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can check that |9¢,| = |¢"| by checking that it is true for each prime power p*
We leave this computation to the reader. Then 5, is multiplicatively inde-
pendent, and " has the same multiplicative span as #, so 5" must also be
multiplicatively independent.

Thus #” is a multiplicative basis for ¥ and Theorem E is proven.
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1. Introduction. For a positive integer h, the h-range n(h, A,) of an integer
sequence

(1) A ay=0<l=a,<a,<...<q,

is the largest n for which each of the integers 0, 1,..., n can be written as a sum
of h elements of A,, repetitions being allowed. The extremal h-range n(h, k) is
given by
n(h, k) = maxn(h, 4,).
A
The problem of calculating n(h, k) is by some authors referred to as ‘the postage

stamp problem’, due to a rather obvious combinatorial interpretation. In this
note we consider n(h, k) for k = 1 fixed and h large.

By a simple combinatorial argument, Rohrbach [11] showed that

h+k
n(h, k)<( . )
so in particular
kk-—l. h k
= k-1
2) n(h, k) g(k—l}!(k) +O0(h*™ 7).

On the other hand we have n(h, k) > (h/k)* (Stéhr [13]).
For k <3 we have

il i ck(g)kwm*'l),

where ¢; = 1 (trivial), ¢, = 1 (Stéhr [13]), c; = 4/3 (Hofmeister [4], Klotz [6]).
For k > 4, however, it is not even known if such a constant ¢, exists. Guy ([3],
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C12) suggests that for h large enough, n(h, k) is given by a finite set of
polynomials in h. If this is true, these polynomials must be of degree k in h.

For k > 4, the only improvement of the bound (2) seems to be that of Klotz
[6], who showed that .

—-1)

where ¢ depends on k (but not on h) and lies in the interval 1-2"*<c < 1.
(Thus ¢—1 as k— c0.) The object of this note is to show that

k—1
) i p <& ( ) +O(RY,
thus improving (2) by a factor which tends to 1/e as k— oo.
2. The Frobenius number. The Frobenius number gy, = g(bg,by,...,by) of
k+1 > 2 relatively prime positive integers b; is the largest non-zero integer

which cannot be written as a sum of numbers b;, repetitions being allowed.
Put ¢, =1, and

k
n(h, k) < c '(h) for k> 2 and h large,

(gxs1+bo+by+ ... +b)

= inf
* % =M bob, ... b,

for k=1,

the infimum being taken over all sequences by, by,...,b, of k+1 relatively
prime positive integers. We now show that

(5) o, = k.

Given k+1 relatively prime positive integers by, b,,..., b, let L, be the
smallest integer = r (mod b,) with an integral representation

Lr=b1x1+b2x2+..-+bj‘xk, x'; l.

Clearly, we then have (Brauer and Shockley [2])
max L, = gy+y+bo+by + ... +b,,

the maximum being taken over a complete set of residues r(mod b,).
For a positive real number x, let M(x) denote the number of vectors
(x4, X5...,X,) With positive integer coordinates satisfying

(6) byxy+byxs+ ... +bx; € x

Then, for each L, at least one such vector is counted in M(maxL,).
Hence
S M(gg+1+bo+by+... +by),

and (5) is a consequence of the inequality

xk

g‘- —_—_—_'—_’
M) < 55,5,
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which holds since the right hand side is the volume of the simplex determined
by (6) and the inequalities x; > 0, for the x, considered as real variables.

3. The h-range. We now show that
k—1
) ntn, < S0 (k) FOURY,

k=1
which, by (5), proves (3).
Given the sequence (1), put
A ay=0<l=a,<a,<...<q;, 1<i<k.
We use induction on i to prove that
i=1
8) n(h, A) < G=1) ()+O(h‘ ), 1<igk.
Oi-y
Since n(h, 4,) = h, (8) holds for i = 1. Suppose that (8) holds for 1 <i < K,
for some K in the interval 1 < K < k. Then
n(h, A)=0(h), 1<i<K.

If a; > n(h,A)+1 for some i in the interval 1 <i < K, then n(h, Ay)
=n(h, A;), and (8) holds for i = K. Therefore suppose that

9) aivyg <nh, A)+1, 1<i<K,
so in particular
(10) Qivy = b(h‘), I<i<K.
Now consider an integer N in the interval
(11) hag—n(h, Ag) < N < hay—n(h, Ay)+ag.

By (9), we then have
O0<n(h, Ag_)—ag+1<n(h, A)—ax+1,
so that
< hag—N < n(h, Ay).
Thus there are non-negative mtegers x; such that

K K .

i=0
Hence each integer N in the interval (11) has an integral representation

K-1
N= E (ax—a)x;, x;=0,
i=0

and by adding multiples of ag, we see that so does every integer = hag —n(h, Ag).
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Thus we have (cf. [10], §2)

glag, ag—ay,...,ag—ag—y) < hag—n(h, A)—1.

Using (4), we further get

n(h, Ay) < hag—(ox-1a)""* Nax—ax_,)+Kay,

so that, by (10),
n(h, Ag) < hag—(og-1a0)""* "+ 0T,
and maximizing the real function
f(x) = hx—(g - xXVE-1, x>0,

we see that (8) also holds for i = K.

4. Concluding remarks. As a direct consequence of the well-known f.ormu_la
g, = bob, —by—b,, we have o, = 1. Also, for k =2 we have that (3) is valid
with equality, or more precisely (Stohr [13])

h*+6h+1
Given k+1 >3 relatively prime positive integers bo, b,,...,b, put
d = ged(by, by,...,by).
For L, = L,(by, b,,-..,b,) defined as in Section 2, we then have

by b
Ld,(bo, bt,...,b‘_)=d'L, bO’ ?’”"_d_ N

so that (Brauer and Shockley [2])
b b,
g(bs bys.-. b)) = d-g(bo, E‘-,...,F)+b0(d-—1).

Henoe, in (4) it suffices to take the infimum over all sequences of positive
integers by, by,...,b, satisfying gcd(f:.»l, by,....,b)=1.
For ged(by, b,) =1, we showed in [9] that

(12) gy+by+by+b, =boa+bd—x, x=min(byp, b,y)
for certain integers «, B, 7, & satisfying
(13) wb—Py=b,, 0<P<a<gbh, 0<y<dsbh,
Using (12), the arithmetic-geometric mean inequality, and (13), we get
gs+bo+b, +b,y > 2(boa-b,8)/2—x
= 2(bof+byy+bob1by)"/2 —x = 2(x? + bob,by)"/? —x,
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and minimizing this last expression for x considered as a real variable, we gét

(14) g3+bo+by+b, > /3byb,b,.

Hence o, > 3.
By (7), we thus have

3
(15) n(h, 3) < %(g) +0(h?).

Using the simple Hilfssatz 1 of Hofmeister [4], bases 4, for which

4(h\?
n(h, A’);§(§) +0(h?

are easily constructed. Thus we have that (15) is valid with equality, as shown
by Hofmeister [4], and independently by Klotz [6]. Hofmeister also gives the
precise form of the error term for h large. More recently, Hofmeister [5] has
shown that the results on n(h, 3) in [4] are valid for h > 200, and the remaining
values of n(h, 3) have been computed by Mossige [7]. In particular, the

conjecture of Guy ([3], C12) (or see Alter and Barnett [1]) holds true.
For the sequence

(16) bo=k+1, b,=ak+1)+i for 1<i<k,
we have g,4, = a(k+1)—1. By taking a large, we get
0, < (k+ 1)1,
This bound is also a consequence of (7) and the result
n(h, k) > 9‘%’:—1(;)1 o1
of Klotz [6].
It was pointed out by Selmer ([12], Chap. VI) that for k = 2, the sequence

(16) satisfies
g3+bo+b,+b, = [/3bohib, 7,

which shows that the bound (14) is ‘sharp’.
The bound (5) is probably not particularly good, and we do believe that an

improvement is possible. As we have seen, we have o, =1and ¢, = 3. So what
about a,?

Mossige [8] has shown that
h

n(h, 4) > 2.008(3)4+ i)

Hence, by (5) and (7), 6 < o4 < 13.45.

4 — Acta Arithmetica LIV.4
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Finally, someone interested in the problems considered in this paper, could
do no better than consulting Selmer’s research monograph [12].
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1. Introduction. In [5] Niederreiter developed the concepts of permutation
polynomials in several variables over a finite field and orthogonal systems of
polynomials over a finite field. In this paper we generalize these notions by
allowing the image spaces of the polynomials to be arbitrary subfields of the
finite field. Several properties of permutation polynomials and orthogonal
systems are preserved and new ralationships are exhibited. For a development
of the basic properties of permutation polynomials and orthogonal systems, see
[1], Ch. 7, Sec. 5.

In [3] Mullen demonstrated an application of the theory of permutation
polynomials and orthogonal systems to the construction of complete sets of
mutually orthogonal frequency squares of prime power order. Although
Mullen’s construction generated previously known designs, his algebraic
approach was completely different than previous methods which were based
upon statistical design theory. In a similar manner, we will show in a follow-up
article how to use the theory developed in this paper to construct additional
complete sets of frequency squares, rectangles and hyper-rectangles, as well as
build orthogonal arrays of various strengths.

Let F, denote the finite field of order ¢" where g is a power of a prime p and
n is a positive integer. Let F¥% denote the multiplicative group of nonzero,
elements and let F}. denote the product of k copies of F,., k > 1. The ring of
polynomials in k variables over F,» will be denoted by F [X15...,% ). Unless
otherwise specified, two polynomials f, ge F [x15...,%,] are equal if they are
equal as functions. Recall that every function f: Fk%.— F . can be uniquely real-
ized as a polynomial in Fenlx,,...,x,] of degree at most ¢"—1 in each variable.

Following Niederreiter in [5], a polynomial fe Fn[xy,...,x,] is called
a permutation polynomial over F . if the equation f(x,,...,x,) = a has exactly
q"*~ " solutions in F%. for each ae F,n. In addition, a system of polynomials

* This work is part of the author’s Ph. D. dissertation at PSU under the direction of Professor

G. L. Mullen.
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