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An analogous argument using Propositions 4.2, 6.1, 6.3 and 7.3 proves the
theorem in the case that m = 2k+2.

Now we consider the case where m = 2k+1. Take e and ¢ as in
Proposition 6.4. Then for xe BL with Q(x)¢ P>N(L),

oxeoPLy = PeOoLy = P° Iy = Ly,
(Recall that by Proposition 2.1, Lg is N(L) Og-modular.) Hence px is
anisotropic in the space P~ °Ly/P' °Ly, and so
(disc (B¢ L)y[P) = (— )™ Q(ex)|P).
Now Propositions 6.4 and 7.3 yield the result of the theorem. m
Remark. In the case that m = 2k+2, we could use the methods used
above to write ©(L,7)|T(") as a linear combination of theta series

{@(P~1L, 1) Lisa P-sublattice of L} and & (B! L, 7). However, these theta
series do not lie in the same space of modular forms as @ (L, 7)|T(%).
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1. Introduction.

(i) Let a,, ..., o,, n=>2, be given real numbers. According to Dirichlet
there exist infinitely many integer points (&, ..., Sn+1)€ Z"*! such that

|ﬂ|él+ vew +uﬁé"+c"+l| S(max |Cvl)_"'
1€vEn

We will show that essentially this still holds, if for the approximation of
a,, ..., ®, one allows only integer points (&,, ..., ,+1) in certain subsets of
R"*!. In other words, we shall prove that the effectivity in Dirichlet’s theorem
can be replaced by a condition concerning the position of the approximating
integer points. '

(ii) In what follows, an integer point-is always an element of R"*! with
integer coordinates &, , ..., &,+1 and £ and § are any positive real numbers. For
q= (ﬁl: weey éu+l)em+‘ pl“

L(m = Zl “v§v+¢n+1, {ﬂ’} = max |&,l, (@) = ( i 5311;2_

1=v=n
For real w let

d(w) = {ZTeR*Y &) <1+ @)} v {ZeR o(@) <1}
¥ = (ZeR| &) <20(2)}.
THEOREM 1. (a) If
(0) w=wn)=1+1/n+1/n%,
then there exist infinitely many integer points % such that
Yedw) and |LGI<(1+0){9)7"
®) If

(03] v=ov(m)=3(n—1+/n?+2n-3)
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and if the numbers 1, o, ..., o, are Q-linearly independent, then there exist
infinitely many integer points % such that

Ye¥Y and |L(9)|<d{¥9}".
THEOREM 2. Let % be real, 1/n < »x < 1/(n—1). Suppose the numbers 1,
&, ..., o, are Q-linearly independent and the inequality

(2) max |avy_'Qv| < y—x
1<v<n

has only finitely many solutions in integers y, q, ..., q,.

If '

(3) u <ug = uy(n, x) = 21 {x(n—1)*+1+./(x(n—1)*+1)*+4n> x* (n—1)}

2nx

then there exist infinitely many integer points % such that

(4) %e¥ and |L(9)<{¥} ™" _
(iii) Remarks. 1. We have uy(n, 1/n) =n and u,(n, 1/(n—1)) = v(n).

2. Theorems 1 and 2 will be proved with @(w) and ¥ replaced by more
general sets. Let A: R" — R", (&,, ..., &) = (x,, ..., x,) be any transformation
of the form

n
x, = Zkvj‘:j‘ e
j=1

where the numbers k,; are real and such that
(5) for D = det(k,;) we have D # 0.
Define
@) = max lxf; r(@)= (T <),
v=1

1=vsn

Then there exists a bound d = d(A4) > 0 such that for every ZeR"*!
(6) %{f}é(ﬂ")&d{ﬂ"}.
In particular d(1) = 1, where 1 denotes the identity.
Let
P(A,w) = {ZeR*Y x| <A +)r@)*} L {ZeR*Y r( @) < 1};
P(A) = {ZeR! Ix,| < er(@)}.

We will show more generally that the hypotheses of Theorem 1 (a)
respectively 1 (b) imply that there exist infinitely many integer points ¥ with

™ (@) Fed(4,w) and L&) < (1+5)d> (%},
(8) (b) %e¥(A) and |L(¥) <5{G}".
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Similarly it will be proved that
©) Theorem 2 holds with ¥ replaced by ¥ (A).

3. The case n = 2 of (8) is due to W. M. Schmidt [6], who was basically
interested in diophantine approximation by positive integers. He also has given
an example ([6], remark C), showing that Theorems 1 (b) and 2 no longer hold
if the numbers 1, ay, ..., a, are allowed to be Q-linearly dependent. For n = 2,
Tesults similar to Theorems 1 (a) and 2 could be proved by his method ([8]).

4. For n > 3 the following result of W. M. Schmidt gives a “lower bound”
for the sets @ (A, w) and ¥ (A) in (7) and (8), making clear that these cannot be
Teplaced by the set @ of points with positive coordinates, @ = {2 eR"*?|
¢, >0, v=1,...,n}, since ([6], remark F):

given n>3 and &> 0 there are a,,...,a, and c(¢) > 0 such that 1,
oy, ..., o, are Q-linearly independent and |L(%)| > c(e){¥}2* for all
integer points ¥€@.

5. C. A. Rogers [5] has studied the “dual” problem to the one we deal
With; G. Harman [4] has investigated analogous metrical problems (see also

WA
¥ 6. I am grateful to Professor W. M. Schmidt for encouragement.
II. Proofs of (7) and (8).
(i) Since the number ¢ in (8) does not depend on A, we may replace ¢ in the
definition of ¥ (4) by any positive number, say 3. Hence
(10) ¥(A) = {ZeR™| Ix,| < 3r(2)}.
Let w and v be the numbers defined in (0) and (1) and let c =¢(A, n)

= (1+8)d*". We shall give indirect proofs for (7) and (8). Therefore in what
follows, we always suppose that one of the following assumptions holds.

AssumPTiON A. There are at most finitely many integer points ¢ verifying
7.
AssumMpTION B. The numbers 1, «,, ..., «, are Q-linearly independent and
there are at most finitely many integer points ¢ verifying (8).
. Then, the intersection of ®(A, w) with any linear subspace of R"*! being
'nfinite, in both cases the numbers
(11) 1, a,,...,a, are Q-linearly independent.
Let ¢ 1» %5, ... be a sequence of minimal points, i.e. of integer points with
<'=?1) < (%,) < ...such that fornoj =1, 2, ... there is an integer point 4 # @
With the properties |L(9)] < |L(¥)] and %) <<(¥)).
For j=1, 2,... put
&,(9)= C‘,J; x\,(‘gj) =Xy, Vv=1,..,m
- LE)=L; <¥p=N; r@)=r,
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Since any minimal point ¢, can be replaced by —4,, we may suppose X,; > 0,
j=1,2,... By Dirichlet’s theorem we have with (6)

(12) ILI|<d"Njy, J= s

Henceforth let m be a sufficiently large subscript. It then follows from (12) that
%, ¢®d(A, w) if A holds and that 9 ¢ ¥ (4) if B holds. Therefore

(13) 1<r, <xiw<Ny*, if A holds

and in any case

(14) r,<ix.<inN,

by (10). Hence

(15) (B> = Xum = Np.
(i) If A holds, then

(16) N, 2 Nt Vr,

Proof, Let [x] denote the integral part of the real number x. For the

integer point
1j(w=1)
H =H(m)= [r},""” ”(%) ]@,_
we have by (13)

1/(w=—1) 1f(w=1)
r() > (r;“" ”(ﬁwﬂ) - 1)r,,, = (1+o()r* ”({:5) , m—>
T, m

and

1/(n+1) Nm R 1/{n+ 1) & witw—1)
A7) 1x, () = (#) < XpmTm s <rd )

Tm Tm
Hence
(18) Hed(A,w).
It follows from (12) that
1/(w—1) : 1/(w=1)
(19) IL(#)| < d"r:ﬂ-*“(%) Na%s =d"(%) rate O N

By the definition (0) of w we have n(n+1) = (1 +nw)/(w—1). Now assum®

indirectly that
N_\" +1
N, m+1 > (_I!l) ]
rl“
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and hence that

~ N = (1 +nwl(w—1)
NM:! < (_m)
r

By (19) and (17) we then have

N —nwf(w—1)
IL(o#) < d"(—}—"') FoIEL 2 P,

Combined with (18) this contradicts A, which proves (16). In what follows, the
constant implied by < does not depend on m.

(ii)) If B holds, then
(20) IL,| € Na3*m,

Proof ([6], Lemma 1). Since n—1 <v we can pick ¢ so large that
Do"~! < §(a/d)’, where D is defined in (5). Let N > 1. According to Minkow-
ski, the set

1
{!IER"“] lx,]g;N”"“'"’, v=1,...,n=1; |x| < N;

IL(®@)| < Dg"~ ! N™vle+1 _,.,}

contains an integer point ¥ # 0. Since n>v we have {4} <d(¥%)
< NYe+t=mdle and hence

IL(#)] < Do™~* N™vle+1=m < §(NMe+1=m d/g) ™0 < § {4} .

Now, if N is large then |L(%)| is small and (¥ is large by (11). Therefore, since
B is supposed to hold, ¥ ¢ ¥ (A) for large N. It follows that r(¥) <|x,(¥)i/3
< N/3 and (%) < N. Hence, given N large enough, there exists an integer
point ¥ # O such that (#) < N and |L(%)| < N~9¢*1~" Combined with the
definition of minimal points, this implies (20).

(iv) We have

N
@n L1l < 2= 1Ll + L.
m

Proof. Consider the integer point

o = (m) = g,,+,*<[x’;“+‘]+u)g_,

where pe{0, 1} is chosen such that

22) e () < Xpm/2 < Np/2.
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By (15) Xum+1/Xam = Nm+1/N,,. Hence

No

(23) (LX) < IL.,.+1I+( N+'+ l)lel
and

Nm-!-l
(24) r(x)érmﬂ'f'( N +1)"m
We next show that
(25) LX) <c{x}™™, if A holds,
(26) < 5{1’}'", if B holds.
Indeed, if A holds, it follows from (24), (13), (16) and (0) thatforv =1, ..., n—1
27) I, () < P() < NEE -+ NSO+ N3,

Using (23), (12) and (16) we find

Nize 3
(28) IL()] < d“( wlit—r— +N,..H) <(1+0()d"N;7P("*D,  m - c0.
Now, by (22) and (27) we have either {)f'} < N,,d/2 — which implies (25) in
view of the first estimate in (28) — or {X¥'} < d(1+o(1)) N¥G Y, m — co, from
which we get (25) using the second estimate in (28).
If B holds, we have by (23), (20) and (l)

Nu'l—l

lL(X)l‘iN ufu+l—n)+ N v,.fv+l n) Q.N Niu.+1

Since {H#'} € N,,+1, this proves (26).

Now X" (m) # O for all m. If m is large, |L(¢)| is small by (23), hence {X'}
is large by (11). In view of (25), (26) this implies ¥ ¢ ® (A, w) if A holds and
X ¢ ¥ (A) if B holds, such that in both cases

r(X) < |x,(H)3 < N,/6

by (22). Hence (X") < N,,. It follows from the definition of minimal points that
|Lm—1] < |L(2¢)). This, combined with (23), proves (21).
(v) We have

(29) Nms1 2 Np+ Ny
Proof. Consider the integer points #, = .#,(m), v=1, 2, 3;
M =Y b M=%,-%. _: M=% 1—F._,.
Assume indirectly that N_,., < N,_+N,_,. Then by (15) and (14)
Xy (M) <Np; r(#H)<(Nps1+NJ)3<N,, v=123.
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Hence {#,) <N,, v=1, 2, 3. Since #, # O this implies |L(# )| = |Lm-1l,
v=1, 2, 3. Noting that 0 <|L| < |Lp-4| for g =m—1, m, m+1, we get
L,+L,<0; L, L, ,<0; Lp, L, <0,

This contradiction proves (29).
(vi) Define the sequences a,, a,, ...; by, by, ... by

ay=a,=1, ag=aq_,+a_, fork>=2;
bo=1, b, =2; b,=2b_+b_, for k=>2.

Then a,, a,,... is the Fibonacci sequence and for k=1, 2,... we have
according to 3], §10.13,

a5
b= zlﬁ‘“ F D= (1- /2.

(vii) For any positive integer k we have
(32) (@ Npsx=841Np-y.

Nm+k Nm+lt—l
Lysi—1|l+by—y————|Lp+sl-
Nm | +k ll k—1 NM I +k|

(34) () Nusr bV DN |L,_,| "o,

Proof. Formula (32) is an immediate consequence of (29). To prove (33)

We note that for k = 1 (33) holds by (21). Assume now (33) to hold for k. Then,
from (21) with m replaced by m+k we find

(31)

(33) (®) |Lm-sl < by

N N. Nopvi-
Mou—s] € by *"(z *""‘|L.,+.|+|L,.m1|)+b,.-.~—§—"~‘|L..+*|

Nm+k m

Npsi
| Lm+x+1ls
m

g(2b,+b.‘_1)—N';"“IL...+*|+bk
Which proves {33}, Since Zbk‘l'bk_l = bg+1.
From (33) we get (34) using (12).
(viii) The case n > 3. By (32) and (30) respectively (34) and (31) there are
Positive bounds d,, d,, which do not depend on k and such that

k
d, (I +J§) <4 (1 4/ < dy (14D, >3,

Since (1 +\/_)/2 > (1 +\/_)”2 this cannot hold for large k. This contradiction
Proves (7) and (8) for n > 3.
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(Observing that if B holds, (20) and (33) yield a better estimate for
N, +x than (34), one could prove (8) even for n=2 in the same way.)

(ix) The case n = 2. Following the arguments in [2], Lemma 3, and using
(12), we see that

(35) the minimal points ¥p—1, p, Im+1 are linearly independent for
infinitely many m.

For such an m we have
ém—l,l cm-l.z ém—l.B

(36} 1 < det ém.l ‘:m.z Em.a
|_§.-+1,1 Emi1.2 Cme13
—fm-:,L fmﬂ.z Ly
= | det 6,,_1 Em_z lam < det Xm,1 Xm,2 Lm
|_€m+l.l £m+ 1.2 Llll+].

Let D,, v=m—1, m, m+1, denote the algebraic complement of L, in this last
matrix. Then we have by (13)

ID,| € 2Np* Npsy, if A holds,
<2N_N,:1, if B holds,

Xm— 1.1 X — 1,2 Lnl—'l

Xm+1,1 Xm+1,2 Lp+1

and by (21), (12) and (20)

N"'“lL,,,l &(N,,Nm+1)~%,  if A holds,
NM

IL) < |Lm-1l <3

S NZINZM=Y, if B holds,
such that in both cases
L,D,=o0(l1)y, m—-ow, v=m—1m m+l
This contradicts (35), (36) and hence proves (7) and (8) for n=2.

IIL. On the proof of (9).

(i) We can-prove (9) by similar arguments. Assume again that the
numbers 1, a,, ..., @, are Q-linearly independent and that there are at most
finitely many integer points & verifying (4) with ¥’ replaced by ¥ (4). Define the
sequence ¥,, ¥,, ... of minimal points as in I1, (i). Then (15) holds and by the
arguments in [6], Lemma 1 (see II, (ii)) we have
(37) L < Nyt t=m,

(ii) Let
n?(nx—1)

(n—1)(nx—1)

Wq =0.)D(ﬂ, x) = 1—
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and let @ > w,. According to Khintchin’s transference principle ([1], Chap. V,
Theorem 1V), the assumption (2) implies
[L]> N3*~e.
It follows from (37) that
(38) N, 5> Ny —meva),
(iii) We have
u u
©9) l_uo+;—n_(uo+l—:)(n+mo)= ~Yo-
Proof. Equation (39) is equivalent to
(14 ug) (g +1—n) (n+wo) —uy (n+wo)—ty =0
and hence to

1
u%—ua(n—l+n+w )—n+l =0.
o

1 n?x—2me+x+1
n+w, nx

Noting that

n—1+

Ll

we find that (39) is equivalent to the equation
ugnx—uy(x(m—1>+1)—nx(n—1) =0,

which holds in view of the definition (3) of u,.

(iv) We have

N m+1

21) |Lm- 1] <2 N |l 4 1L 411

Proof. Define the integer point ¢ = X (m) as in II, (iv). Then (23) holds
and using (15), (23), (37) and (38) we get

(40] IL(X)| < N;:Iu+1—ul+%N;i;in+l_“

< 2N:|-+.;,rtu+ 1-n)—uf(u+1 —n)ln-l-m}.

Since u < uy, by (39) we can choose w > w, such that with (40) and
{H> € N+ we have
LX) <o(Q)Ngpis <LHDH7%, m—oco.
Hence, in view of the indirect assumption, X (m)¢ ¥ (A) for large m. By the
arguments in II, (iv) this implies (21).
(v) The rest of the proof is the same as for (7) and (8).
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6. Vorbemerkungen. Wie ich in §7 darlegen werde, ist der auf B. R.
Srinivasan zuriickgehende Hilfssatz 2 nicht gesichert. Darauf beruhen aber die
Sitze 1 und 2 und (1.1)(1.2). Statt dessen werde ich in § 8 das etwas schwichere
Resultat 4, 3 ¢ (x) < (xlog!® x)!/7 erzielen, also (1.1) fiir 1/7 < 8 < 1/2 beweisen.
Herr H. Menzer (Jena) hat mir in einem Brief vom 27.3.88 mitgeteilt, daB er
4;.3,6(x) < x"*8log®x zeigen kann.

7. Srinivasansche Exponentenpaare. B. R. Srinivasan [8] verallgemeinerte
die Phillipssche Theorie der Exponentenpaare zur Abschidtzung eindimen-
sionaler Exponentialsummen [4] .auf den mehrdimensionalen Fall.

W. G. Nowak [13] é&uBerte, ohne jedoch konkrete Fehlerhinweise zu
geben, Zweifel an der Korrektheit der Srinivasanschen Theorie. Ich teile seine
Auffassung:

Srinivasan iibersieht, daB die in [15] auf Seite 333 auftretenden GroBen

| im allgemeinen von x, abhidngen: & = & (x,). Statt [(8/0x,)*f (xy, x,)| =1,
briiuchte er |(d/dx,)*f (& (x,), x,)| > r,. Gravierender diirfte diese Ungenauig-
keit in den Beweisen der Lemmata 4, 5 und 6 in [16] sein (siche etwa [16], Seite
181, Zeilen 10-17). Sie wird sich meines Erachtens, wenn iiberhaupt, nur mit
groBem Aufwand beheben lassen. Auf den Lemmata 4, 5 und 6 in [16] basieren
aber die dortigen Theoreme 1 und 2 und darauf die in [8] entwickelte Theorie
der Exponentenpaare. Daher ist auch [9], Theorem 5 und folglich Hilfssatz
2 nicht gesichert.

8. Corrigendum.
SATZ 4. Fiir x— o0 gilt 4;3,6(x) < x*" (logx)**?/".
Satz 4 folgt unmittelbar aus Hilfssatz 3 und dem Korollar zu

—

(*) In dieser Arbeit finden sich die §§ 1-5, Sitze 1-3, Hilfssdtze 14, Formeln (1.1)(5.3) und
Literaturhinweise [1]-[11].
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