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Constants for lower bounds for linear forms in
the logarithms of algebraic numbers I
The general case

by

JosEF BLass*, A. M. W. Grass*, DAviID K. MANski**, _
Davip B. MERONK* and RAY P. STEINER* (Bowling Green, Ohio)

1. Introduction. In this note we further improve the lower _bound for
a non-homogeneous linear form in logarithms of non-zero alggbralc numbe_rs
with algebraic coefficients. All the techniques are to be found in [W] and its
companion [PW]; our sole contribution is to observe that the method of [W]
which is essentially due to A. Baker [B1] yields better constants and to use the
method to explicitly find the constants in [PW] for the general algebraic case.
For an excellent account of the history of the subject, see [B2].

Our motivation is completely classical; i.c., to develop the theory to enable
one to completely solve specific types of equations. The irn;_:roveme.nts that we
obtain in the constants (by 2°° for the logarithms associated with the real
quartic extension of the field of rational numbers having least dlsv.::nmmanl, for
example) ensure that Thue equations of small degree and F:oetﬁc?lents over the
ring of rational integers can be completely solved therein quite _rapldly on
a typical university computer (see [BGMS]). We thgrefore see this paper as
providing the necessary results to facilitate pl:ac_ncal so_lutlons to num-
ber-theoretic problems associated with linear forms in logarithms of algebraic
numbers with algebraic coefficients.

Specifically, let A be the field of algebraic numbers and let «,, ..., &,
Bo, ..., B,e A with a,, ..., a, non-zero. Let

A=Bo+B, loga,+ ... +B,loga,
and D = [K: Q], where K = Q(ay, ..., %, Bos ---» By)- Let h(a) be the “ab-
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solute logarithmic height” of « in the sense of Mahler and Weil (see [L]). Define
V, = max {h(x}), 1/D, Jloga,|/D},
p}+1 = max {h(ij+1), P}, |Iogaj+1l/D} (] -‘...(_j sn— l].

Let
_ 1
a;=DVj/lloga]>1 (1<j<n) and a_=;j§10_j'
Let
Vi=jV, W =V=1, V* =max{V, 1}, V,=max{V/, 1} (1<j<n).
Let
W=hB) O<j<n).
" Let .
Lt L paveal saust (s
a; Jis1q

Let g be a prime number.
Let E; = min{e"”", 2¢a}. Note that E, > 2q. Let
M =2(2%¢’>nDV,* | E,)".
Assume that
W > max {nlog(ng>2" DV,*), log E,, (qan) log E,}.
We first prove:

ProposiTion. If [K(ai”, ..., 039): K] = ¢", then A =0 or

[A] > cxp(—C(n)q3”{q— 1)D"*2V, ... ¥, Wlog M/(log E,y*Y)
where C(n) = (n*"*!/n!)(3e?)" 221,

Observe that E, > E, of [W] so the term to the nth power has been
shrunk still further.

Let E, = min {¢??", 2ga} and M = 2(2°4* nDV,_, E,). Let
log(2'*%) ifn=D=1,
xy = 4 n?(n+1)log(6n/log D)+n(n+1)log(n!)+logn if D> 2,
n*(n+1)log(9n)+n(n+1)log(n)+logn if D=1<n.

W* = max {nW+n*(n+1)log(D* V) + x¥, logE,, (g/nD)log E,}
and assume that W* > log(2q). As noted on page 282 of [W1], the worst bound

for A occurs when {log &%y, .1y l0g @,} is linearly independent (over the rational
integers) but not necessarily strongly independent with respect to q (ie,
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(K (i, ..., a}9):K] < q"). As on page 281 of [W], using [W, Lemma 2.6], we
may replace ,, ..., &, and f,, ..., B, by oy, ..., &, Bo. ..., Bn tolget a strongly
independent set provided we use W* in place of W and Vj in place of V,
(1 <j < n). Thus we obtain

THEOREM A. If A #0, then

s LR V...
|A|>GKP{—C:(H)D' W(IOgM](W+C (ﬂ”}

- n2n+ 1 (2482).' 220 lfﬂ > 3,
cl( )={n2n+l(2482)n221 ffﬂ=l,2
Observe that E, > E of [W] so the term to the nth power has been shrunk
still further. An alternative form of the Proposition and Theorem A will be
given at the end of Section 2; although it is somewhat more complicated to
state, it often leads to smaller constants in practical cases.
Let

and C,(n)=n(n+1)log(D* V) +x}/n.

E* = max {2%*4 g**1n?* DE}, EY)
and if ¥, > n/D, let
E, = min {e"", &2®"", 4a}.

THEOREM B. (i) If A 0 and n <29, then

> s W x
(A4} > exp{—cln(n) D2 u:lg Ez)": -(log E*)(W+C, (H))}

where C,(n) and C,(n) are as in Theorem A.

(i) If V, >n/D and A #0, then
V..
I/ll > exp{ C (n]D'H—Z(_.EF

where C s (n) and Cz (n) are as above.

Note that the assumptions in Theorem B(ii) could increasg the value of
Vi ... ¥, by n", which would make the result far worse. However, if ¥, turns out
to exceed n/D in a particular problem, Theorem B(ii) would apply whatever the
value of n. From Theorems A and B(i) we obtain

CoroLLARY. If A #0 and n <29, then

(log E))(W+C, lnl)}

I/lt>exp{~é,(n)m”- Vyzeu ks Lo (W4 €, (n) min {nlog(25* " ng?> DV, _, E,),

(log E,)"

max {nlog E,, log2°*4/"g! *1np2 ptin Ez}}}

where C,(n) and C,(n) are given in Theorem A.
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2. The proof of the Proposition. Our proof follows that of [W]. We will
number our equations-(and use ‘) throughout this section to mirror those of
[W1; so, for example, (3.7) will refer to [W] but (3.7) to an equation in this
section. We will assume throughout that

=2, Co=(co+27°)e!?%°, ¢ =(co+278)e!/?%6,
chcits €222, cley €2, ;2124
V€e. £2% 2¥h<ge, <2 e,
(3.2 CoCy C3C3¢4 = 2230(ng)",

where

1 ifn=1and gDe{4, 5, 6},
0 otherwise;

{2 ifn=D=1and qe{2, 3},
D=

(33) ;=25

g, co=2% c,=3e% c;=2° ¢, =2° if n>3).

The notation used is the same as in [W] unless otherwise stated. Indeed,
rather than merely repeat the part of our argument that is the same as [W], we
will only include here the parts where the arguments differ. The reader should
therefore have a copy of [W] in front of him to refer to. The excrutiating yet
straightforward verifications of both [W] and this section can be found in

[BGMMS1], although the interested reader should have no trouble supplying
these routine omitted details.

Proof of Proposition. Let
Ul s 222+un2qu+l Dzmax{W, p;+, WP:,*/]ogEz}
and
ninti V,... V. WlogM

3n -1 Dll+2
L) (log E,) 1

U=cqoc cicacy

As in [W, page 264], we let
S=q[cynDW/logE,], T =[U/c,cyq"DW],
L_y=[W/logE,"*'], Lo=[U/e,c,q"D(L_,+1)logM],
L;=[U/c,e,ng"* ' DSV]] (1 <j<n).

Note that our conditions imply L, > ... 2 L, 2 1. We also assume that
ﬂll =—1
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It is easy to see that

(3.4) [ 2 T .
=y 7 B | Clcgq"+1D
u 2U
(3.5) E, Sj;l L_,Ilog i.’tj| < m
and
(3.6) co(l-l)s(n") < [ @+
q . J=1

We now improve [W (3.7)] with M =2(2°ng®> DV~ E,)" in Plaoe of
(2'3 ng?2 DV,* | E,)". First assume that n, D > 2. Since (logx)/x < lfe if x = 1,

logM = log2+n(6log2+logn+2logg+logD+log V.t )+nlogE,
< log2+n(6log2+(1/e)(n+2q+D+V, ) +nlogE,
< log2+n(6log2+(ngDV,t /) (4 +1+4+8)+nlogE,
< log2+n(6log2+(ngDV,~1)(9/8¢))+nlogE,
< 098n2gDV," ;+nlogE,.
Since logE, > log4,
log M < 0.98n2gDV,t , +nlogE, < 0.84n* gDV, [ 1ogE,.

Ifn=1or D =1, then it can be deleted from the expression for M. Hence we
obtain

log M < 1.78n2qV,* , +nlog E, < 1.54nqV,* ylogE, if n>1=D;
logM < 1.78qD logE, < 1.54gDIog E, if D>1=mn;
logM < 3.17q+log E; < 2.79qlogE, ifn=D= 1.

Thus we get
(3.7 log M < Bn? gDV, , +nlogE, < An*gDV,~logE,
where
084 ifn, D=2, 098 ifn,D>2,
A=<279 ifn=1=D, B=<317 ifn=1=D,
1.54 otherwise; 1.78  otherwise.

It is now straightforward to verify from the definitions that
(3.9) T < et +2m¥,
(3.10) ' 4E,qL, < M'*'",
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(3.12) (L, +1)logM < 2 ( : l)(B+—I—),

27 D\(logdy ngD
(3.13) L+L, <2L, <et+imw
(3.11) (Lo +1)(Lo+1) ... (L,+1)D*U < exp(U/222 ¢" D)
and
(3.14) 12q"LE, S S (L_{+1) M+ 2

using (3.7) and (3.2)) and logE, < E,/e.
We also correct [W (3.15)]:

(3.15) Tlog(L, +L,e™) < (1+D+1/n) UJc, c, " D.

We next determine f,—f, appropriately. To ensure that (3.17) holds, using (3.9)
and (3.14) we see that

log|d(z+A_ s L_,+1; Ag+1;1)

2 U M1+2fn
<TW([1+= e — x 1) |log 4 1
(+J+meummM+“‘+’)%e( 2 +)

forO0<id <L, 0<Ai;<L;,, 0<t<T and lzl <29"L,E,S.
But M'*2" > 233> (12)2?°, Hence (3.17) is true if

2
1+.§ 1+§ (1+;)((IOI4)"+1)(B+;1—D)
f1= + + . 4 .

i€y €L ¢y 222

Using (3.12), E, > 29 and W > 9nlog2 we obtain (3.18) of [W] by the same
method provided

atwss) 2l it W as-L Y 1a
1= log 3 3 log3 1 " n - (log4)" ngD +r;
27 \(log4)"*" " 9nlog?2 €i1Cy  CyC4 222 )
Arguing as in [W, Lemma 3.2] we obtain

1 +2+l/n 14+2/ng & 1
gejc, ¢ 2% 2%p

1
fs = a__l{fl +f,+

and, as in [W, page 268], we obtain (3.20) provided that

, 2D
f3 - fa"‘zzznzq-

The calculation in [W, Lemma 3.3] shows that we need only take
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1 _{fi f3 1+1/n+D 1 )_
"=+=+ + =L
qc1cz+q (D+D gesD . 22D 4
That f, < 1/2 follows easily once (3.1'a) is established (see below).
The calculation in [W, Lemma 3.4] shows that we can take
1 1
24— 14—
n n‘q

1
= +
fs fl+f2+f3+qclcz+61€3 222

However, the calculation there for f; can be improved. In the calculation of the
upper bound on —log|ds. .yq@s.(s/g)l, the term Ulc,c, comes from
bounding above

Dq" Y, L;Sqh(a}").
j=1

J

Since
1y _ | < 1 v
h(ﬂj )= ah(a',] = E Jj*
this term is bounded above by
SY LV < by (3.4)
an jg:]. it Cl. CZQ

Hence the term Ujc, ¢, can be replaced by the improvement U/c,c, 4 in fs.
Thus we obtain

' 1 1
24- 14—
n-q

= fi+fi+fs+ +
Js=hthHh+t] it Ehs

To calculate f, we first observe that it is trivial to improve [CW,
Lemma 2] to:

4r\M 10 /18r\¥ LfO(x)]. : _1}
|f|z:-<21f|x(i) +?(E) max{T. xeE;0<t<!t

if r < R/4 since if |z| = 2r and [T, then [ —z| > 3r/4 and (k—1)! > (k/3)* by
induction. _
Hence, as in the proof of [W, Lemma 3.5] we obtain

g g—1 L_ 1 _ Cy )
"\ 2 J\¢c, ce5q 22gn*D
11
+—+—
_{fl+_f_,_+ Dnd 4 | (HQ)}_

— +
Dq Dq Cc;C3q ¢y Cy 222 ‘Dq nz

222 = fS‘
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(Note that there is a minor error in [W];

18r g—1 ST 9g>
Itlog( 5I)<( - )q“(z +8 L)log(q_l){(0.3}U—log5.)

To obtain the desired contradiction, as in [W] we require f, > fe+1/2%n.

This is implied by (and is equivalent to if g = 2):

; 18 1 4 12 6 4log3  4log3
. Z2—+—| 1454+ —+—+—
6.1) : c2+c3(145+D +nD+9nlog2 (log4)"“)
1 16 2 4 ¢ 1 1 16 2 2
12 — il o =
o o) ot 23()
; 2 3 log3 log 3
+4+3+£+}_ 4+L+C3 +(4+J_D) L+3+n 9nlog2 (log4)"“
n n® D\ 2n n* -1 |2, e,
4

34—
+ +"+c—‘ t+o+(34+2) (B4 s34

€, 22 n n 2nD /\(log 4)" '
Since D > 1, the above inequality holds for all D if

18 1 18 4log3  4log3 1 20
1 1>— 8. —
(3.1'a) » c}(l 5+ +9nlog2+(log4)"”)+ (l4+ n)

Fe 2 8 ¢ 1 20 1
+222(4+ + 2+ +(B+2 )(14+ H)(l+“0g4)n))
1 3 13 6log3 6log3 1
—l{ (18 9nlog2+(]og4j"“)

(1 3): g;('+l+(3+4)('+aogl4}")(3+z“ln))}'

From this last inequality it is easy to see that f, < 1/2. Indeed (3.1'a) is
almost the same as [W (3.1)].

To complete the proof of the Proposition, we proceed as in the proof of
[W, Proposition 3.8] using

5 fn23,

44 Fia? _[3e* ifn>a4, 2" fn=2,3,
€= l Pms G= 25 ifn=1,2,3, €= 28  otherwise
3 ifn=1,
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and
533 ifn>4
161 ifn=3,
70295 ifn=2,
342 ifn=1;

but the maximum is clearly attained by Wmax {V," ,logE,}/log E,. This
establishes the Proposition. = '

To prove Theorem A, we need only note that as in [W, §4], we must
replace V; by jV;, W by W*, E, by E, and M by M. However, for n > 3, we can
show

(3.9) T < ¥'in+ 1)
and
(3.13) 2L, €PN,

Hence we obtain

31Y) 1 L. 65+i+—-4—+4log3( . + 4 ))
1 ;C_2+a T n+l (n+1)D (log4)"**  Sn(n+1)

1 18 16+2+4
AR T

Cy 2.4 1 8 ¢
+—(4+ ot ptEtEp

(5030 (o) (2+3)
+(“+5) Lol (

2¢, ¢4

+
l+n+l+10g3((log4)"“ Snn+1)
3+i

g zcl(( 4)(3‘”21")(”0 ;4}")””'%)}'

If n=3, this is satlsﬁed by co=5, ¢;=2% c; =67 and ¢, =2% if n >4,
this is satisfied by ¢, = 5, ¢, = 3¢%, ¢; =218 and ¢, = 2° This establishes
Theorem A. m

It should be noted that if n = 28 and we let ¢, = 4, c; = 21° and ¢, = 21,
then by (3.1') ¢, can be taken to be 19.8, assuming ¢ —Ejz;;ldz cfl—r 19.16
approximately as n— co). Thus we can replace 2™ "tlle" by
(19.8)"225p2"*1 if n > 28. Let E; = 2q. Then (3.5) becomes
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E,S

The proofs of the Proposition and Theorem A go through with the modifica-

M=

i

L;llogayl < 2U/e, ¢, q"a.

tions that
3 (i) E, (E,) is replaced throughout by 2g in the Proposition (Theorem A),
an
(ii) the first summand on the right-hand side of (3.1") and (3.1 %) is replaced
by ﬁ_i‘_ﬁfﬂ for the Proposition and Theorem A respectively.
Ef, f(z)r example, a = 16 and n > 4, C, (n) in the Proposition can be replaced
by : 15"2“.
The same considerations hold equally for Theorem B.
Tables of computed values for ¢ = cjc, 3¢, c,
where =2, n<10and a=1, 2, 4, 8, 16, 64
Soifn=1,D=1anda=1,c=17x10"=17 7
D=1
n a=1 a=2 a=4 a=8 a=16 a=064
1 1.7 7 1.7 7 1.7 7 L7 7 17 7
2 31 8 L1 8 43 17 22 7 14 1 96 6
3 34 9 65 8 1.7 8 57 7 28 7 15 7
4 84 10 93 9 L5 9 35 8 13 8 48 17
5 21 12 13 11 1.3 10 20 9 57 8 1.6 8
6 48 13 1.8 12 L1 11 12 10 24 9 51 8
7 L1 15 23 13 8.1 11 6.0 10 99 9 17 9
8 25 16 29 14 6.3 12 32 11 39 10 48 9
9 55 17 36 15 4.8 13 1.7 12 1.5 11 1.4 10
10 1.3 19 4.5 16 37 14 83 12 5111 40 10
D=
n a=1 a=2 a=4 a=28 a=16 a=64
1 117 84 6 84 6 84 6 84 6
2 24 8 79 7 32 7 16 7 97 6 71 6
3 27 9 52 8 1.3 8 44 7 21 7 1.2 7
4 6.8 10 74 9 1.2 9 27 8 98 7 37 7

Constants for lower bounds | 11
5 1.7 12 111 9.7 9 16 9 44 8 1.3 8
6 39 13 14 12 79 10 86 9 19 9 40 8
7 8.8 14 1.8 13 6.3 11 47 10 76 9 13 9
8 20 16 23 14 49 12 25 11 3.0 10 37 9
9 4417 29 15 38 13 1.3 12 12 11 1.1 10
10 9.7 18 35 16 29 14 6.5 12 45 11 3110
4<D<9

n a=1 a=2 a=4 a=8 a=16 a =64
1 86 6 48 6 42 6 42 6 42 6

2 20 8 67 7 27 1 14 7 82 6 60 6
3 24 9 46 8 1.2 8 39 7 19 7 97 6
4 60 10 6.5 9 99 8 24 8 85 7 32 7
5 15 12 9.0 10 84 9 14 9 38 8 1.1 .s
6 34 13 1.2 12 69 10 75 9 1.6 9 34 8
7 78 14 1.6 13 5511 4.1 10 66 9 12 9
8 1.8 16 20 14 43 12 22 11 26 10 32 9
9 39 17 2515 3313 1.2 12 99 10 92 9
10 8.6 18 3.1 16 2.5 14 56 12 39 11 2.7 10

D> 10

n a=1 a=2 a=4 a=38 a=16 a=64
1 78 6 44 6 42 6 42 6 42 6

2 19 8 60 7 24 17 1.2 7 74 6 54 6
¥ 22 9 42 8 1.1 8 35 17 LT 3 89 6
4 55 10 60 9 91 8 22 8 18 17 29 7
5 14 12 82 10 77 9 13 9 35 8 96 7
6 3213 1.1 12 64 10 68 9 1.5 9 31 8
7 7.2 14 1.5 13 51 11 37 10 61 9 .19
8 1.7 16 1.9 14 39 12 20 11 24 10 29 9
9 3.6 17 23 15 30 13 1.1 12 9.0 10 84 9
10 79 18 29 16 23 14 5.1 12 3511 25 10
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3. The proof of Theorem B. As in Section 1, the result follows from the
strongly independent case. So let W and E, be as defined there. We assume that
(3.2) and (3.3) hold but make no assumptions that ¥; > n/D first of all. Then if
we replace M by E* = max {2°"*%¢"*! n?" DE%, E7'}, then a similar com-
putation to (3.7') yields

(3.7 log E* < Bn>qD+nlogE, < An*qDlogE,
where A and B are as in the previous section ifn, D > 2; A = 328 and B = 3.86

ifn=D=1;and A = 1.78 and B = 2.12 otherwise. From this it follows easily
that if Ny =2"%1042p2"*2_ then

(3.107) gN, DE3*! < E¥'*',
(312 (Ly+1)logE* < (B+L)( : ,+1) e
: 2nD )\(logdy' ' )222¢"D
and
(3.14") 8Noq"SE, <(L_,+1)E*'**",

Since E*'"*" > 2, f, . are defined as in the previous section. Thus we obtain
(3.1”) and (3.1"a) which are identical to (3.1') and (3.1'a) respectively, and (3.1 %)
if n = 3. Moreover, the values and tables of the previous section hold even with
the new A and B.

If we assume V; > n/D and replace E, by E, where E, = min {e"", 92V,
2qa}, then we obtain Theorem B as in [PW §4c] If, on the other hand, we
only assume that n> 2, ¢, > 2* and ¢;, ¢, > 27 (but not V¥, > n/D), we can
modify the argument in [PW, §4c] provided that n < 29. We follow the

notation of [PW, §4c] except that we take E, as above,

Jo=[logNy/logq]l and J,=J,—[log(20n?)/logq].

NO 5 qu > zonzq.h > 25n+ lﬂn2n+2'

It easily follows that T/L;> 31.935 and TS/L, > 27.476. Since I/ > 20n?,

ey < (ege) [l

= j=1

For i€ {0, 1}

T, +o ST " 5 n+2\%
SI( )z _|—+l_q“ Pl =y |
o, al(n+1)% 21p2n25n+11 629n*
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Ti+oi\ Tonym l—"+2 e
o, ) aln+1)" 629n*) -

and

Using (4.10) and (4.11) of [PW] together with the above and the equation
H(Z, L"") 1.H(E, 1))

ﬂ L 1L
i=0

of [PW, §4c] we get the desired contradiction to [PW, Lemma 3.6] provided
that

n+2\*! 5
(1 ‘m) (1 —W) (31.935n2) (27.476)n>
l " r+2(n+ ) 1
(Hzo )( +1) TLasl)

for 0<r<n and

n+2 ) AN el
(1 o )(31935:;2) ( 20”2)(“1) el

for 1<r<n

These hold for n < 29 as was verified by computer but fail if n = 29. This
completes the proof of Theorem B. =
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1. Introduction. In this note we compute the constant for the lower bound
of a homogeneous linear form in logarithms of non-zero algebraic numbers
with rational coefficients. The constant we obtain improves that in [Wa].
Actually, we will derive the result from the special case when the rational
coefficients are integers and a certain strong independence holds. In this paper,
unlike the previous one, we only address the strongly independent case;
although reduction to the strongly independent case can be done as in the
previous paper (see Corollary 2 below), there may be cases when a reduction to
strong independence is possible without increasing the bounds quite so much
(see, e.g., [BS]). We will again follow [Wa] but with the modification given in
[LMPW?]; the reader will need to consult both papers since we will only give
those steps in the proof which are different from those of [Wa] and [LMPW]
(for more details, see [BGMMS1]). We will not bother to determine the
constants of [PW, §5] since they are far greater (cs > 2"(n+1)"*?n!; since
Co 2 la

CoCy ChCyCan/n! 2 2V F 20 (g )t Snté (it t

Let ,,..., 2, be non-zero algebraic numbers, K = Q(z,, ..., @,) and
D =[K:Q]. Let

V, = max {h(a,), [loga,|/D, 1/D}
and

V41 = max {h(f’-'j+ 1) |l°gaj+1|/D, "{f} (1<j<n-1),
e
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