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The AB percolation model is a variant of the classical percolation model, which
was motivated by applications to polymerization and gelation processes and
anti-ferromagnetism. This paper discusses recent developments in the theory,
and provides two new results. The main technique used to obtain results is to
relate the AB percolation model to an appropriate classical percolation model.
New results include a proof that AB percolation occurs on any graph with
site percolation critical probability less than 1/2, and a characterization of the
AB percolation critical probability of the triangular lattice in terms of a site
percolation critical probability on a related lattice.

1. Introduction

In this paper, we consider a variant of the classical percolation model which
was introduced independently by several authors in the early 1980’s. We will
describe the model in terms of atomic or molecular bonding considerations:
There are two types of atoms, A and B, which occupy the sites of an infinite
lattice graph G, with probabilities p and 1 — p respectively. Unlike atoms which
are connected by an edge of G become bonded together, while like atoms do
not bond to each other. The object of study in the model is the probability
distribution of the size of the clusters of atoms that are bonded together. As in
classical percolation theory, while little can be said about the explicit form of
the probability distribution, one is most interested in determining if infinite
bonded clusters exist for various values of the parameter p, and progress has
been made on this question.
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The model was first studied by Mai and Halley (1980}, who named it “AB
percolation”, motivated by problems in polymerization and gelation. Their
Monte Carlo simulation suggested that infinite AB clusters exist for an interval
of values of p when G is the triangular lattice. Halley (1983) discussed a more
general class of models which he termed ‘“polychromatic percolation”, and
provided an argument which proved nonexistence of infinite AB percolation
clusters on bipartite lattices when p = 1/2, which will be discussed in Section 2.
Halley (1983) also treated the case of AB percolation on Bethe trees. Turban
(1983) and Sevsek, Debierre, and Turban (1983) introduced the model as
“anti-percolation”, motivated by the study of anti-ferromagnetism. They
provided an argument for the existence of infinite AB clusters on the triangular
lattice, which, although incorrect, suggested the approach presented in Section
4. Wilkinson (1987) considered two-parameter percolation on bipartite graphs
as a model for gelation. AB percolation on a bipartite graph is a special case of
his model.

This paper concentrates on rigorous mathematical results concerning AB
percolation. Other than the work of Halley (1983), rigorous results have been
obtained only recently. Scheinerman and Wierman (1987) provided the first
example of a two-dimensional periodic graph on which infinite AB clusters
exist with positive probability. Appel and Wierman (1987) proved that AB
percolation is impossible on a class of bipartite graphs, partially verifying
a conjecture of Halley (1983). Wierman and Appel (1987) proved that infinite
AB percolation clusters exist on the triangular lattice, as was claimed by
Sevsek, Debierre, and Turban (1983) and suggested by the Monte Carlo study
of Mai and Halley (1980). The new results surveyed here stem from a joint
research project of the author and Martin Appel, a doctoral student at Johns
Hopkins University.

One feature common to all the arguments concerning the model is that
they establish a relationship between AB percolation and a classical per-
colation model. Several of the arguments, while giving some useful information,
essentially choose an incorrect classical model, in the sense that they do not
give the most complete description of the AB percolation behavior possible.

2, Definitions and background

A graph G consists of a countable set V(G) of vertices and a countable set E(G)
of pairs of vertices, called edges. An assignment of a label, A or B, to each
vertex of G is a configuration on G, ie. a configuration is an element
we{A, B}V, or equivalently a function w: V(G)—{A, B}. The AB per-
colation model on G is a probability model with sample space {A, B}*'’ and
probability measure P, such that the labels of the vertices of G are independent
random variables with probability p of labeling each vertex A.

An edge of G is an AB bond if the endpoints of the edge have different
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labels. An AB path 1s an alternating sequence of vertices and edges v,, e,
Uys ...y €,, U, such that ¢;,, 1 <i < n, are all AB bonds. [We will use the terms
“A path” and “B path” to refer to paths with all vertices labeled A or
B respectively. Also, at times we will refer to the labels as “colors”, and refer to
a path as “monochromatic” if all its vertices have a common label.] The AB
cluster containing a vertex v, denoted by W2, is the set of vertices which may
be reached from v through an AB path. The number of vertices in WA? is
denoted by # WAPB. Denote the AB percolation probability by

05%(p) = P,(# WP = + o).

Note that AB paths and AB clusters are unchanged if the label of every

vertex is changed, but the parameter of the model is changed from p to 1—p.
Thus,

002 (p) = 02°(1—p)

for all pe[0, 1], so the AB percolation probability function is symmetric
about 1/2. ‘

The probability that any particular edge of G is an AB bond is 2p(1—p),
which has its maximum at 1/2 and is monotone on each side of 1/2. Intuitively,
one expects the AB percolation probability to have these properties also, which
would imply that there is a single interval of values of p for which the AB
percolation probability is positive. However. there is no general proof of the
claim of monotonicity, and it has not been proven that there cannot be
multiple intervals of positivity.

While the value of 028(p) may depend on the vertex v, the set of values of
p for which 02B(p) > 0 is independent of the choice of vertex if G is a connected
graph, as for classical percolation models. Thus, for_a connected graph G and
an arbitrary site v, we define the AB critical probability by

PiB(G) = inffp: 0%B(p) > 0.

[By convention, if the set on the right side is empty, py*(G) = ».] We use the
notation p, rather than p. for the critical probability because equality of
several definitions of critical probability has not yet been proved for AB
percolation. We will denote the classical site percolation critical probability by
Pc, since we assume that the results of Menshikov, Molchanov, and Sidorenko
(1986) or Aizenman and Barsky (1987) apply to G. Note that since we do not
know that the percolation probability is monotone for p < 1/2, it may be
possible that 82B(p) = 0 for a value pe(p®, 1/2].

An inclusion principle holds as for classical percolation models: If G = H,
then pAB(G) = pfAB(H). To see this, note that inserting additional edges in
G may create additional AB edges for any configuration but destroys no AB
edges that were already present, so the AB cluster in H containing v is at least
as large as the AB cluster in G containing v, for every configuration w.
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For any graph G, we define the graph G, as follows: Let G, have the same
vertex set as G. The edge set of &G, contains all edges of G as well as an edge
between each pair of vertices which may be connected by a path of 2
edges in G.

Since successive vertices on an AB path have alternating labels, if an
infinite AB path exists on G, then there exists an infinite A path on G, and an
infinite B path on G,. The existence of such paths requires that p > p~(G,) and
1 —p > pc(G,) respectively. Therefore, we have the lower bound:

pclG,) < PGB(G)-

This lower bound implies that p?(G) > O for any periodic graph G (as defined
by Kesten (1982)), since one may apply a Peierl’s argument to the graph G, to
show that p.(G,)>0. We may also observe that if p.(G,) > 1/2, then
02B(p) = 0 for all pe[0, 1], i.e. AB percolation cannot occur on G.

A graph is bipartite if there exists a partition of the vertex set into two sets
¥, and V, such that every edge in G has one endpoint in V, and the other
endpoint in V,. We will call the sets V, and V, a bipartition. Note that any path
on a bipartite graph passes through vertices of V, and V, alternately.

Halley (1983) proved that if G is a bipartite graph with site percolation
critical probability greater than 1/2, then 62%(1/2) = 0. Using symmetry when
p = 1/2, one sees that reversing the labels on one set of the bipartition of
G preserves the probability measure. However, the label reversal converts each
AB cluster into a monochromatic cluster. Thus, when p = 1/2, the probabilities
of existence of infinite AB, A and B clusters on G are all equal, so if the classical
site percolation critical probability is strictly greater than 1/2, they must all be
zero. If it were proved that the AB percolation probability assumes its
maximum at 1/2, AB percolation could not occur on any bipartite graph.
While the claim is intuitive, its proof remains an open problem.

Appel and Wierman (1987) gave a partial confirmation of Halley’s claim.
Let G be a bipartite graph with bipartition sets ¥, and V,. For each V|,
construct a graph G(¥) with vertex set V;, such that two vertices u and v are
adjacent in G(V)) if and only if u and v are adjacent to a common vertex in G.
Let p, and p, denote the site percolation critical probabilities of G(V,) and
G(V,) respectively. Since labels on an AB path in G alternate, if there is an
infinite AB path in G, there exists an infinite A path on one of the two derived
graphs, and an infinite B path on the other. This leads to the following resuit: If
p,+p,>1, orif p,+p, =1 and each of G(V,) and G(V,) is a member of
a matching pair of graphs (in the sense of Sykes and Essam (1964)), is periodic
and has one axis of symmetry, then 822 = 0 for all pe [0, 1]. For example, this
result shows that AB percolation does not exist on the hexagonal lattice. While
the result does not apply to the square lattice, a separate proof shows that AB
percolation does not exist on the square lattice either.
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Since the beginning of the study of AB percolation, it has been of interest
to prove that infinite AB percolation clusters can actually occur on one of the
common planar lattices studied in physics. One may see that a natural lattice
to study for this problem is the triangular lattice: By the inclusion principle,
a more richly connected graph has a higher probability of occurrence of AB
percolation. Since edges may be inserted in any planar graph to obtain a fully
triangulated graph, one concludes that if AB percolation occurs on any planar
graph, it must occur on some fully triangulated graph. With the regularity and
periodicity of the triangular lattice, it is perhaps the easiest in the class to work
with.

Mai and Halley (1980) performed Monte Carlo simulations of AB
percolation on the triangular lattice which suggest that infinite AB clusters
exist when pe[0.2145, 0.7855], but provided no proof that the phenomenon
occurred for any value of p.

Seviek, Debierre, and Turban (1983) gave an incorrect argument which
claims that an infinite AB cluster exists on the triangular lattice when p = 1/2.
They remark that, on the triangular lattice, all the boundary sites of a site
percolation cluster (of A’s) belong to the same AB cluster. Since the critical
probability of the triangular lattice is 1/2 (see Kesten (1982)), they claim that
when p = 1/2 there is an infinite A cluster, and that following its boundary
provides an infinite AB cluster. However, this argument is invalid for two
reasons. First, the principal result of Kesten (1982) established that for site
percolation on a class of periodic two-dimensional graphs, which includes the
triangular lattice, there is almost surely no infinite cluster at the critical
probability. Second, an open cluster in a classical site percolation model
contains arbitrarily large circuits, in which case the boundary of the cluster
consists of a union of finite length circuits, so one must verify that the AB
clusters obtained by following the segments of the boundary can be linked
together to obtain an infinite AB cluster. ‘

Wierman and Appel (1987) gave the first rigorous proof of existence of AB
percolation on the triangular lattice. They examined the boundary of finite AB
clusters, finding that they must be blocked by monochromatic “double circuits”
(i.e. two circuits of the same color with no vertices in the region between).
By showing that there can only exist finitely many such circuits around
the origin, it was proved that an infinite AB percolation cluster exists when
pe(l—pth, pt?), where p2* is a critical probability defined in terms of the
size of the cluster of sites which are connected to each other by “double paths”
of A’s. Since the existence of a double path of A’s on the triangular lattice
implies the existence of an A path on the square lattice, it can be shown that
p* is at least as large as the site percolation critical probability of the square
lattice, which is at least .503 (see Toth (1985)). The interval (497, .503) is much
smaller than that suggested by Mai and Halley (1983). The proof in Section
4 provides a somewhat wider interval.
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3. An existence result

In this section, we give a simple argument to show that infinite AB percolation
clusters exist with positive probability on a large collection of graphs. The
argument presented here is based on a suggestion by Geoffrey Grimmett.

PROPOSITION’ 3.1. If G is an infinite connected graph with p.(G) < 1/2, then
82%(p) > 0 for all pe(pc(G), 1 —pc(G)).

Proof. For simplicity, begin by assuming that p = 1/2. Consider the
following inductive procedure for constructing an AB cluster containing
a specific vertex v. Let W, = v and C,; = . For each n > 1 choose a vertex
w which is not in W,_,uC,_, but is adjacent to a vertex ze W,_,. If w and
z have opposite labels, then let W, = W,_;u{w} and C, = C,_,. If w and z have
the same label, then let W, = W, _, and C, = C,. u{w}. If at some point there is
no vertex w as required, the process stops and we have generated a cluster,
which we will denote as W. If the process continues indefinitely, we use W to
denote | W,.

Note that W = WAB, since (by construction) every vertex in W is reached
from v by an AB path. In general, however, W # WA®, because the procedure
tests each vertex only once, from just one of its neighbors, and those vertices
which fail may actually be in WAP if tested from a different neighbor.

Now view the process from a different perspective. Consider W, to be the
set of open vertices and C, to be the set of closed vertices in the classical
percolation model. At each step, a new vertex is added to the open cluster with
probability 1/2. Each vertex is tested only once. Thus, the cluster size # W
obtained has exactly the same probability distribution as the open cluster size
in a classical percolation model on the graph with parameter 1/2. Hence, if the
critical probability p.(G) < 1/2, there is positive probability that # W = o,
and thus positive probability that # WAP = 0. We may then conclude that
infinite AB percolation clusters exist on a graph G when p = 1/2 if the site
percolation critical probability of G is strictly less than 1/2.

If we now return to the argument in the case where p # 1/2 we see that the
cluster generated by the process is larger than an open cluster in the classical
percolation model with parameter equal to min{p, 1 —p} and smaller than the
AB cluster. From this we may conclude that if p;,(G) < 1/2 then AB percolation
occurs for all pe(py(G), 1 —py(G)). =

The result does not require any symmetry or periodicity properties, nor
does it depend on the dimension of the lattice. Note that due to the inequalities
between the cluster sizes used in the argument, we should expect that infinite
AB clusters exist for values of p outside the interval specified. For example, for
the triangular lattice, which has site percolation critical probability equal to
1/2, this argument does not prove that AB percolation exists, a fact which was
proved by Wierman and Appel (1987). Nevertheless, this proof shows that the
phenomenon does occur on a large class of graphs.
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4. Existence on the triangular lattice: direct approach

In this section, we give a proof of the existence of AB percolation on the
triangular lattice which differs from that of Wierman and Appel (1987). The
idea of the proof is similar to that of Seviek, Debierre, and Turban (1983),
which attempted to construct an infinite AB cluster by following the boundary
of a monochromatic cluster. The difference is that rather than considering
monochromatic clusters in the original triangular lattice, we look at clusters in
the T, lattice. The proof shows that this is the “correct” lattice to consider,
since the proof actually identifies the critical probability of AB percolation on
the triangular lattice as the classical site percolation critical probability on the
T, lattice.

We begin by establishing an upper bound for the site percolation critical
probability of the T, lattice. Combined with the following theorem, it also
provides an improved upper bound for the AB percolation critical probability

of the triangular lattice. The proof is based on a technique suggested by
Tomasz Luczak.

Lemma 4.1. p.(T,) < 4031.

Proof. Represent the triangular lattice with equilateral triangular faces
with one set of edges parallel to the x-axis. Consider successive groups of three
vertices on each horizontal line to represent sites in a new triangular lattice.
[See Fig. 1.] Relative to a site percolation model on the original lattice, each
group will be called “open” if either the center vertex is open or both endpoint
vertices are open. Thus each group is open with probability p+(1—p)p>
= p+p*—p>. It is easy to check that if two groups are open and are diagonal
neighbors or one is two lines above the other, then all open sites in the two
groups are in a common open cluster in the 7, lattice. Since the adjacency
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Fig. 1. A portion of the triangular lattice, showing groups of three vertices used in finding an upper
bound for the critical probability of the 7, lattice. Each group is open if either the center vertex is
open or both end vertices are open



248 1. C. WIERMAN

relationship between the groups provides the triangular lattice, there is an
infinite open cluster of such groups if p+p?—p* > po(T) = 1/2, and thus if
p = 4031. Since the infinite cluster of groups implies an infinite cluster on the
T, lattice, p = 4031 implies p > p.(T;). =

THEOREM 4.2. phi*(T) = pc(Ty).

Proof. Clearly, if p < p(T,) an infinite AB cluster cannot occur on T, so
p < pA™T), and thus pc(Ty) < pi®(T).

On the other hand, if p > p(T), then an infinite cluster of A’s occurs in 7,
with probability one. If in addition, p < 1 —p(T;), then 1 —p > p.(T3), so there
exists an infinite cluster of B’s on T, containing a specific site with positive
probability. Fix a vertex b, and consider a configuration w such that b, is in an
infinite cluster of B’s in T,. Let b = (b,, b,, b,, ...) denote an infinite path of
B vertices contained in this cluster.

We may represent the infinite A cluster on T, as a connected set in the
plane as follows: If three vertices of the cluster are pairwise adjacent, we will say
that the triangle with those vertices is in the cluster. [Here we consider the
triangles to include their interiors.] The cluster is represented in the plane as
the union of its triangles and the line segments representing its edges which are
not in such triangles. Note that this region representing the cluster may contain
vertices of T which are labeled B.

Consider the topological boundary of the region representing the cluster.
It consists only of edges of the graph T;; it is not possible to have a portion of
the boundary made up of parts of two edges of T, which cross, since then the
four A vertices which are endpoints of the edges cause the region to be
contained in triangles in the cluster.

The boundary of the A cluster in T, consists of a collection of simple
polygonal curves. I claim that for each of these polygons, all vertices of T on
the polygon are in a common AB cluster on T. Consider three cases,
corresponding to the three types of edges of T,. Let e be an edge of the
boundary. If e is an edge of T, then there is a vertex labeled B which is adjacent
to both endpoints of e. If e crosses an edge of T perpendicularly, then one of
the endpoints of the crossed edge is not in the cluster and thus is labeled B. If
e covers two edges of T, we must consider two subcases: If the vertex at its
midpoint is labeled B, the endpoints are in a common AB cluster. If it is labeled
A, then there are two vertices labeled B outside the cluster which link the three
A vertices on e into a common AB cluster. [See Fig. 2.] If one of the polygonal
curves is infinite, we have an infinite AB path corresponding to it. Thus, we
assume all the polygonal curves have finite length.

We now show that the infinite B cluster on T, links these AB clusters in
T that follow the boundary of the A cluster in T, into an infinite AB cluster in
T. To reduce the number of cases in the following analysis, we introduce the
following convention: Whenever an edge of b covers two edges of T and the



AB PERCOLATION 249

Fig. 2. Thin lines represent bonds in an A cluster on the T, lattice. The dotted region indicates the
A cluster on T,. Thick lines show the AB path which follows the boundary of the region
representing the cluster

vertex at its midpoint is labeled B, we insert the midpoint into the path b. Thus,
in the following, whenever such an edge occurs in b, its midpoint is labeled A.
Consider a segment of the path b,say b, , ..., b, , such that b, and b, are in (or
on the boundary of} separate components of the complement of the A cluster,
and b, are in the interior of the A cluster for all j=2,...,n-1.

Consider a vertex v which is contained in the interior of the A cluster in
T,. v has six neighbors in T, and one of the following holds: (a) Three of the
neighbors are labeled A, no two of which are adjacent in T. (b) There are four
neighbors labeled A, in two opposite pairs. In case (a), the three neighbors are
vertices of an equilateral triangle which contains v in the interior. In case (b),
the union of four triangles (with edges in T,) contains v in the interior. In either
case, more of the neighbors may be labeled A. [See Fig. 3.]

Suppose the edge b, b; ., is an edge of T If either one (or both) of the
vertices is not in the interior of the A cluster, then both their common
neighbors are labeled A, so they are in a common AB cluster on T. If either
endpoint is in the interior of the A cluster, by the previous paragraph, at least

Fig. 3. Two portions of the triangular lattice, illustrating the two possible ways (including
rotations) that a B site may be in the interior of an A cluster in T;. Unlabeled sites may take either
label
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one of the common neighbors is labeled A. If both endpoints are on the
boundary of the A cluster, then at least one of their common neighbors is
labeled A. so they are in a common AB cluster.

Suppose the edge b, b, ,, crosses an edge of T perpendicularly. If one of
the endpoints is in the interior of the A cluster, then in ecither case (a) or (b)
above, one of the common neighbors is labeled A. If both are not in the interior
of the A cluster, then if neither common neighbor was labeled A, the endpoints
would be in or on the boundary of the same component of the complement of
the A cluster, which is a contradiction. Otherwise, there is an A vertex which
links the endpoints into a common AB cluster in T.

Suppose the edge b, b, ., covers two edges of T By our convention, the
site at the midpoint of the edge is labeled A, so the endpqints are in the same
AB cluster. _

The preceding analysis shows that the AB clusters formed by following the
boundary of the A cluster inside each component of its complement may be
connected by AB paths along the parts of the path b which cross the A cluster.
Thus, the AB cluster containing the origin is infinite. =

5. Complements and open problems

The proof in Section 4 identifies the critical probability of AB percolation on
the triangular lattice, but required much case-by-case analysis. A different
approach, based on duality methods from classical percolation theory, is also
being developed by Appel and Wierman, in a forthcoming paper. The
approach appears to be more easily generalizable to other graphs, but does not
make as direct a connection between the AB cluster on T and the A cluster on
T,, so it provides some different information. For example, the duality
approach shows that two critical probabilities are equal for AB percolation:
Let p4® = inf{p: E|# WA®| < + o0} denote the threshold at which the expec-
ted AB cluster size becomes infinite. The method shows that p3® = pjB. The
duality method also shows that 82B(pA®) = O for the triangular lattice, i.c. there
is almost surely no infinite AB cluster at the AB critical probability.

One goal of the research on AB percolation is to characterize the class of
graphs on which AB percolation can occur, and determine the critical
probability of AB percolation on graphs for which it does. We expect the
duality approach to lead to considerable progress on these problems in the case
of two-dimensional lattices. It should also provide information (as in the
classical case) on continuity and differentiability of the percolation probability
function, bounds for the cluster size distribution, power estimates, and the
nature of the singularity of the clusters-per-site function at the critical
probability.

An interesting question concerning critical exponents for AB percolation
arises from the Monte Carlo simulation of Mai and Halley (1980). They fitted
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an equation of the form 6*2(p) = K(p—p&B)’as for p > pA® and estimated the
critical exponent f,5 = .1211.004, compared to estimates of .14 for the site
percolation critical exponent on the triangular lattice. While Mai and Halley’s
results suggest that the critical exponent of AB percolation on the triangular
lattice is different than the critical exponent of classical site percolation on the
triangular lattice, Wilkinson (1987) presents arguments that bipartite per-
colation and classical percolation are in the same universality class, and thus
have the same critical exponents. The duality approach of Appel and Wierman
also suggests that the behavior of AB percolation is similar to that of clas-
sical percolation. Either a proof of equality of critical exponents or a counter-
example would be an interesting development.
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