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1. Throughout the paper, we use Q for the field of all rational numbers.
Let f be an arithmetical function with period N. The Dirichlet series associated
to f is defined by

L= 3 [ (Re()> D).

The main aim of the paper is to show a limit formula for L(s, f) at s =1 in
Theorem 5 of Section 3, and to give some of its applications after Section 4. We
shall study periodic arithmetical functions, in particular, Dirichlet characters in
Sections 2 and 4. Theorem 10 in Section 4 is a generalization of Hasse [10],
Addendum due to M. Newman. In Theorem 11 in Section 5, we shall give four
distinct representations of the values at s = 1 of Dirichlet L functions for every
odd character modulo N, not necessarily primitive. When N is an odd prime, it
is obvious that the numbers sin(2nr/N) (resp. cos(2nr/N)) with
r=1,...,(N—=1)2 are linearly independent over Q. When N is a prime
congruent to 3 modulo 4, Chowla [7] proved that so are cot (mr/N) if and only
if all Dirichlet L functions for odd characters modulo N do not vanish at s = 1.
By Hasse [10], Chowla’s theorem can be rewritten in terms of “tan”.
Generalizations of these assertions will be established in Sections 7 and 8.
When N is any odd number, we know that the numbers sin (2nr/N) (resp.
cos(2nr/N)) with r=1,..., (N—1)/2 and (r, N) =1 are linearly independent
over Q if and only if N is square free. The proof, using Gaussian sums, is
elementary. On the other hand, the numbers cot (nr/N) (resp. tan(mr/N),
sec(2nr/N)) are always linearly independent over Q. The proofs, which are
given in Theorem 20 of Section 7 and Theorem 24 of Section 8, are analytical.
Elementary proofs are known only in special cases. See Ayoub [3], Fujisaki
[9], Hasse [10], Okada [18], and Wang [20]. Further, the numbers
cosec(nr/N) are linearly independent over Q if and only if the multiplicative
order of 2 mod N is even. This is a straightforward generalization of Jager and
Lenstra [12] and will be proved in Theorem 21 of Section 7. In the case of odd
prime powers N, this has been proved by Bundschuh [6].
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2. The Fourier transform of an arithmetical function f with period N is
defined by

Jh(x) = —*—if(ﬂ)E(—ﬂx/N).
JNE

where e(x) = exp(2mix).

LEMMA 1. Let f be any arithmetical function with period N. Then
S (x) = f(—x) holds for any x.

This lemma is called the inversion formula. If f has the two properties:
() f induces a character (Z/NZ)* - C*; (ii) f(x) = 0 if and only if x is not
prime to N, then fis said to be a Dirichlet character modulo N. The principal
character y,, is defined by the formula y,(x) = 1 or 0 according as (x, N)=1lor
not. A nonvanishing arithmetical function f is completely multiplicative if f (xy)
= f(x) f(y) for all x, y. We can easily show

LEMMA 2. Let f be any arithmetical function with period N. Then f is

completely multiplicative if and only if f is a Dirichlet character whose conductor
is a divisor m of N prime to N/m.

LEMMA 3. Let f be any arithmetical function with period N. Then the
primitive period of " is N if f(a) # 0 for some a prime to N.

Proof. Let m be any period of f*. We set
g(x) = f(x)(e(xm/N)—1).

By assumption, we get g* = 0, which is equivalent to ¢ = 0 by Lemma 1. Thus
we have e(am/N) =1 for (a, N) =1 with f(a) # 0. Hence, N divides m.

It is well known that any primitive Dirichlet character modulo N satisfies
X = x" (1) %, where 7 is the complex-conjugate function of y. Apostol proved
in an elementary way that the converse is also true. Joris (13] gave another
proof, using the functional equation of the Dirichlet L function.

LemMma 4. Condition y* = x* (1) characterizes primitive characters with
conductor N in the class of all completely multiplicative functions with period N.

Proof. Wesee x” (1) # 0 since x* does not vanish identically. By Lemma
3, the primitive period of y* * is N. Lemma 2 combined with Lemma 1 asserts
that y is a Dirichlet character modulo N. The rest is completed by Apostol ([2],
Theorem 1).

We can easily rewrite properties of x~ as properties of y only in the
primitive case. On the other hand, all non-principal characters modulo N are
primitive if and only if N is prime. Therefore the composite cases are not
parallel with the prime cases. For details, see Section 4 and later.
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3. The Hurwitz zeta function for r/N is defined by
(o riN) = 3 (r4r/N)" - Re(s)> 1)
Then L(s, f) can be represented as
W)

Since { (s, r/N) can be continued analytically to the whole complex [__)lanc and is
holomorphic except at s = 1, the same holds for L(s, f). We easily see that
L(s, f) is holomorphic at s =1 if and only if f(1)+f(2)+ ... +f(N)=0.
Assuming that L(s, f) is holomorphic at s =1, Lehmer [15] showed

L(1,f) = —ﬁ z £ () log(1~e(r/N),

where the logarithms have their principal values between —m/2 and n/2
Livingston [16] gave another formula. We show the sp-ca]led Kronpcker limit
formula for L(s, f) when this function is not necessarily holomorphic at s = 1.

THEOREM 3.

. £ (N) )
| L(s, f)——F———
'1’:( (&) J‘(s—t)

s z fA (r)log(sm(nr/N])+ Z S (r)cot (nr/N)

\/_. N f*(N)
I )?+ —f(N) |log2,
* f“ ( \/ﬁ f( )) ¢

where y is Euler’s constant.
Proof Our proof is based on Kronecker’s limit formula for the Hurwitz
zeta function, that is,

1

llm(g(s a)— l) = —y(a),

5=1

where (a) = I (a)/T (a) is called the digamma function.
Now we have

—s ey
N 1 e { } -N
L(s, f)— =— C(s,l’f’N}-——— f(r]+ =

Ly T R l
Therefore, as s — 1, the right-hand side tends to

(1) . % f(r}'ﬂ(r/N}'—f : )IOBN
Nr=l \/_

™=

().

n

1

r
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By Legendre’s formula, the digamma function can be expressed in the form

I[al

y(a) = _sz ld:, Re(a) > 0.

See Whittaker-Watson ([22], p. 260). Thus the first tarm of (1) reduces to
iy (r){:’f"— 1)

%)

Drl

dr+ Z f.

On writing ¢¥ for ¢, this is equal to

t Fe.f) a4

-0 /N

(2)
where

Ft.f) = j; f e —1tY).

Since F(t, f) is a polynomial in t of degree at most N such that F(0, f)
= F(1, f) = 0, we can use the idea of Dirichlet-Dedekind ([8], Section 185) for
the Dirichlet L functions. So we see that

1 N-1
‘Liff’_ff ai= -5 Z~1F(e(—m/NJ,f)‘f’g“*e""/””
1 N-1 . 5

; f) Y log(l—e(m/N)).

= —— }_‘ [ (m)log(1 —e(m/N))+

Here
N-1 -1
Z log(1—e(r/N)) = z log(2sin (nr/N)) = log N
N-1
since [] sin(rr/N) = N/2V~1,
r=1

We denote by g and h the even and odd parts of f respectively. Namely,
g(N—x)=g(x)and h(N—x)= —h(x)forx =1, 2, ..., N, and fis represented
as g+h uniquely‘ Then

N-1

Z g~ (v log(l—e(r/N)]— Z g" (r)log(sin (nr/N)) + z g" (r)log2.

Here

N=1 =
¥ 9" () =g(N)/N—g*(N).
r=1
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Now we have

Nil h* (r)log (1 —e(r/N))= n—iNf h™(r)r

h(t t/N
N lel ()E el=rtiN)r

z_: h(r)cot(nr/N).

n
ZJﬁr=l

Further we have

N-1 N-1
Y [~ ()log(sin(nr/N)) = Y g* (r)log(sin (nr/N)),

- N-1
Nzl f(r)cot(nr/N) = Y h(r)cot(nr/N),
r=1

r=1
and f* (N)=g*(N), f(N) = g(N). Summing up, we establish the theorem.
Theorem 5 immediately implies

COROLLARY 6. Let y be any non:principal Dirichlet character modulo N.
Then

(1—z (=D)L, ) = %z 1 (r)cot (xr/N),
(14 2(=1)L(1, 1) = ——2,_- 3 0 log(sin /N,

4. In order to give applications of Theorem 5, we need to prepare some
®qualities involving trigonometrical functions.

LEmma 7.
N-=1 N-1
T f20@r—N) =i /N ¥ f(@)ecotrn/N).
r=1 r=1

Proof. The left-hand side can be written as

N Z S (m) Z e(—rm/N)(2r—N),

Which is equal to the right-hand side.

Lemma 8. Whenever N is even, assume that f (N/2) = 0 and the term with
NJ2 is excepted from the right sum below. Then

N-1 N-1
Y AOU=1 (=1 Mr=N)} =iN Y f()tan(ra/N).

r=1
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Proof. It is similar to Lemma 7.

LEMMA 9. Let y be any odd Dirichlet character modulo N. Then the
following identities hold:

A, i x(r)cot(rn/N) = B, i‘, x(r)tan(rn/N),

N-1 N—1
A, ¥ 1 (r)cot(rn/N) = B, Y x”(r)tan(rm/N),
r=1 r=1
where A, and B, are as follows:
N=1mod2 N=0mod4 N=2mod4
A, 25(2)—1 -1 -1

B : —1

! x(1+N/2)  27Q2+N/2)—1.

Proof. The first case follows from 2cot2x = cotx—tanx. The second
case follows from cot(n/2 — x) = tan x. The third case reduces to the first case,
since there exists a Dirichlet character £ modulo N/2 such that &(r) = x(r) for
all odd r.

This lemma leads to a generalization of the equality in Hasse ([10],
Addendum due to M. Newman).

THeOREM 10. Let N be any odd number and let y be any Dirichlet character

modulo N, not necessarily primitive. Then

N-1 (N=1)/2
(1-2x2) X xr=xN 3} x().
r=1 r=1

Proof. If y is even then both sides are equal to 0. Assuming that y is odd,
we easily see that

N-1 (N—=1)2

Y ox(=1=2x2) ) x.

r=1 r=1

Therefore the theorem follows from the first case of Lemma 9 and Lemmas
7 and 8.

When N is even, the two sums in Theorem 10 vanish for a primitive
character y. For, we can assume N = 0 mod 4, so that it is obvious that the
right sum vanishes, and the left sum is equal to

N2

(1+%(1+N/2) ¥ () r=0,

r=1
since the primitiveness of y implies x(1+N/2)= —1.

5. We give some known and some not-so-known representations of the
values of Dirichlet L functions at s =1 for odd Dirichlet characters.
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TuroReM 11. Let y be any odd Dirichlet character modulo N, not necess-
arily primitive. Then

x V21
L, )= Zl % (r)cot (rr/N)

N

-1
x\)r
iN /N ,gl

B [N/2]

= Ax;l' ,g'l x (r) tan (nr/N)

n

- B N-1 .
=T ¥ O )TN
2iAI N \/ﬁ r=1 5
Proof The first formula is just Corollary 6. The second formula follows
from Lemma 7. These formulas are well known. The third and fourth formulas
are consequences of Lemma. 9.

CorOLLARY 12. For any odd character o

[N/2]
ixg_&ful, 2 =% Y. x(r)cosec(@mur/N).

x r=1
Proof Since 2cosec2x = tan x+cotx, we just add the first and third
formulas in Theorem 11 to obtain the corollary.

6. Okada ([19], Lemma) showed the following lemma on the Frobenius
determinant.

LemMa 13. Let G be a finite abelian group and let H be a subgroup of G.
Let A be a character of H and let A be the set of all characters of G whose
restriction to H is equal to A. Then for any complex-valued function f on G with
f(ah) = A(h) f (a) (a€G, heH), we have
det f(a=*b)=[1(X 7(a) f(a).

a,beT yed aeT
Where T is a complete representative system of G by H.

We denote by x* the primitive character corresponding to a Dirichlet
character y. Let p be any prime and let N' be a positive integer. such tha't
N = N'p° (@=0) and (N', p)= 1. We define M(p) and L(p) as follows: if
N5 1 then

M (p) = min{m > 0| p"=1mod N'}  and L(p) = @ (N)/M (p);

it N'=1 then both are 0. We note that if N’ # 1 then M (p) is called the
multiplicative order of p modulo N’. This coincides with the residue class degree
of p as an ideal in the Nth cyclotomic field K. The number L(p) coincides with
the number of prime ideals lying above p in K.

5 — Acta Arithmetica 55.1
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LemMma 14,
(1+XME2UP  if M(p) is even,
l— * =
xlo_t!d( X (P)X) {{1_XM{F})LIP}JZ lf M(p) is Odd

Proof. The lemma follows from
[T (1=x*®) X) [T (1=x*(p) X) = (1 — x M@)o,
x odd X even ~

For the product over even characters is (1 —XM®/2)L®) or (] — xMP)LPI2
according as M (p) is even or odd.

Using Lemma 14, we explicitly calculate the determinants of trigonometric
values partially shown by Ayoub [3], Okada [18] and others. From now on,
we use ¢ for the Euler totient function.

LEMMA 15. Set

Dy= H L(1, x), n=¢@(N)2.

x odd

Then we have
det (cot (abm/N)) = +(N/x)" Dy,
det(tan (abn/N)) = +(N/n)" Dy Ey,
det (cosec (2abni/N)) = +(N/ny' Dy Fy,

where a as row and b as column run over all positive integers prime to N and less
than N/2. The constants Ey and Fy are given as follows:

Ey Fy

1 2" if N=0mod 4
(2M12 4 1)e Qhta fN=1mod2, M=0mod?2
(2M —1)M2 0 IffN=Imod2, M=1mod?2

@ 24+1)7F (M2 +2M2)L if N=2mod 4, M =0 mod 2

¥ -1)"42 0 if N=2mod4, M =1mod 2,
where M = M(2) and L = L(2).

Proof. It follows from Theorem 11, Corollary 12 and Lemma 13 that

Ey=+1]] A,/B,, Fy=+1]] (4,+B)/B,.
x odd ¥ odd
Since 4, = A, and B, = B,. in any case, the number E, is immediately
determined from Lemma 14. Taking a prime p such that p = 1+N/2 mod N,
we easily see M(p) =2 and L(p)= ¢@(N) if N =0 mod 4, so that we also

determine F.
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7. Let y* be the primitive character with conductor f; cprresponding to
a Dirichlet character modulo N. Then from Hasse [11], Kimura [14] and
Washington [21] for example, we know the following formula:

Les, 7)) = L(s, M [1(1=x* @) P7)-
pIN
Let K* be the maximal real subfield of the Nth cyclotomic field K. Let h~ be
the quotient of their class numbers, h(K)/h (K *). The discriminant d (K) of K is

intm/H pwmmp— 1)
pIN

By the conductor-discriminant formula, we get

Jdy if N is not a prime power,

I1f= de/p if N is an odd prime power,
Fou Jdg/4 if N is an even prime power,

Which is denoted by d~. By the class number formula, we have

(zn}w(mfz h™
L, y*)=——
x]:gd (1, x* oo

Where Q = 1 or 2 according as N is a prime power or not and where w = N or
2N according as N is even or odd.

LeEmmA 16. Let y be any odd character modulo N. Then

1
U%l x(m)(2m—N) = Mn(l—x*@})ul, ),
m=1 In pIN
Where

Sx
c() = 2 x*Me(=rlf).
r=1
Proof. Let p, g, ... be the primes dividing N but not dividing fy- The
left-hand side is equal to

N N
Y amm= Y x*(mm
m =1
Nip

N
=Y x*mm=Yx*@p Y, x*mm
m=1 P m=1

Nipg
+ Y x*@a)pg Y, x*mym— ...
pP¥q m=1
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N 'rzz *( ) Z *() N Iz »
=T e TURIR= — 2 K mm
-fxm=l Fx, pppfxmgl
N Ix
+ Y x*(pq)pq Y g mym— ...
P¥q qfxm=l
N Ix
=—I1(1=x*®) X 1*(m)m.
xp m=1
By the second formula of Theorem 11, we get
; .
Z r*(mm= ﬂ%‘[’(l’ 7*).
m=1"*

This completes the proof.

Lemma 17. Let x be an odd Dirichlet character modulo N. If N is odd, then

(N=1)2 A
T ym(=1y = LA @)L, 7,
m=1

In BX PIN
where c(y) is as in Lemma 16.
Proof. It is similar to Lemma 16.

LeEMMA 18. For positive integers a, b prime to N and less than N/2, we
define an integer c(a, b) by a =c(a, b)b mod N and 1 <c(a, b)< N—1. Set
E(N} — l‘[ (1 +(— l)mm)um‘

pIN

Denote @ (N)/2 by n. Then we have
det(2c(a, b)—N) = +3(N)(2r)"h~/Qw,

where a as row and b as column run over all positive integers prime to N and less
than N/2. If N is odd, then we, further, have

det ((— 1)) = +5(N)2"h~ Ey/Qw.
Proof. This follows from Lemmas 16 and 17.

Under the assumptions and the notations of Lemma 13, we can show

LEMMA 19. Assume that for every be T there exists an automorphism o of
the field of all algebraic numbers over Q such that o(f (a)) = f(ab) for all aeT.
Then the determinant given in Lemma 13 does not vanish if and only if the values
f(a) (aeT) are linearly independent over Q.

Here we give a generalization of Fujisaki [9].

TueoreM 20-1. For positive integers N, the following assertions are
equivalent:
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(1-0) L(1, ) # O for all odd Dirichlet characters.

(I-1) The numbers cot(rn/N) with r=1,..., [N/2] and (r, N)=1 are
linearly independent over Q.

(I-2) The numbers tan(rn/N) with r = 1,...,[N/2] and (r,N)=1 are
linearly independent over Q.

(1-3) For every divisor d of N, the number sin (2r/d) can be represented as
a linear combination with rational coefficients of the numbers cot(rn/N) with
r=1,...,[N/2] and (r, N) = L.

(1-4) For every divisor d of N, the number sin (2m/d) can be represented as
a linear combination with rational coefficients of the numbers tan(rn/N) with
r=1,...,[N/2] and (r, N)= 1.

Proof. The equivalence of (I-0), (I-1), and (I-2) follows from Theorem 11
and Lemmas 13, 15, and 19.

Let K be the Nth cyclotomic field. Put K* = {xeK; ¥ = £x}. We note
that K* is the maximal real subfield but K~ is not a field. K* +K~™ =K as
vector spaces over Q and the dimensions of K* and K~ are ¢ (N)/2. If (I-1)
holds then the numbers

1 +e(r/N)
N 1—e(r/N)
are a basis of K~. Since isin(2n/d) belongs to K~, (I-3) holds. For every
positive integer ¢ prime to N and less than N/2, there exists an automorphism
o of K such that o (e(r/N)) = e(tr/N) for all r. Conversely, if (I-3) holds then for
all r, the numbers sin (2nr/N) can be represented as a linear combination of the
numbers cot (rn/N). Since the numbers isin (2nr/N) span K, (I-1) holds. Henc‘e
(I-3) is equivalent to (I-1). Similarly, (I-4) is equivalent to (I-2). Now the proof is
complete.

cot for 1 <r<[N/2], (r,N)=1,

TueoreM 20-11. Assume that one of the assertions in Theorem 20-1 holds.
Then the following assertions are equivalent:
(II-1) All M(p) with p|N are even, where

M 0 if N is a power of p,
?) = tmin {m>0] p"=1mod N'} otherwise,

Jor N’ = N/p* with p°|N.
(I1-2) For any odd Dirichlet character ¥ modulo N,
N-1
Y x(a)a #0.
a=1
(11-3) The square matrix (2c(a, b)— N) with @ (N)/2 rows is regular, where
notations are the same as in Lemma 18.
Assume further that N is odd. Then the above assertions are also equivalent
to either of the following assertions:
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(I1-4) For any odd Dirichlet character y modulo N,
N-1 '
2 2@(=1y#0.
a=1

(II-5) The square matrix ((—1)“?) with @ (N)/2 rows is regular.
Proof. This follows from Theorem 20-I and Lemmas 13-19.

TueoREM 20-TI1. Assume that (II-1) in Theorem 20-11 holds. Then the
remaining claims (11-2)~(11-5) are equivalent to the assertions in Theorem 20-1.

Proof. This follows from Theorem 20-1I and Lemma 18.
We remark that if N is a prime power then (II-1) is true and that if N has

two distinct prime divisors p and g with g =1 mod p then (II-1) is false.
We have

N—-1
Y x(r)cosatn—
r=1 N
IN (=4 7 .l
iy x(r)sinF if ¥ is odd.
[ it |

if x is even,

All Dirichlet characters y modulo N satisfy y* (1) % 0 if and only if N is square
free. Therefore the numbers sin (2rn/N) (resp. cos (2rn/N)) with r = 1, ..., [N/2]
and (r, N) = 1 are linearly independent over Q if and only if N is square free.
Therefore we cannot replace “For every divisor d of N, the number sin (2n/d)”

by “the number sin (27/N)” in (I-3) and (I-4) of Theorem 20-1. As a generaliz-
ation of Jager and Lenstra [12], we state

THEOREM 21. Assume that one of the assertions in Theorem 20-1 holds. In
order that the numbers cosec(2rn/N) with r =1, ..., [N/2] and (r, N) = | are
linearly independent over Q, it is necessary and sufficient that one of the Jollowing
conditions holds: (i) N = 0 mod 4; (ii) N = 2 mod 4 and the multiplicative order

of 2 modulo N/2 is even; (iii)) N = 1, 3 mod 4 and the multiplicative order of
2 modulo N is even.

Proof. This follows from Corollary 12 and Lemma 15.
8. Finally, we shall consider the linear independence of the values of “sec”.

LEMMA 22. Let N be odd and let y be any even Dirichlet character modulo
N. Let x* be the primitive character with conductor f, corresponding to y. Then
[N/2) [f%/2]
2 (=xm=£[J@* @ —(=1)""22) 3 (=1y x* (),
r=1 r=1

pIN

R _x(2)N_1 2rr
2, (=1ry {r)—-——ﬁr;x(rlsccw-

Irl<Nj2 \/7
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Proof. The lemma is proved by modifying the proof of Lemmas 7 and 16.

Lemma 23. Let N be odd. For any even Dirichlet character y modulo N,
there exists an odd Dirichlet character & modulo AN such that

N-1 it TN rn
2 Zl 1(r)see = = r; ¢rycot .

Proof. Since 2sec2x = cot (x +m/4)—cot (x—m/4), the left-hand side is
€qual to :

rn rn
rycot—— x(r)cot—.
1524» X( ) 4N lséﬂ 4N
r=1mod 4 r=3mod 4

if x = —¢(x) if x=3 mod 4, and 0 if
We define £ by &(x) = x(x) if x=1mod 4, x(x}‘ll; X = 3
X =0 mod i l)t{ is easily proved that £ is an odd Dirichlet character modulo
4N,

ions in Theorem 20-1 holds.
Turorem 24. Assume that one of the assertions in T ’
Then the numbers sec(2rn/N) with r =1, ..., [N/2] and (r, N) = 1 are linearly
independent over Q.

Proof. Lemma 23 leads to the theorem in the case o|: N odd. For N e\:e;,
set N' = N/2. If N’ is odd then the numbers sec(2rn/N') with r =1, ..., [N'/2]
and (r, N') = 1 are linearly independent over Q, so tha‘t the thecwer‘:;l follow.l';fs
from  sec(d4rm/N) = —scc(2(N’—-2r)n/N). If N is even t erll y
sec(2rm/N) = cosec ((N'—2r)n/N), the theorem reduces to Theorem 21. |

Note that by Theorem 24, the numbers sec(2n/N) are always a norma
basis of the maximal real subfield K* of the Nth cyclotomic field K 0\_!;31‘;‘~l 0
while their reciprocal numbers cos (2r/N) are a normal basis if and only if N is
Square free. . ‘

Compare the assertion (I1I-5) in Theorem 20-I1 with the following theorem.

THEOREM 25. Assume that one of the assertions in Theorem 20-1_ holds and
further that N is.odd. In order that the square matrix ((— 1)dle-)) lutuh @ (N)/2
rows is regular, where a as row and b as column run over all .pasulwe mtegfr;
Prime to N and less than N/2, and where d(a, b) means the unique integer Witd
a=d(a, b)b mod N and —(N—1)/2 < d(a, b) < (N =1)/2, it is necessary an
sufficient that all prime divisors of N are congruent to 3 mod 4.

Proof Necessity. We see from Lemma 13 that the lcf?-hand sidq of_the
first formula of Lemma 22 does not vanish. Therefore taking the principal
character for y, we obtain

[[(1-(=1""") #0,
pIN

and so p=3 mod 4
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Sufficiency. By Theorem 11 and Lemmas 22 and 23, there exists an
odd Dirichlet character { modulo 4f, such that

(N—1)2

2 (=)= x[](x*@)+1)c(nLQ, &),

r=1 piN

where

Ix
c(x) =:_2: 2 x*(re(=2r/f).
r=1

From L(1, &) #0, it is sufficient to show that y*(p) # —1 when all prime
divisors are congruent to 3 modulo 4. Then the multiplicative order M (p) of
p mod N’ for N’ = N/p® with p®| N is either odd or twice an odd number since
(g™ = 2 mod 4 for every prime g with ¢ = 3 mod 4. If M(p) is odd then
(P #—1 by y¥*(@E)MP=1. If M(p) is twice an odd number, then
pMP/2 = — 1. Therefore y*(p)¥®/? = y*(—1)=1, since y is even, so that
x*(p) # —1. This completes the proof of the sufficiency.
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