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THEOREM 3.3. There exists an integer m, and a constant ¢, depending only
on my such that for all n = my:

rank E(K,) = p"—c.

Proof. Clearly it is enough to prove the same statement as in the
theorem with E(K,) replaced by & (K,). We do this by induction on n. Let mg
be as in Theorem 3.2 and let ¢ = p™—1. The statement is clearly true for
n =m, since e, is of infinite order. Assume that rank&(K,-;) = p" ' —c.

The Gal(K,/Ko)-module &(K,)®Q, decomposes into:

E(K)®Q,~(6(K,-1)®Q,)®M

where M is a stable Gal(K,/K,)-module. We make two remarks:

(1) by Theorem 3.2, dimM > 1.

(2) if ve M and v* = v for all ceGal(K,/K,-,), then v = 0. Let N be any
non-zero, irreducible factor of M. Then we have the eigenspace decomposition:
N®C = @ N* where y runs through the characters of Gal(K,/K,). By the
second remark, N* = 0 if y is equal to one on Gal(K,/K,-,). Moreover, for
Galois-conjugate characters y and y*, dim N** = dim N?*, therefore, we see that
dimN = p"—p"~'. Now it follows that

rank &(K,) = rank & (K, - ;) +dim M
? pn‘—l_c_l_pn___pu-l 3 p"—(.‘.
This ends the proof of Theorem 3.3.

Remark 3.4. For a different point of view on the growth of the ranks of
Mordell-Weil groups, see M. Harris [2].
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Congruences for the Stirling numbers and
associated Stirling numbers

by
F. T. HowaArDp (Winston-Salem, N.C)

1. Introduction. In [3] it is proved that if k+n is odd then the Stirling
number of the first kind, s(n, k), is divisible by the odd part of n—1, and the
Stirling number of the second kind, S(n, k), is divisible by the odd part of k.
These results can be improved; we show in this paper, for example, that if k+n
18 odd,

(1.1) s(n, k)=0 (mod (;))
(1.2) S(n,k)=0 (mod (IHZ- l))

Congruences such as (1.1) and (1.2) are apparently not well known. A few
congruences for prime moduli can be found in [2], pp. 218-219, 229 and [4},
P. 81. Carlitz [1] worked out a method for finding congruences for
S(n, k) (mod p), where p is prime, and he found the residues of S(n, k) for
P=2, 3 and 5. Carlitz also proved some formulas for special cases such as
S(n, pk).

: fn )the present paper we prove (1.1), (1.2) and other congruences for the
Stirling numbers and associated Stirling numbers. In particular, we show_ hpw
to find congruences (mod p) for the Stirling numbers and associated Stirling
numbers, and we illustrate our method by finding the residues for p =2, 3
and 5. To the writer's knowledge, these congruences, with the exception of
Carlitz’s results for S(n, k), have not been published before.

2. Stirling numbers of the first kind. The numbers s(n, k) can be defined
by means of

@1 x(X+1)...(x+n—1)= Y s, k)x*
k=0
or by the generating function

- <]

(22) (—log(1—x) = k! Y s(n, k)x"/n!.

n=k
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It follows from (2.1) or (2.2) that

(2.3) s(n,k)=n—1)s(n—1, k)+s(n—1, k—1),
with

(2.4) s(n,0)=0 ifn>0,

(2.5) s(n,n)=1,

(2:6) sn, )=@m—-1)! ifn>0,

(2.7) s(n,k)=0 ifk>nork<0.

Many other properties of s(n, k) can be found in [2], pp. 214-219. In
particular, we shall make use of the following formula:

(2.8) kstn, k)= Y. (:‘) (n—i—1)'s(i, k—1).

i=k-1
THeoreM 2.1. If n+k is odd, then s(n, k) =0 (mod (;))

Proof. Since the sets {0, 1, ...,n—1} and {0, —1, ..., —(n—1)} are the
same (mod n) and the same (mod (n— 1)), and since ged (n, n—1) = 1, we have
x(x—1)... (x—-{n—l}) =x(x+1) ... (x+n—1) (mod n(n—1)).

By (2.1) this gives
(—=1)"**s(n, k) = s(n, k) (mod n(n—1)).
Thus if n+k is odd, we have
2s(n, k) = 0 (mod n(n—1)),

e (o ().

and the proof is complete.

We now turn to the problem of finding congruences for s(n, k) (mod p)
when p is prime. In (2.8) let n = p. Since

("j)st)(mod po=1,...,p=1),

we have
2.9) s, k)=0(mod p) (k=2,..., p—1).

We note that (2.9) is a well-known result; see [2], p. 218, [4], p. 80. If we now
let n=p in (2.3), we see, by (2.9),

(2.10) s(p—1,kj=1(modp) (k=1,...,p—1).
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Similarly, we can now let n = p—1 in (2.3). By (2.10) and induction on k, we
have

211 s(p—2,k)=22"*1—1 (mod p) (k=0,...,p—2).
We can now prove our most general result.
THeOREM 2.2. If p is a prime number, h >0 and 0 < m < p, then
h *
sthp+m, k)= Y (;:)(—l]""s(m, k—h—i(p—1)) (mod-p).
i=0

Proof We first consider the case h = 1. That is, we want to prove, for
mz0,

(212 s(p+m, k) = —s(m, k—1)+s(m, k—p) (mod p).

The proof of (2.12) is by induction on m. By (2.4)+2.7), and (2.9), we see that
(2.12) is true for m = 0. Assume it is true for m =0, ..., j—1. Then

s(p+j, k) =(@+j-Dsp+j—1, b+s(p+j—1,k=1)

=(j—1)[-s(—1, k—1)+s(j—1, k—p)]
+[=s(j—1,k=2)+s(j—1, k—p—1)]
—[(-1s(j—1, k=D)+s(j—1, k—=2)]
+[(j—=1)s(j—1, k=p)+s(j—1, k—p—1)]
= —5(j, k—1)+s(j, k—p) (mod p),

and the proof of (2.12) is complete. Now a simple induction argument on
h completes the proof of Theorem 2.2.

It follows immediately from Theorem 2.2, (2.10) and (2.11) thatifm=20, 1,
2, p—1 or p—2 then for h>1,

s(hp+m, k) = 0 (mod p)
except for the following: For i=0,1,..., h

s(hp, h+(p—1)i)
s(hp+1, h+1+(p—1)i) (’:)(_1)'*—" (mod p),

s(hp+2, h+1+(p—1)i)
s(hp+2, h+2+(p—1)i)

s(hp+p—1, h+t+i(p—1)) E(T)(—-l)"“ (modp) (t=1,2,...,p=1),

Sl(hp+p—2, h+x+i(p—1));(?)(—l)h—f(zﬂ"'l—l) (mod p)
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We note the following special cases. For p=2, 3 or 5, and n> p,
s(n, k) = 0 (mod p)
except for the following: For h>0 and i=0,1,...,h

1

s(2h, h+i)=5s2h+1, h+1+i) = (?) (mod 2),

s(3h, h+2i) .

s(3h+1, h+1+2i) = (_)[—1)"“ (mod 3),
sGh+2, h+t+2i)(t=1,2) :

s(5h, h+4i)

s(Sh+1, h+1+4)) _(h "
s(5h+2, h+t+4i)(t =1, 2) =(i)(_])" (mod 3),

s(Sh+4, h+t+4i)(t =1, 2, 3, 4)
S(Sh+3, h+t+4i)(t=1,2,3) = (?)(24"—1)(—1)""f (mod 5).

3. Associated Stirling numbers of the first kind. It is known that s(n, n—k)
is a polynomial in n of degree 2k; in fact

% n
s(n,n—k)= Y d(2k—j, k—j B
(=i = 3 d(2k-] ;)(2&_})
where d(n, k) is the associated Stirling number of the first kind ([2], pp.
256-257, [4], pp. 72-74). These numbers can be defined by means of the

generating function

(3.1 (—log (1 —x)—x)t = k! i d(n, k)x"/n!.

It follows from (3.1) that

(32) d(n, k)= (n—1)d(n—1, k)+(n—1)d (n—2, k—1),
with

(3.3) d0,0) =1,

(3.4) dn,0)=0 ifn>0,

(3.5) din,)=(n-1)! ifn>1,

(3.6) dn,ky=0 if n<2k or k<0.

We shall make use of the following formula ([4], p. 73), which follows easily
from (2.2) and (3.1):

) dm b= 3 (-17(")stn-, k=,

i=0
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By (3.2) we see, trivially, that if n > 1
(3.8) d(n, k) = 0 (mod n—1).

To find congruences (mod p), when p is prime, we let n = p in (3.7). Then
by (2.9), (3.6) and the fact that

G)Eo modp) (j=1,....,p—1),

we have
d(p, k) =0 (mod p) (k=2),

which is a known result ([2], p. 256, [4], p. 81). By (3.8) the modulus can be
increased to p(p—1). Thus

(3.9) d(p, k) =0 (mod p(p—1)) (k= 2).
TueoREM 3.1. If p is a prime number, h >0 and 0 <m < p, then
d(hp+m, k) = (—1)"d(m, k—h) (mod p).
Proof We first prove the case h = 1:
(3.10) d(p+m, k)= —d(m. k—1) (mod p).

The proof is by induction on m. Congruence (3.10) is true for m =.0 by (3.4),
(3.5) and (3.9), and it is true for m =1 by (3.8). Assume (3.10) is true for
m=0,1,...,j—1. Then

dp+j, k)= (j=1)dp+j—1, +(-1)d(p+j-2, k=1)
=(j-D[-d(j-1, k=1)-d(j—=2, k=2)]

Which completes the proof of (3.10). We note that a rcsglt equ_ivalent to (3.10) is
stated in problem 4 of [4], p. 81. Now a simple induction argument on
h completes the proof of Theorem 3.1.

We see from Theorem 3.1 that

d(hp+m, k)= 0 (mod p) if 2(k—h)>m,
d(hp+m,k)y=0(mod p) if k<h (m#0).
Also, for m=0, 1, 2, 3, 4, we have, for h > 1,
d(hp+m, k) =0 (mod p)
except for the following cases:
d(hp, hy=d(hp+2, h+1) =(— 1)! (mod p),
d(hp+3, h+1)=2(—1) (mod p),
d(hp+4, h+1) = 6(—1)* (mod p),
d(hp+4, h+2) = 3(—1)" (mod p}.

3 = Acta Arithmetica 55.1
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By (3.5) and Theorem 3.1, we have Comparing coefficients of x"/n! in (4.7), we get the following useful formula:

d(hp+m, h) =0 (mod p) unless m =0,

2 [n

; 48 - 1yt : nei
d(hp-+m, h-+1) = (=1 (n—1)! (mod p). 9 Stn =2 (-1 (f)s(" Wk
We note the following special cases. For p=2, 3, or 5, and n > p, If n+k is odd, (4.8) gives

= n—1 .
d(ﬂ, k) =0 (mO,d P) (49) 25 (n, k} — Z (_ l)k"-'(n)S(l, k) ki

except for the following: For h=0,1,2, ... i=k l

d(2h, h) = 1 (mod 2), ;'loiglczither properties of S(n, k) (though not (4.8)) can be found in [2], pp.

d(3h, h) = d(3h+2, h+1)=(~1) (mod 3), THEOREM 4.1. If n+k is odd, then

d(5h, h) k+1
d(5h+2, h+1) = (—1)" (mod 5), S(n,k)EO(mod( 5 ))
d(5h+4, h+1)
d(5h+3, h+1) = 2(—1)! (mod 5),
d(Sh+4, h+2) = 3(—1)* (mod 5).
4. Stirling numbers of the second kind. The numbers S (n, k) can be defined

Proof. By (4.9) we have
S(n, k) =0 (mod k) (n even, k odd),
S(n, k) =0 (mod k/2) (n odd, k even).

by means of Now in (4.2) replace n by n+1 and k by k+1 to obtain
n S(n, k) =0 (mod (k+1)/2) (n even, k odd),
whem 2 il Rhloe-) ook 1), S(n, k) = 0(mod k+1) (n odd, k even).
or by the generating function Combining all these congruences, we have
0 k+1
4.1) (@—1}=k!'Y S, k)x"/n!. S(n, k)=0 (mod ( ;“ )) (n+k odd),
n=k !
It foliows from (4.1) that and the proof is complete.
Theorem 4.1 can be refined by means of (4.9). For example, it follows from
42 S(n, k)= S—1, k—1)+kS(n~—1, k), (49) and Theorem 4.1 that if n+k is odd, then
with ’
; S(n, k)EO(mod k(k+l)) if k|n,
(4.3) S, 00=0 ifn>0, 2
(44) S, u)=l, S, k)=0 (mod K2 (k; l)) if k2|n.
4.5) Sn,)=1 ifn>0, Yot
(4.6) S(n,k)=0 ifk>nor k<O. i
In (4.1) replace x by —x and then multiply both sides by e*. We get A0 = E‘os("’ ne.
o TOU . s n
@7 (DM —1F =kle* 3 (= 1y S(n, K)x"/nl. chard [5] proved that if p is prime, then

n=0 (4.10) Apip(t) = Apiy (417 4,(8) (mod p).
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Congruence (4.10) is also given as an exercise in [4], p. 81. By comparing
coefficients of t*, we see that (4.10) is equivalent to

(411) S(p+m,k)=S(m+1,k)+S(m, k—p) (modp) (m=0,1,..).

Congruence (4.11) can also be proved by induction on m in much the same way
that (2.12) was proved. More generally, we have the following theorem, which
follows from (4.11) and a simple induction argument on h.

THEOREM 4.2. If p is a prime number, h >0 and 0 < m < p, then
k

Sthp+m, k)= ) (’:)S(m*kh—i, k—ip) (mod p).

, i=0
It follows from Theorem 4.2 that if p is prime and t > 0, then
S, k=S ky(modp) (k=0,...,p'—1).
Thus for t > 0,
SP',k=0(modp) ifk#p,0<r<it,
S(p',p)=1(modp) (r=0,1,...,1).

In order to prove a theorem more useful than Theorem 4.2, we next
generalize a result of Carlitz [1]. Let p be a fixed prime. For n > 0, j > 0, define
faljs ) by

(4.12) LU, 0= _E(n_(p_r”(r_{_ 1)

The summation on the right is over all r such that
pP-Dr+)<n<plr+1)+1.
Carlitz [1] proved that
Jar o0, ) = fari(p, )+17£,(p, 1) (mod p).
It follows immediately from (4.12) that
(4.13)

),ﬂn—(p—litﬂl}{

SaspUs 0) = far1 (s O+ ES,(j, 1) (mod p).
Now suppose a(n, k) is a set of numbers such that a(0,0) =1 and

(4.14) alp+m, k)=a(m+1, k)+a(m, k—j) (mod p).
Define
@.15) a, )= a(m K.

k=0

By (4.14) and (4.15) we have

Apip(t) = @py 1 (t)+ 1t/ a,(t) (mod p).
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THEOREM 4.3. Define f,(j, t) and a,(t) by (4.12) and (4.15) respectively.
Then

p—1
a,(®) = fu(js D= Y, @p—1-+(®) fusr(j, 1) (mod p).
r=0
Proof. Let

-1
(4.16) e () = £, U, :)—F): ap—1-¢(t) fosr s 1)
r=0

We will prove Theorem 4.3 by showing
¢,()=a,() (modp) (=0,1,...,p=1),
Cosp(t) = Coir () +1 ¢, (1) (mod p).
By (4.12) we have
£,(j, ) =0 (mod p)
fu(j, )= —1(mod p)
Thus for 0<n<p—1,
()= —a,(t) f-1 (s 1) = a,() (mod p),

O<n<p-1)(p<n<2p-2),
(n=p—1 and n=2p—2).

and
Cp—l[r) = -1 _ap-—l(t)fp—l(j! f]—ﬂo(ﬂfz»-z(fa t)
=a,_(t) (mod p).
Now in (4.16) replace n by n+p and use (4.13). After rearranging terms, we have

s 0= fys1 (0= %, dpes=r @ furss: )

+t1[j:|(js r)_-pi ap‘l—r([)_’;+r(js t}}

r=0
= Coey ()41 ¢, (1) (mod p).

This completes the proof of Theorem 4.3. o
Ifj = p, we can set a(n, k) = S(n, k). A careful examination of Theorem 4.3

for j = p gives us the next theorem.
Theorem 4.4. If p is prime and n—(r+1)(p—1) = h, then

S(n, hp) = (h: l) (mod p).

If nep—1)r—i=h and 1 <m<i<p—1, then

(418 s, p+m) = ;) 56, m) (mod p)

(4.17)
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Carlitz [1] proved Theorem 4.3 for j = p. In addition to finding congruen-
ces such as (4.17), he found the residues of S(n, k) for p = 2, 3 and 5. We will
not duplicate those results here. Carlitz did not explicitly give formula (4.18).

5. Associated Stirling numbers of the second kind. The numbers b (n, k) are
analogous to the numbers d(n, k) defined in Section 3. It is known that
S(n, n—k) is a polynomial in n of degree 2k; we can write

k
s n—k= ¥ bk, k-n,," ).

i=0

where b(n, k) is the associated Stirling number of the second kind ([21, pp.
221-222, [4], pp. 76-78). A generating function for these numbers is

(5.1) (€—x—1F =k i b(n, k)x"/n!.

n=2k
It follows from (5.1) that

(52) b(n, k) = kb(n—1, k)+(n—1)b(n—2, k—1)
with

(5.3) b(0,0)=1,

(5.4) b(n,0)=0 if n>0,

(5.5) b{n,1)=1 ifn>1,

(5.6) b(n,k)=0 if n<2k or k<O.

Analogous to (3.7) is the following formula ([4], p. 77):
k
(5.7) bn,k)= 3 (- 1)1(?)3(1'1 —is k=j).
i=0

To find congruences (mod p), when p is prime, we let n = p in (5.7). Then
we have

(5.8) b(p,k)=0(mod p) (k= 2).
By (5.2) we also have
(5.9) b(p+1,k)=0(mod py (k= 2).

THEOREM S.1. If p is a prime number, h>0 and 0 < m < p, then

y (t)b(m+h—r, k—r) (mod p).

r=0

1]

b(hp+m, k)

Proof. We first prove the case h=1:
(5.10) b(p+m, k)= b(m+1, k)+b(m, k—1) (mod p).
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The proof is by induction on m. Congruence (5.10) is true for m= O'and m : 1
by (5.3)45.6), (5.8) and (5.9); assume it is true for m=0, 1,...,j—1. Then

b(p+j, ) =kb(+j—1, H+(—Db(p+j—2,k=1)
=k[b(j, k)+b(j—1, k—1)]
+(=Db(—1, k=1)+b(j—2, k=2]]
= [kb(j, k)+jb(j—1, k—=1)]
+[k=1)b(j—=1, k=) +(j—=1b(j—2, k—=2)]
= b(j+1, k)+b(j, k—1) (mod p),

which completes the proof of (5.10). Now a simple induction argl'lment on

h completes the proof of Theorem 5.1. We note that a result equivalent to
(5.10) can be derived from a problem in [4], p. 8.

It follows from Theorem 5.1 that

b(hp+m, k) =0 (mod p) if m+h <k,

b(hp+m, k) = 0 (mod p)

b(kp, k) = 1 (mod p).

To take advantage of Theorem 4.3, we define

if mth=k and m>0,

(5.11) b,(t)= Y b(n, k).
k=0
It follows from (5.10) and Theorem 4.3 that if p is prime,
p—1
(5.12) b,(t) = fu®)— 3. by—1-+(8) fosr(8) (mod p),
r=0

Where £ (1) = f,(1, t) is defined by (4.12) with j= 1.
Tueorem 5.2. If p is prime and n—k = (p—1)w, then

(5.13) bn, k) = (‘;:;) (mod p).
Ifn—k=@p-1)w+v, 1 <v<p—2, then
(5.14) bn, K) = p_i_n(kjm)b(m+v, m) (mod p).

If v<(p—1)/2, the upper limit of summation in (5.14) can be replaced by v.

Proof. If we write

[(p-1-n)2]
? z b(P“‘l_rﬁ i)'tl

=0

bp—- 1-¢() =



40 . F. T. Howard

and examine the sum on the right side of (5.12), we see that we can get
t"~®=Y¥ for arbitrary w, only when i =0, r = p—1 or when i=0, r=0.
Taking into account the contribution from f (z), we have (5.13). Using the same
kind of reasoning, if n—k = (p—1)w+(p—1—u) with u > 0, we have

(5.15) b(n, k)Emgo(k_ﬁ:_’_m)b(p-—l—m,u—m) (mod p).

In (5.15) let u = p—1—v (1 < v < p—2), and reverse the order of summation.
Then we have (5.14), and the proof is complete.
By (5.14) we have

kwl) (n—k =(@—-1w+1),

w
k-—l)+3(k—2) (n—k=(p—1)w+2,p>2),

(n=k=(p—-w+(p—2),p> 2).

For p=2, 3, 5 we have

b(n, k) = (";f?

J’(w 1
b, By 4 Y

(mod 3) if n—k = 2w,

’) (mod 2),

w
= ;
k(k l) (mod 3) if n—k=2w+1,
([ 1
("’_ ) (mod 5) if n—k = 4w,
k—1
(k“’l) (mod 5)  if n—k = dw+1,
b(n, k) = ﬁ ; -
if n—k = 4w+2
3(k—2)+(k—-l) (mod 5) if n—k =4w+2,
w %
( ) (mod 5) if n—k =4w+3.
L k-1
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