this general case, the problem of the number of a.c.i.p.m. measures, as
well as the problem of their ergodicity remains open.

4. The counterexample

(a) Construction of a Cantor set of Lebesgue measure zero.
Consider the interval I = [0, 1]. We define the following open intervals:

1 1
— I} =]al, bi[ is the interval centered at 3 of length 3

— In the two connected components of K, =I\I} we define the
intervals I} = Jai, bi[ and I% = ]a2, b3[ centered at the midpoints of there
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2

components, so that

al <bl <a?<b? and A(IY)=A(%)=

- Supposé that the intervals Ii,," are constructed for p=1, 2, ..., n and

i,=1,2,.., 201, '
n 2P-1 ;
The set K, =1\ U ( Ul IP) is compact and it is the union of 2"
p=1 ip= -
connected components; we define the intervals I = Jat !, b, ine s

=1, 2,..., 2" centered of the midpoints of these components so that

1 1 2 2 2n 2"
ap+1 <bn+l <ay+, <bn+1 <...<@p+ <bn+1’

='hiz(“nil)(l—i)...(l_%)

2”

A

~ i . ® .
The intervals (I,),>, are disjoint and the set K = () K, is a Cantor set. By
n=1

construction we have:
1 1
AMK)=(1—=}...{1—],
(K.) ( 2) ( n+1>

and hence A(K) = 0.

(b) Construction and properties of the map.

(b.x) Construction. Le b be a real number greater than 1, and let J
=[0, b]. We construct a transformation f of J onto itself in the following
way:

1

C.l. f(x) = f(1—x) for all x belonging to [0, EJ

C.2. fo = fl1s is the linear increasing map of ]1, b[ onto ]O, b[.

C.3. f,f” =f |',"'l is the linear increasing map of ]a';,", b';,"[ onto ]a';,"_1 b';,"_l ,
for i,=1,2,...,2" 2 and n>2.
1
CAa. fy = fli} is the linear increasing map of ]a}, 5[ onto ]1, b[.
C.5. We choose b so that f; be strictly greater than 2.

LemMA 4.1. Suppose that b > 1 is fixed and satisfies C.5. There is a
unique mapping f of J into itself fulfilling conditions C.1, C.2, C.3, C4. It is
Lipschitz with constant 6, differentiable and expanding except on a countable

1 1
subset of J; it is Markov for the partition P = {]O, 5[, ]E’ l[; 1, b[} and
onto on each atom of 2. -
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(b.f) A property of the derivative.
We define the reals

d, = Sup (Sup|f|—Inf|f")

AM cln)  4(n) AM

LemMMA 4.2. The series ) d, is divergent.

n>1

It is obvious that for each atom A™ < [1, b].

Sup|f'|—Inf|f'| =0

AN A

On the other hand, according to conditions C.1 and C.3, the intervals Ii"
Up=1,..., 2?71 satisfy the inclusion

1 1
. j .
fJ(Ip”)c]O, E[U]E’ 1[ for p>2n+land j=0,1,...,n

Then, for each atom A™ of 2™ contained in [0, 1], there is an interval
I';,’, p = n+1, such that

I? <A™,

Therefore,

+2 +1
Sup |f1- Inf |f1>22°2-2222 vp
AMo,1) Ao, 1] n P— 1
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: 2 4 )
We conclude that d, > 23+——2 = The lemma is proved.
n

(b.y) Transformation f does not admit any a.c.i.p.m. We write

zk—l ; 1 2
A0=[1,b]; Ak= U lkk; Ao=_,; j’i:_,’ i=1,2...
ik=l 0 f; [}
Let Ay = A,\f "(K) and B,= f~'(4,) nA, be the sets of points
which return to A in exactly n+1 steps. We have:

Ao= U [f 71 (4) n 4]

nz0
Lemma 4.3. The induced map f,, admits the Lebesgue measure 4, on

Ao as the unique a.cip.m.; the dynamical system (Ay, f4,, Aap) is Bernoulli.

We can now describe the mapping f together with its induced transform-
ation f,, and one floor towers in the following way:

Al # N\ A2 et A

f %
el A :

N —_ ./
Ag
We have:
f—l(Ak) = B, U Ay+ 1,
(2

S (Ag) =By U 4;.
LEMMA 44. The measure induces on Ay, by an ac.i.p.m. for f, is an
aci.pm. for fq.

ProPposITION 4.1. The mapping f either has no a.c.i.p.m. or has an infinite
and o-finite absolutely continuous invariant measure.

Proof. Using relation (2), we see that in y is an a.ci.p.m. then
u(Ao) = p(Bo)+u(A,).

Using Lemmas 4.3 and 4.4, we infer that the measure induced by u on
o is equal to A, and therefore

u(A4,y) = #(A;))_)*A’O(BO) = #(4o)(1 —AA'O (Bo))
= u(Ao)- Z A'Ab(Bi)-

i21
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By induction,

#(A) = u(Ab) Y Ay (B).

izk
Therefore,
HUNK U f7HK)) = p(40) [hay (Bo)+ ¥, ks (B,
k21
and
©(Ao)
G M) = gy B 2 KA (B

2k—1

Since B,= U f~'U9H A4, and fa, restricted to f~1(I}) N A, is onto,

ig=1

piecewise linéar with two pieces, each of them with derivative |f; f; ...fi, we
have

1 i

(b—-1)= Elféfl'---ﬂl 'i(f_l (I mAo)-
Therefore,
2(b—1) 1y 44
A(B) = ——————.
(BY) k(k+1)

The series Y. (kA(B,)) being divergent, in view of (3) we have two possibili-

k21

ties: u(Ap) =0 and f has no aci.p.m. (Lemma 4.4) or u(A4,) # 0 and the
invariant measure u is infinite and o-finite.

[B]
[B-S]

[Co]
[La-Y]

[Le]
[L-Y]
[Mi]
[Or]

[Pa]

References

R. Bowen, Bernoulli maps of the interval, Israel J. Math. 28 (1977), 166-168.

A. Boyarsky and M. Scarowsky, On a class of transformation which have unique
absolutely continuous invariant measures, Trans. Amer. Math. Soc. 255 (1979), 243-262.
P. Collet, preprint, Ecole Polytechnique—Centre Physique Theorique Palaiseau.

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise
monotonie transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488.

F. Ledrappier, Some properties of absolutely continuous invariant measures on an
interval, Ergod. Th. and Dynam. Sys. 1 (1981), 77-93.

T.Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Trans.
Amer. Math. Soc. 235 (1978), 183-192.

M. Misiurewicz, Absolutely continuous measures for certains maps of an interval,
Publ. Math. THES 53 (1981), 17-51.

D. Ornstein and N. Friedman, On isomorphism of weak Bernoulli transformations,
Adv. in Math. 5 (1970), 365-394.

W. Parry, On the B-expansions for real numbers, Acta Math. Acad. Sc. Hung 11 (1960),
401-416..



[Re]
[(Ru]
[Sc]
[8i]
[(Wa]
[Wi]
(W]

[Yo]

B. SCHMITT 219

A. Renyi, Representations for real numbers and their ergodic properties, Acta Math.
Acad. Sc. Hung. 8 (1957), 477-493.

D. Ruelle, Statistical mechanics of a one dimensional lattice gas, Commun. Math. Phys.
9 (1978). 267-278.

B. Schmitt, Thése d’Etat — Universite de Dijon — Juin 1986.

Ya. G. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surveys 166 (1972), 21-69.
P. Walters, Invariant measures and equilibrium states for some mappings which expand
distances, Trans. Amer. Math. Soc. 236 (1978), 121-153. ’
Wilkinson, Ergodic properties of a class of piecewise linear transformation, Z.
Wahrsch. Verw. Gebiete 31 (1975), 303-328.-

S. Wong, Some metric properties of piecewise monotonic mappings of the unit interval,
Trans. Amer. Math. Soc. 246 (1978), 493-500.

K. Yosida, Functional Analysis, Springer-Verlag, Berlin 1968.



