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1. Introduction

In the whole paper, we shall denote by %,, n > 1 an integer, the class of all
nondirected graphs without loops and multiple edges on n vertices. We shall
write G = (V, E) where V is the set of vertices and E the set of edges. Usually,
the vertices in V will be labelled by 1, ..., n (for Ge%,).

Recall that the Laplacian of a graph G = (V, E}e 9, is the real symmetric
matrix L(G) whose quadratic form is given by

(1) (L(G)x, x) = . Y (G—x)h
e

Here, and in the sequel, we denote by (x, y) the inner product Y7 x;y; of
the vectors x, y which are considered as (real) column vectors x = (x, ...
s X,)7 etc.

L(G) is—since the corresponding quadratic form is a sum of squares
— positive-semidefinite and singular since for the vector e=(1, ..., 1)T with
n ones,

(2 L(G)e = 0.

It is also evident that the Laplacian of the complete graph K,e ¥, is the
matrix

3) L(K)=nI-J

where [ is the identity matrix of order n and J is the n x n matrix whose all
entries are ones.
In addition, if G is the complement of a graph G, then

(4) L(GY+L(G)=nI—-J.
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As usual, we shall denote by A(G) the (0, 1)-adjacency matrix of G. It isobvious
that in the case when G is a regular graph of degree r,

(3) L(G) = rI—A(G).

2, Edge and vertex connectivity of graphs

As is well known, the edge connectivity e(G) of a finite nondirected graph
G = (V, E) is the smallest cardinality of a subset E, c E having the property
that the graph G, = (V, E\E,) is not connected.

Similarly, the vertex connectivity v(G) of G = (V, E) is the smallest
cardinality of a subset ¥V, — V having the property that the subgraph G,
generated by G on V\V, is not connected. In the case of the complete graph K,
on n vertices we set v(K,)=n—1.

The following important theorem is easily proved:

THEOREM 2.1. Let G =(V, E) be a connected graph, V= {1,...,n}. Let
A(G) = (a;,) be the adjacency matrix of G. Then

(6) e(G)= min ) a,.
WOEWEY W
keV\W

Remark. Since L(G)+ A(G) is a diagonal matrix, we can also write
e(G) = min Z bl

WOB+WEV ieW
keV\W

where L(G) = (b;,)-

THEOREM 2.2, The edge connectivity ¢(G) and vertex connectivity v(G) of
any graph Ge%, satisfy

(7) . e(G) = v(G).

Proof. This follows from deeper theorems (Whitney, Menger). We shall
supply a simple direct proof.

Let G =(V, E)e¥%,. If G is not connected, (7) is fulfilled. Thus let G be
connected and let E, be an edge cut satisfying |E,| = ¢(G). By (6), there is
a nonvoid proper subset W of V satisfying (A(G) = (a,))

e(G)= ) a,.
ieW
keV\W
Without loss of generality, we can assume that |W| < |V\W)| (otherwise we
interchange W and V\W). Define |W|=w, ¢(G) =e.

Case : w=1 and |V\W|=e. Then e=n—1 and, since always
v(G) < n—1, (7) is fulfilled.
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In the remaining cases, we shall always find a vertex cut V, satisfying
(8) Vii<e

Case 2: w=1and|V\W| > e. Let W = {z}. Then the set V, of all vertices
in V\W adjacent to z satisfies (8).

Case 3: w> 1 and w > e. Then the set ¥, consisting of those vertices from
W which are adjacent to at least one vertex in V\W satisfies (8).

Case 4: w> 1 and w < e. Let z be a vertex in W adjacent to the smallest
number of vertices in V\W. Let k be this number. If k = 0, the set V, = W\{z}
satisfies (8). Let now k > 1. Then, by the definition of &,

9 kw<e

Denote by U the set of those k vertices in V\W which are adjacent to z.
We shall show that V, = (W\{z}}u U satisfies (8).

Clearly, V, is a vertex cut. Suppose that |V;| > e. Since [V}| = w—1+k, it
follows from (9) that w—1+k > e > kw, ie. (w—1)(k—1) < 0, a contradiction.

In the following theorem, we summarize some properties of e(G) and v(G).
THEOREM 2.3. Let G =(V, E), G,, G, be graphs. Then:

(S1) e(G) =0, and e(G) =0 if and only if G is not connected.

(S2) If G, =(V,E)), G,=(V,E,) and E, c E,, then e(G,)<e(G,).

(S3) If G, =(V,E), Gz—(V E,), E,cE, E,cE and E,nE, =, then
e(G,)+e(G,) < e(G,), where G, = (V, E,UE,).

(S4) If G, is obtained from G by removing k vertices (and incident edges) from
V, then v(G,) = v(G)—k.

Proof. (S1) and (S2) follow immediately from Thm. 2.1. To prove (S3),
let A(G)=(a}), s=1, 2, 3, be the adjacency matrices. Since A(G,) = A(G,)
+ A(G,), we have by Thm. 2.1 |
e(Gy)=min ) afp = mm(Za(”+Za(2’)

W ieW
keV\W

> min ) aff ’+m1n2a(2) = e(G,)+e(G,).
W

(S4) follows tmmediately from the minimality of v(G).

Let us denote by K, , the complete (nondirected) bipartite graph with p+¢
vertices and classes of vertices of size p, g respectively. Also, K, , ., (with
p+q < n) will denote the graph obtained from the complete graph K, by
removing all pq edges between fixed disjoint subsets S,, S, of the vertex set of
K, with p, g vertices, respectively.
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THEOREM 2.4. We have

v(K,,) = min(p, q), e(K,,) = min(p, q),
U(Kn.p.q) =n—p—g, e(Kn.p.q) = min(n—p— 1 y h—q— l)
Proof. Easy.

3. Algebraic connectivity

Let Ge¥,,n> 2. In [4], the second smallest eigenvalue a(G) of the Laplacian
L(G) was cal]ed the algebraic connectivity of the graph G.
Almost all the results of Sections 3-5 are based on those of [4].
First, let us formulate a theorem in which R, is the space of all real column
vectors with n coordinates, (x, y) is the inner product y"x of the vectors x,
y from R,, e the vector from R, with all coordinates equal to one and

S={x=(x,...,x) eR; ) x,;=0, ) x?=1}.
i=1

i=1

THEOREM 3.1. The algebraic connectivity of G = (V, E)e %, satisfies

(10) aG =min ¥ (—x), or
xeS (l“,k<)iE
(11) a(G) = min xTL(G)x.

xe§

Proof. This follows immediately from the well-known Courant theorem
since the smallest eigenvalue of L(G) is zero and the corresponding eigenvector
is e. Thus S consists of all unit vectors orthogonal to e, which means that a(G)
as the second smallest eigenvalue is the minimum of xTL(G)x on §.

The following theorem justifies, in view of Thm. 2.2, the term “algebraic
connectivity”.

THEOREM 3.2. The algebraic connectivity a(G) satisfies the following prope-
rties:

(S'1) a(G)=0, a(G)=0 if and only if G is not connected.
82 IfG,=(V,E), G,=(V,E,) and E, c E,, then a(G,) < a(G,).

(83 If G,=(V,E), G,=(V,E,) and E,nE, =0, then a(G,)+a(G,)
< a(G,) where G, =(V, E,UE,).

(S'4) If G, is obtained from G by removing k vertices (and incident edges), then
a(G,) 2 a(G)—~k.

Proof. (S'1): The nonnegativity of a(G) being obvious, suppose first that
G is not connected; let G, = (V,, E,) be one its component, let G = (V,, E ;) be
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the graph generated by G on ¥, = V\V,. Define a vector y = (y,, ..., y,)" as
follows: for ie V|, let y, = (I/\/J_ﬂ\/(uz/wl where o, = |V,|, w, = |V}; forie V,,
let y;= —(1/3/n)/w,/w,. 1t is easily seen that yeS and y"L(G)y = 0.
Thus a(G) =0.

Conversely, let a(G) =0. Then there exists a vector yeS such that
yTL(G)y = 0. Let y, be the first nonzero coordinate of y; k exists since y # 0.
Let V, ={ie{l, ..., n}; y;=y,}. Clearly, @ # V, # ¥, and there is no edge in
G between any vertex in V, and any vertex in V\V, because of y" L(G)y = 0.
Thus G is not connected.

(§8'2). Follows immediately from (10).
(S'3): Since E,nE, =, it follows that L(G,) = L(G,)+L(G,). By (11),
a(G,) = min (xTL(G)x + xT L(G,)x)

XeS

= min x” L(G,)x+min x" L(G,)x = a(G,)+a(G,).

xeS xeS

(S'4): Let first _k =1, G, ansing from G by removing, say, the vertex n.
Define the graph G by completing in G all edges from n to other vertices (if
missing). By (5'2),

(12) a(G) = a(G).
On the other hand, in block form

. [L I —é
L(G)=[ G+ e]
—é n—1
where é = (1, ..., 1)T with n—1 ones.
If L(G,)6 = a(G,)5, #eS, then clearly
(13) L(G)v = (a(G,) +1)v

]
for v = [O]

By (12) and (13), a(G) < a(G) < a(G,)+ 1, so that (S'4) is fulfilled for k = 1.
The general case follows easily by induction with respect to k.

By (3), we obtain

THEOREM 3.3. For the complete graph K,€%,, a(K,) = n.

In the following theorem, the cartesian product G, x G, of the graphs
G, =(V,, E)) and G, =(V,, E;) is defined as G, xG, = (V; xV,, E) where
((uy, uy), (vy, vy))eE if and only if either u; =v, and (u,,v,)eE,, or
(uy, v,)eE, and u, =v,.

THEOREM 34. Let G,, G, be graphs. Then a(G, x G,)= min(a(G,),
a(G,)).
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Proof. Let us order the vertices in G, x G, lexicographically. One sees
easily that

L(G, xG,) = L(G)®I,+1,® L(G,)

where I,, I, are identity matrices of orders |V,|, |V,| respectively, and A ® B, for
B = (by), is the partitioned matrix (Ab;). Therefore, the eigenvalues of
L(G, x G,) have the form a+ f where « is an eigenvalue of L(G,) and § an
eigenvalue of L(G,). The second smallest eigenvalue a(G, x G,) is thus the
minimum of a(G,)+0, 0+a(G,), ie. min{a(G,), a(G,)).

To obtain the value of a(G) for some special graphs, the following lemma
will be useful.

LeMMA 3.5. Let Ge¥%,, let G be its complement. If 1, =0< 4, <... <},

are the eigenvalues of L(G), then +, =0 < A <... < A, are the eigenvalues of
L(G) where

(14) 2.;,=n—).,,+2_,,, k=2,...,n.

In addition, the eigenvectors (or eigenspaces) of L(G) corresponding to i, and
those of L(G) corresponding to A,.,—; coincide.

Proof. This follows easily from (4).

ExaMPLE 3.6. Let p, n be integers, 1 < p < n. Let K,.'p be the graph from
%, obtained from the complete graph K, by removing all edges between
vertices of a fixed subset with p vertices. We shall show that L(K,,) has
eigenvalues 0, (n—p),- 1, (n),— ,; here and in the sequel (1), means the eigenvalue
u with multiplicity .

The complement of K, , is the graph G from %, consisting of the complete
graph K, and n—p isolated vertices. Since L(G) has eigenvalues (0),-,+1,
(p)p-1, Lemma 3.5 yields the result.

ExaMPLE 3.7. Let, for n, p, q positive integers satisfying p+q <n,
K, p.q be the graph defined in Section 2. We shall show first that for the
complete bipartite graph K, ,€%,,, with classes having p, g vertices respec-
tively, L(K, ) has eigenvalues (0),, (p);-1, (g),-1, (p+4g),. This follows again
from Lemma 3.5 since the complement G of K, , is the graph from %, , with
two components K, and K, and L(G) has the spectrum (0),, (p),-1, ();-1-

To obtain the spectrum of L(K,,,), observe that its complement is the
graph Ge ¥, consisting of K, , and n—p—gq isolated vertices. By the previous
result, the spectrum of L(G) is (0)p-p-g+1, (P)g-1, (@)p-1, (P+g),. By Lemma
3.5, the spectrum of L(K,, ;. ,) 15 (0);, (n—p—q);, n—q)p—1, B—D)g- 1, (Nn=p-q-

We can now summarize the results obtained in Examples 3.6 and 3.7.
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THEOREM 3.8. In the notation above, we have

a(K,,) = min(p,q) for pq > 2,
a(Kn,p) =n-p,
a(Kn.p.q) =h—p—(g.

Remark 3.9. The eigenspaces corresponding to a(K,,), a([f,,_‘,) and
a(K, ;.4 are also easily found using Lemma 3.5. For example, the (unique up to
multiplication by a nonzero constant) eigenvector of L(K, , ) corresponding to
a(K, p.,) can be chosen to have all coordinates q on the subsét with p vertices,
all coordinates — p on the subset with g vertices and all coordinates zero on the
remaining n—p—gq vertices.

CoroLLARY 3.10. If Ge 9, contains an independent set of p > 2 vertices
(i.e. no two of them are adjacent), then a(G) < n—p.

Proof. This follows from (S'2) of Theorem 3.2 and from Theorem 3.8 since
G is contained in the graph I{',,.,,.

CorOLLARY 3.11. If Ge¥%, is a graph which is not complete, then
a(G) < n-2.

Proof. This follows from Corollary 3.10 for p = 2.

THEOREM 3.12. If m is the minimum valency of a noncomplete graph G, then
a(G) < m.

Proof. If Ge %, is not complete and w is a vertex with valency m, then G is
contained in the graph K, ; ,— m—; where in the notation of Section 2, S, = {w}
with p = 1, §, consists of all vertices of G which are different from w and are
not adjacent to w; thus ¢ = n—m— 1. By (§'2) of Theorem 3.2 and by Theorem
3'89 a(G) < a(Kn.l.n—m—l) =m.

To conclude this section, let us show how algebraic connectivity is related
to the singular values of the incidence matrix of the graph.

Let G =(V, E)e¥,. Let |E| = m. Choose an orientation for every edge
(i, k)€ E; let G = (V, E) be the corresponding directed graph. To G, we assign
the incidence matrix C = (c;,) which is an n x m matrix whose rows correspond
to vertices of G numbered by 1, ..., n and whose columns correspond to the
directed edges numbered in some way by 1, ..., m. If e, E e, = (i, j), then we
set ¢, =1, ¢;;=—1.

It is easily seen that

(15) L(G)=CCT
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(CT meaning the transposed matrix to C), independently of the choice of
orientation of edges and of their numbering.
Now, we can also define the m xm matrix

(16) B(G)=C"C.

This matrix which is again symmetric and positive-semidefinite and whose
.rows and columns correspond to edges of G, depends already on the
orientation of edges. The change of orientation of one edge results in the
multiplication of the corresponding row as well as column of B by —1. The
change of numeration of edges results, of course, in permuting simultaneously
the rows and columns of B.

Let us remark that all the off-diagonal entries of B(G) belong to the set
{0,1, —1}.

It follows from a well-known theorem from matrix theory that the
matrices CCT and CTC have the same nonzero eigenvalues including multi-
plicities. The square roots of these eigenvalues are called singular values of the
matrix C. Thus we obtain:

THEOREM 3.13. The algebraic connectivity a(G) of a connected graph G is
equal to the smallest positive eigenvalue of the matrix B(G) as well as to the
square of the smallest (positive) singular value of the incidence matrix C(G) for
any orientation G of the graph G.

Remark, This observation is useful in particular for the case that G is
a tree. Then m = n—1 and the matrix B(G) is positive-definite.

For the sake of completeness, we list in Theorem 3.14 the algebraic
connectivities of some special graphs.

THEOREM 3.14. Let P,€ %, be the path, C, €%, the circuit, L €9, the ladder
(n even), S,€ 9, the star, R, €%, an m-dimensional cube (n = 2™), W,€ %, a wheel
(n = 4). Then

a(P,) = 2(1 —cosg), a(s,) = 1,
2n
a(C)= 2(1 -cosT), a(R,) = 2,

n_

a(L,) = 2(1—008271‘), a(W,) = 1+2(1—~—cosz—nl).

4. Relations between a(G), v(G) and ¢(G)

As we know, e(K,) = n—1, v(K,) = n—1, a(K,) = n. The relation between a(G)
and v(G) in all other cases is given by the following
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THEOREM 4.1. Let G be a noncomplete graph. Then a(G) < v(G).

Proof. Let G = (V, E), and let V, be a vertex cut with v(G) vertices. Since
G is not complete, the graph G, obtained from G by removing the v(G) vertices
from V, and all incident edges is nonvoid and not connected. By (5'4) of
Theorem 3.2, 0 = a(G)—v(G).

COROLLARY 4.2. Let G be a noncomplete graph. Then a(G) < e(G).
Proof. This follows {from Theorems 4.1 and 2.2.

To obtain an estimate of the form a(G) > k,e(G) with k, depending on
n only, first recall that an n x n matrix A = (ay) is called doubly stochastic if A is
(elementwise) nonnegative and ) ,a, =) ,a, =1 for all i, k=1, ..., n. For
such a matrix A4, the so-called measure of irreducibility u(A) was defined in
[3] by

(17) p(A)= min Y a,
McN ieM
AxM+*N kM

where N = {1, ..., n}.
In the same paper, the following was proved:

THEOREM 4.3 [3]. Let A be a symmetric doubly stochastic matrix with
eigenvalues 1 = A, 2 A, > ... 2 A,. Then

(18) A=Ay > 2(1—cos§)u(f1),

and the constant k, = 2(1—cos(1t/n)) is the best possible.

Remark 44. In addition, a simple analysis of the proof yields that if
u(A) # 0 then equality in (18) is attained only if the matrix A is—up to
simultaneous permutations of rows and columns—a tridiagonal matrix (i.e.,
a, =0 if ji—k] > 1).

We shall apply Theorem 4.3 and Remark 4.4.
THEOREM 4.5. For any graph Ge%,,

(19) a(G) = 2(1 —CoS %)e(G),

and the constant k, = 2(1 —cos(n/n)) is the best possible. The only connected
graph in 4, for which equality is attained is the path P,.

Proof. Let Ge¥,. Denote by M the maximum valency among vertices of
G. The matrix

|
(20) § =(s;) =1—5,L(G)

5 — Banach Center t.25
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1s symmetric, nonnegative and all its row and column sums are equal to one by

(2). Thus § is symmetric doubly stochastic. Let 1 =4, 21, > ... 2 4, be its
eigenvalues. Then

1
(21) b, = 1—2-a(G)

by (20).

Further, the measure of irreducibility u(S) of S and the edge connectivity
e(G) of G are related, by (6) and (17), as follows:

1
u(s) = M—e(G).

By (21) and (18),

1-1, = ﬁa(G) > 2(1 —cosg)-%e(G),

which implies (19).

Equality is attained for P, since ¢(P,) =1 and a(P,) = 2(1 —cos(r/n)) by
Theorem 3.14. The last assertion follows from Remark 4.4 and the fact that
a tridiagonal matrix or its permutation corresponds to a path.

5. Decompositions of the set of vertices with respect
to ¢(G) and a(G)

Let us return to the edge connectivity e(G) for Ge %,. As we have seen in (6),
there exists a decomposition V = V, UV, of the set of vertices V of G for which

eG) =Y a,.

eV
keV 3

It follows easily from the minimality of e(G) that—for a connected graph
G — the subgraphs of G generated by G on ¥V, as well as on V, are connected.

In [7], it was proved that a similar result is valid for the algebraic
connectivity.

THEOREM 5.1. Let G =(V, E)e¥%, be a connected graph, and let u be
a (real) eigenvector of the Laplacian L(G) corresponding to the second smallest
eigenvalue a(G), the algebraic connectivity of G. Let V|, = {v,€ V; u, = 0} where
u;, ie{l, ..., n}, is the coordinate of u corresponding to the i-th vertex in V.
Then the subgraph G, of G generated by G on the subset V, of V is connected.

Remark. The same is, of course, true for the set V, corresponding to
nonpositive coordinates of u. If no coordinate of u is zero, we obtain
a decomposition ¥V =V, UV, similarly to the case of e(G).
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6. Generalizations

Instead of ¥,, we can consider the set of all nondirected complete graphs on
n numbered vertices, whose edges are valuated by nonnegative numbers. The
previous case is obtained by admitting the numbers zero or one only and by
omitting the edges with label zero. If ¢;, = ¢;, i # k, i, k =1, ..., n, is the value
assigned to the edge (i, k) in such a valuated graph G. = (V,E, C), we can
again define the Laplacian of this graph by )

xTL(GC)x= z Cu(xi-xk)z-

i,ki<k
As before, we can define the algebraic connectivity a(G.) as the second smallest

eigenvalue of L(G.), and the edge connectivity e(Gc) as (N = {1, ..., n})

(22) e(Go)= min ) c,.
B+MEN ieM
k¢ M

In [5], it was proved that this generalized algebraic connectivity enjoys
properties similar to those in Theorem 3.2.

THEOREM 6.1. Let G = (V, E, C). Then the generalized algebraic connec-
tivity a{G.) has the following properties:

(1) a(G) = 0, and a(G) > 0 if and only if the graph G.=(V, E,) where E,,
is the set of positively valuated edges of G, is connected.

() If also Gp,=(V,E,D), then C<D (elementwise) implies
a(G¢) < a(Gp).

(i) If also Gp = (V, E,D), then for Gg=(V, E,C+D), a(Gy) = a(G)
+a(Gp).

(iv) If G is obtained from G as the graph generated by G on a fixed vertex
set V,, with the same valuation, then
(23) a(G) > a(Go)—max Y .

i€V, keV\V,

Remark 6.2. An analogous statement holds for the generalized edge
connectivity e(G;). More precisely, (i}iii) hold if we substitute e(G) etc. for
a(G.) etc. In (iv), the following holds instead of (23):

24) e(G) = e(Go)— Y, ¢y

iEVl
keV\V

In {5], a relation between e(G.) and a(G.) analogous to (19) was proved:
THEOREM 6.3. Let G. = (V, E, C). Then

25) 2(1 —cos g)e(GC) < a(Gp) € -nn—le(Gc).

The constants on both sides are the best possible.
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For a nondirected graph G = (V, E), denote by ¥(G) the class of all

nonnegative valuations of G with average value on edges equal to one:

€G)={C20; cu=cy, cu =01if (i, K)¢E, Y c,=IEl}.
k=1
i<k

We can then define the “absolute” edge and algebraic connectivity of
a graph G =(V, E) as the numbers

(26) é(G) = max ¢(G,),
Ce%(G)

27N d(G) = max a(Gy).
Ce¥(G)

Since the previous (0, 1)-valuation of G belongs to ¥(G), we always have
é(G) = e(G), 4(G) = a(G).

On the other hand, if G = (V, E) is connected, |V) =n, |[E| =m and if T is
a skeleton in G, then the valuation C which assigns to every edge in T the value
m/(n—1), and zero to any other edge, belongs to €(G) and e(Go) = m/(n—1).
Therefore,

(28) é(G) > %

Further, for any Ce¥(G),

:I'—

. 2m
' i

I’. ik

Therefore é(G) < 2m/n.
Let us summarize:

THEOREM 6.4. Let G be a connected nondirected graph on n vertices with
m edges. Then

29) <o)<,
COROLLARY 6.5. For Ge ¥, connected, 1 < é(G) <
Proof. This follows from the estimates n—1<m <§n(n 1).
There is an interesting connection with hamiltonian graphs.

THEOREM 6.6. If Ge %, with m edges is hamiltonian, then é(G) = 2m/n. The
converse is not true.

Proof. Let G = (V, E) be hamiltonian, |V| = n, |E| = m. Choose a valua-
tion C in such a way that all edges in the hamiltonian circuit have value m/n
and all other edges have value zero. Clearly Ce¥(G) and e(G.) = 2m/n.
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By (26) and (29), equality is attained.

To show that the converse is not true, consider the well-known Petersen
graph. For this graph G, the usual constant valuation C yields e(G.) = 2m/n, so
that é(G) = 2m/n by (29). However, it is well known that G is not hamiltonian.

In the next lemma, we call two edges of a graph Ge %, equivalent if there
exists an automorphism of G which maps one of them into the other.

LEMMA 6.7. In a graph G, among the valuations €(G) for which the
maximum generalized edge connectivity in (26) is attained, there is always
a valuation for which equivalent edges have the same value. The same is true for
the maximum generalized algebraic connectivity in (27).

Proof. We shall prove this for the algebraic connectivity; the proof for the
edge connectivity is completely analogous. Observe first that if 4 is an
automorphism of G and C a valuation for which 4(G) = a(G.), then for
D = AC (in a clear sense), we have again

(30) a(Gp) = a(Gy).

Let M be the valuation of G obtained as the arithmetic mean of all

valuations A;C where A, runs through all, say N, automorphisms of G. By (30)
and Theorem 6.1 (iii)

1 N
i=1
Also, since M €%(G), 4(G) > a(G,); thus 4(G) = a(G,,).
Since for every automorphism A of G

1 X 1 X
AM=— ) AAC=—) AC=M,
N .';1 ‘ N jgl g
equivalent edges have the same valuation in M.

CoROLLARY 6.8. If Ge¥, is a graph whose any two edges are equivalent,
then 4(G) = a(G) and é(G) = e(G).

We shall not study in detail the absolute algebraic connectivity G(G); the
reader is referred to a separate paper [8]. It is shown there that in the case that
d(G) = a(G) for C e ¥(G) is a simple eigenvalue of L(G) corresponding to the
eigenvector y = (y;), there exists a constant K such that

yi—wl=K
whenever (i, k) is a positively valuated (in C) edge of G, and
Vi—yl <K

if (i, k) is an edge of G with value zero in C. Also, a method for finding the
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absolute algebraic connectivity of a tree is given and it is shown that the result
is always a rational number.

We conclude with an extremely interesting approach of Y. Colin de
Verdiére who defined [1] a new invariant u(G) of a graph G as the maximum
multiplicity of the second eigenvalue of the Laplacian L(G.) with Ce¥(G)
under the condition that this multiplicity satisfies the so-called transversality
hypothesis of Arnold (which means, roughly speaking, that one can vary the
valuation C corresponding to the maximum multiplicity in such a way that this
multiplicity remains the same). Colin de Verdiére shows in [1] that u(G) < 3 is
necessary and sufficient for a graph G to be planar, and u(G) < 2 is necessary
and sufficient for G to be outerplanar. He also formulates the conjecture that
u(G) = x(G)—1 where x(G) is the chromatic number of G. The positive solution
of this conjecture would imply the four-colour theorem.

In [1], it is also shown that if G is linear, i.e. a path, then x(G) = 1. It may
be of interest that the author’s result in [2] implies the converse: if u(G) =1
then G is linear.
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