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Introduction

We shall first consider Fourier integrals in R" where n > 2.
Let ® eC'(R"\ {0)) and assume that @ is positive and homogeneous of
degree 1. Also let @(0) =0. We set
D= {(€eR"; &8 <1)}.
Let f denote the Fourier transform of a function f in R", defined by

f&= [e®*f(x)dx, &eR™

R"
For feL?*(R") we also set

Sef(x)=02m)~" [ *f(&)d¢é, xeR", R>0.
RD

We shall prove t.he following theorem.

THEOREM 1. Assume that f €L*(R") and that suppf is a bounded set
(where the support is taken in the sense of distribution theory). Then

lim Sz f(x) =0

R—-o
for almost every x in R"\supp f. .

In the case when @(¢) = || Theorem 1 was essentially proved in P.
Sjolin [4] and also in A. 1. Bastis [1].
We shall also study the partial sums of Fourier series in one variable.
Set T = [0, 2] and let S, f denote the nth partial sum of the trigonom-
etric Fourier series of a function f €L'(T). Then set
Mf (x) = sup|S, f(x), x€T.

nz0

[413]
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The following~results are then well known from R. A. Hunt [2] and P. Sj6lin
[3].
THeoreM A. If f e Llog Lloglog L(T) then

(1) S, f(x) converges a.e.,

() IMfll; < C [IfI(log™ | f)?*dx+C,
T

A3) ‘ IMfll, < Colifll,, 1<p<oco.

We shall here prove an extension of the estimate (2) to the case when
feL(logL)'*t, 0<e<1. Set logM'y=1, 0<y<e and log*y =logy,
y > e. We then have the following inequality.

THeOREM 2. If 0 <& <1 then

4 [ Mf (log™" Mf)*~tdx < C [|f|(log* | f)* **dx+C.
T T

We remark that the proof which gives Theorem 2 also yields the
analogous result for Walsh-Fourier series.

1. Proof of Theorem 1

We shall need the following notation.
First set

K(x)=(@2m™"[e**d;, xeR"
D

and
Kz(x)=R"K(Rx) for R >0.

We also let y denote the characteristic function of D and set yz (&) = x(¢/R),
R>0.

It is then clear that K = y, Kg = xz and that Sg f = Ky * f if f belongs
to the Schwartz class . We now choose a function ¢ € ¥ with the property
that ¢(0) =0 and set

Trf = (oK) * f

for feL*(R" and R > 0.
We shall also consider the maximal operator

T*f = sup|Tx f|
R21

and first prove the following lemma.
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LemMA 1. If @ has the above properties then T* is a bounded operator on
L*(R".

Proof. We first assume that f € . From the equality

) (Trf) = (@Kp) f=02m) "(@*x0)f
it follows that
(6) T f () =(2m)~2" | ¢* (&) f(O) 4= dE
R?
and
D L hr@=en (L (@) OEdE R>0
dR ® V9= 2R P*Xxr ’ '
We have
ITe /1> < (T N)*—=(T, HAU+IT, f1?
and
Rd R d
(Te /(T /) = [ (B f) de = (2T f = T, far.
1 1
Thus
@ d
(TP =T <2 [ITA[GTs | R>1,
and hence

® d
®) IT*f1?<2 [|Tx fl ‘E Te f|dR+|T, f1? < 2(Gf) (Hf) +IT, 12,
' 1

where we have set

6f () = ([T fIPdR)?,  xeR,
1

and

a0

A0 = (]
1
Applying the Cauchy-Schwarz inequality to the estimate (8) we obtain

[ 1T*f12dx < 2||Gf Il IHf Il + [Ty f1*dx.
L R

T, is bounded on L? since K, L' and hence
IT*fll. < 20GAIIZ2 I1HS 112 +CIIf 1l

d 2 1/2
7R/ dR) , xeR".
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To obtain the estimate

IT*fll. < Clifll2
it is therefore sufficient to prove that
) IGSl2 < Clifll2
and
(10) IHf Iz < CIIfIl2-

To estimate Gf and Hf we shall use the inequalities

(11) 6@ < Crpg—gm E#0R>1,

and

(12 4 Grr® < c—0 ! E£0,R>1
dR ™S " 1+190)-RM D

where N denotes a large integer. We postpone the proofs of (11) and (12).
From (11) and (12) we conclude that

¢

(13) flo*xr(@IPdR<SC, ¢#0,
1

Invoking the Plancherel theorem and the estimate (13) we then obtain

FIGF(Zdx = [ (]1Taf (01 dR)dx = [ (] 1T f (oI dx)dR
R ! 1 g

[« 2]

=(2n)™" [(J (Tx )" (&)*dE)dR
I g

=2m)7*" [(f 16 * 1) (&) (&) dE)dR
1 gn

=(21) 3" [ ({16 * xr (5> dR)|f (&) d¢
R 1

< C [1fOPdE = C [|f () dx
R | 4

and hence (9) follows.

In the same way (10) can be proved if we use the inequality (14).

It remains to prove (11) and (12) and we shall first prove (11). Since
¢(0) = 0 we can write

(15) @*xr () = [¢(E—n) xr(mdn = @& —n(xr (1) —1)dn.
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If £€d(RD) then @(¢) = R and
16 *xr (O < [I@(m)idn =C,

which proves (11) in this case.
If £eRD we conclude from (15) that

(16) 61Ol < | 1@CE—midn. !
RMRD

If n€d(RD) then @(n) = R and it follows from the mean value theorem that

|P()—R| =|P)-P(n] < CIE—nl,
since the derivatives D, ® = 0®/0x; are homogeneous of degree 0 and
bounded in R"\{0}. Hence
d(¢, d(RD)) = c|®({)—RY,
where c is a positive constant and d(x, A) denotes the distance between a

point x and a set A.
It follows that also

d(¢, R"\RD) = c|®()—R|
and using (16) we then get

@ * xr (O < | |@(E—n)dn = | @ (m)| dn
& nlZcl®&) - R| InlZc|®$) - R|

and (11) follows in the case ¢ €RD since pe&.
We shall then study the case when £ eR"\RD. We use the estimate

lp*xr (@) < [ |4 —mldn.
RD

In the same way as above one finds that

d(¢, RD) = c|®(§)—-R|
and hence

¢ * xr (O] < | lp(E—mldn= [  |@(mldn,
. lg—nl>clo@) - R] Inl > cl &) - RI

and (11) follows.
We shall then prove (12). Performing a change of variable we find that
@*xr (&) = [@(&—n) x(m/R)dn = [@({— Ru) x (u)du R"

and it follows that

d . d .
Ei(fﬁ * 10 () = [¢(—Ru)y(WdunR"" ' + fﬁ((P(é—Ru))x(u)duR"

= Jo@=mxadng = T 0,4~ Rz duR"
27 — Banach Center t. 22
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The desired estimate for the first term on the right-hand side follows from
(11) and to estimate the second term it suffices to prove that

(17) IBj < C 110 —R" E#£0,R21,j=1,2,...,n,
where
(18) B;=|D;j¢(—Ru)u;x(wduR" = [D;p(§ — '1) L yr(m)dn.

We have (D;@(n)dn =0 and (D;@(n)n;dn =0 since (p(O) =0 and we can
therefore write

(19) B; = [D, (&~ 2 anlmdn+ D, G~ 2 yu tmdn

= (D;p(¢— n)—(xx(n)—l)dn+ [D;@(&—m) = ’(xk(n)—l)dn

If £€0(RD) then (17) is a consequence of (18) since In,-/RI < C if neRD.
We shall then consider the case £ eRD. Using (19) one finds that

IBI<C | |D;@&—nldn+ [ |D;@(&—mlI&—nldy
RP\RD R'\RD

<C } ID; @(E—n)ldn+ ] ID; @(E—m|IS —nldn
1&-nlZcl®&—R| 1&~nl2c| ) - R|

<C [ (D;om|+ni|D;@(m))dn
Inl Zc|®&) ~ R|

and (17) follows since D;¢ and n, D;¢ belong to the class .
It remains to prove (17) in the case £ eR"\RD. We use (18) and obtain

B <C [ ID;@¢(¢—nldn<C | |D; (E—n)ldn
RD 1§ —nl=cl®&) - R|

=C [ ID;@midn
Inl Zcl®&) - R|

and (17) follows also in this case.
We have now proved the inequality

IT*fll2 < Clifll2

for f € 4. The same inequality for f € L? then follows from approximation of f
with functions in .¥" and an application of Fatou’s lemma.
The proof of Lemma 1 is complete.



TWO THEOREMS ON CONVERGENCE OF FOURIER INTEGRALS AND FOURIER SERIES 419

For feL?(R" we set S*f = sup|Sg f]. Also let

R>1
B(x;r)= lyeR"; ly—x| <r}.
The following lemma is then a consequence of Lemma 1.

LEMMA 2. Assume that 0 <b <a<M and set Q= {xeR"; a <|x|
< M!. Then
(20) [ IS*f(a2dx < C [ If (x)*dx

B(0:b) R"

for all f e L*(R" with supp f < Q.

Also lim S f(x) =0 for ae. xeB(0; a) if f is of the above type.

R—o

Proof. Assume that f e L*(R") and supp f <= ©, i.e. f =0 a.e. outside Q.
Choose @ eCJ(R") so that ¢(x) =1 for a—b<|x| < M+b and ¢(x) =0 if
Ix] is small. If |x|] < b it then follows that

Skf(x) =Kp*f(x) = [Kg(x=y) f()dy = [@(x—y)Kg(x—y) f(y)dy
=(pKg)* f(x) = Tg f (%)

(since a < |yl < M implies a—b < |x—y| < M+b).

We therefore conclude from Lemma 1 that (20) holds.

To prove the remaining part of the lemma we assume that there exist a
function f € L*(R") with supp f =  and a number b with 0 < b < a such that
it is not true that
(21) lim Sg f(x) =0 for ae. xeB(0; b).

R -~

Then there exist a positive number é and a set F < B(0; b) with Lebesgue
measure mF = ¢ such that

lim |Sg f(x)| > 6

R
for xeF. We choose g eC& () so that ||f—g]|, is small and observe that
x €F implies

0 < lim |Sg f(x)| = gim ISk (f—9) ()| < S*(f—9)(x).
- ®

R-wm

Using (20) one therefore finds that
8 =[o%dx< [ IS*(f-g)lPdx < Clf-gli}
F

B(0:b)
and we obtain a contradiction if g is chosen suitably. Thus we have proved
that if feL? suppf = and 0 <b <a then (21) holds and the last state-
ment in the lemma follows since b is arbitrary.
Theorem 1 is an easy consequence of Lemma 2.
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Proof of Theorem 1. Let .o denote the set of all balls B(r; 1/k) in R"
such that r has rational coordinates, k is a positive integer and f = 0 a.e. in
B(r; 1/k). Hence .o/ is countable. If Be.«/ it follows from Lemma 2 that

lim Sg f(x) =0 for ae. xeB. If we set E={J,_ ,B we can therefore con-
R—-w ’
clude that lim Sg f(x) =0 for a.e. x in E.

R—-®

The theorem then follows from the observation that E = R"\supp f.

2. Proof of Theorem 2

We shall need the following notation. We say that f is a special function on
T if f = gyr, where g is a measurable function satisfying 1/2 <g(x) <1 and
xr is the characteristic function of a measurable subset F of T The following
lemma is essentially proved in R. A. Hunt [2].

LemMma 3. If f is a special function, f = gyr, then

mix; Mf(x) >y} < By PmF, 1<p<ow,y>D0,
where B, = Cp*/(p—1).
Proof. Set

Srfx)=| t, xeT, neZ, felL'(T),

0

2ne—iv¢f(t) p
—t

and
M*f (x) = sup|S3 f (x)|.

It was proved by R. A. Hunt [2] that
(22) mix; M* xp(x) >y} <B2y PmF, y>0,1<p<o0,
with B, = Cp*/(p—1).

The proof in [2] shows that one may replace xr in the above estimate
with a special function f = gxr. We have

Mf < CM*f+Cliflly
and hence if f =gy is a special function

(23) Mf < CM*f+CmF.

The lemma now follows from a combination of (22) with x, replaced by f
=gyr and (23).
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Arguing as in P. Sj6lin [3], p. 563, we obtain from Lemma 3 the
estimate

1 1
(24) m{x; Mf (x) > y} SC;log;mF, 0<y<1/2,

if f is a special function.
We also obviously have the inequalities

(25) mix; Mf(x) >y} <2m, y>0,
and
(26) m{x; Mf(x) >y} <Cy ?mF, y>0,

if f =gyr is a special function. These three estimates will be used in the
proof of Theorem 2.

Proof of Theorem 2. We shall first construct an auxiliary function @ on
the interval [0, oco[. Let p satisfy the inequality
1 €

27 =1l-——<f <1,
(27) 1+¢ 1+¢ g

We want @ to have the following properties:

xP, 0.< x <a,
(28) P(x) = {x(log xFE" x> e,
where 0 <a < é?,
(29) @ eC' (10, o),
30) & (x)>0, x>0,
and |
(31) @' is decreasing on JO, oof.

First define @ on [0, a] and [e?, co[ by (28). For x > e* we have
. @' (x) = (e—1)(log x)* 2 +(log x)*~*
and
@ (x) =(e—1)(log x)* "2 x~ (e —2+log x).
It follows that @”(x) <0 for x > e and hence ¢’ is decreasing on [e?, oo[.
We also have ®(e?) =e22°"! and &', (e?) =(1+¢)2°" 2 where @', de-

notes the right-hand derivative. Since 0 <eg <1 it is easy to see that
e2 @', (e?) < ®(e?). Because of this we can choose a so small that

(32 (e2—a) P, (e?) < P(e?)—P(a) <(e2—a) P (a) -
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(since ?(x) =0 and &'(x) o0 as x =0 from the right). We then choose a
function ¢ continuous and decreasing on the interval [a, e?] such that ¢(a)
=@ (@) and ¢(e?) = &', (¢?). Because of (32) we may also assume that

o2
[o(n)dt = d(e*)—d(a).

Then set

d(x)=P(a)+ [o(dt, a<x<e’
& will then have the required properties and since @ is concave we also have
(33) P(x+) < P(x)+P(y), x,y20.

To prove (4) it is sufficient to prove the estimate

(34) [®(Mf)dx < C [If1(log* |f])! **dx+C
T T

for f'eL(log L)' **(T).
Without loss of generality we may assume that f > 0 in the proof of
(34). We set

Fo=ix; 27 < f() < 2]
and
f(X). XEFk’

) ={0, Y

for k 2 5. Also set fo(x) = f(x), xeT\US Fi, and f,(x) = 0 otherwise. It is
then clear that fo(x) < 16 and f = fo+ Z,: s Jo- We observe that

[®(Mfo)dx < C+ [IMfo|*dx < C,
T T
since M is bounded on L?. We have
MQf) <X Mf,
5 5
and invoking (33) we obtain

¢(M(f;ﬁ)) < ¢(§ Mf) < §¢(Mﬁ).
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We conclude that

(35) [®(Mf)dx < j¢(Mf0+M(§ fi))dx
T T

< £¢(Mfo)dx+ £¢(M(§ﬁ))dx <C+ g ldi(Mﬁ‘)dx.
We shall now estimate [y ®(Mf)dx for k > 5. We set
A =mixi Mii(x) >y, v=20,
and then have
(36) [OMIdx = = TP = [ OO in0rdy.

Since 27/, is a special function we conclude from the estimates (24)(26) that

AW =mix; MQ7*L)(x) > 27 y)

37 [ 2r, y=0,
k k
38 C—log—mF,, ; k=1
(38) <. yogymk 0<y<?2
2k
(39) € mE y>0.

Using the properties of @' we obtain
2

| @(Mf)dx < C | ¥y~ A (»dy+ | (logy) ™' A (y)dy.
T 0

e2
We may assume that mF, >0 and set
2, = 2*mF, log(4n/mF,).

We first consider the case %, < e and invoke (37), (38) and (39) to obtain

Tk e2 2k 2k
[eMf)dx < C [y’ 'dy+C jy"";log;dyml-‘k
T 0 ag

2k-1 2k 2k ® 22k
+C | (logy)‘“;log;dymF,ﬁC } (logy)"‘y—zdyka
2

e 2k—1
= ak+bk+c,,+d,‘.

If 2, > ¢* we have with the same notation

‘¢(Mfk)d\' < ak+6'k+dk.
T
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One finds that

mF)

In estimating b, we may assume that «, <e? and performing a change of
variable r =27%y we get
27 kg2 1 1
b=C f (2t~ ~log—dt 2* mF,
mF log(4x/mFy) rt

. 4n
a < C-af =C-2*(mF.) (log— ) .

27 ke2 1
=C- 2" [} t#~2log—dt mF,.
mFlog(4%/mF ) t
Since

d 1 1
—=t;F-1og- =1 =B tPF 2log-+tF~2
dt( t ogt) (1-p)t logt+t

we conclude that

1
by < C-2" (t”"log—)

mF,
t=mFlog(4x/mF})

47 V! 1
<C-2(mF log—) 1 F
2 ('" 108 ka) OB nF log (dmmFy) " ¢

< C-29(mF,) (log #) .
k

It remains to estimate ¢, and d,. Using the inequality

log (2/y) < log(2*/e?)
we obtain
2k—1
o« <C | (logyy 'y 'dy2*kmF,
e2

< C-2*k[(logy)1% ' mF, < C-2*k!**mF,.
We finally have

a0 | e—1 "]oo

dk S C'22k I (logy)z_ly_zdyka'S C'ZZk[—(oiv_jl ka

2k-1 y 2k 1
S C- 2%k~ 127kmF, = C-2*k*~ ' mF,.

Hence

| @ (Mf)dx < p+4qy,
T
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where

an ¥
= C- )% —_
p=C2 (mF,)? (10 ka>

and
qk = C'Zkklﬂka.

It follows that

[@Mf)dx < C+ Y p+ Y a.
T 5 5
It is clear that
(40) Ya<CJIfl(log*|f])! "edx
5 T

and it remains to estimate ) . p.
We set y =¢f and observe that since f > 1—¢/(1+¢) we have

1-B <e/(1+e)
and

y g(1/(1+¢))
-6 ellte

Applying Holder’s inequality we obtain

¢ o]

i 4n Y
Zpk = CZ 2""(ka)” (lOg—F> kik™?
5

5 mr,

mr,

a 4 B © _
< C(Z 2" mF, log—nk‘//ﬁ) (Zk"’“‘”’)' 4
5 F 5
et 4n 4
< 2*k*log—-mF, | .
C(; ongkm ")
If mF, < 2~ 2k then

4
(log—n>ka < (mF)Y3 < 2~ @3k
mF,

and if mF, = 272 then

4n 4n
— < 4 2% d log—- < Ck.
mF, n2 an og mF, Ck

Hence

[ o] @
Yo <C(C+ Y 2k mF,) < C+CIP < C+Cl,
5 5

425
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where

I'={lfl(log" |f)' **dx.
T

A combination of this estimate and (40) now yields (34) and the proof of the
theorem is complete.
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