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L. Introduction. Consider the diophantine equation
(0) ax?*+bxy+cy*+dx+ey+f =0

With integer coefficients a, b, ¢, d, e, f, and let H = max (|d|, |b|, ||, |d|, lel, | f1).
We wish to bound the size of an integer solution, in the following sense:
Provide an effectively computable function g as “small as possible” with the
pl:operly that, if (0) has some integer solution, then there is an integer solution
With max (|x], | ) < g(H).

Schinzel [5] showed that one may take g(H)= (3H)*°°", but he
Tmarked that there is no reason to believe that this estimate is sharp. In the
Other direction, Schinzel [5], Lagarias [3] and others have given examples
Which imply that g (H) must exceed ¢'¥ for some ¢ > 1 and infinitely many H.

In this paper I obtain the following improvements to these results.

. THEOREM 1. If(0) has some integer solution, then there is an integer solution
With max (x|, | yl) < (14H)*".

THEOREM 2. There is an infinite collection of equations (0) (even with
=d = ¢ =0) having integer solutions but none with max (|x|, |y|) < 2%

Theorem 1 indicates that we can take g (H) < (14H)’" = exp(5H -log(14H))
and Theorem 2 implies that g (H) must exceed 2%/° for infinitely many H. The
tWo theorems taken together imply that both results are almost optimal, since
Only a O (log H) factor in the exponent separates the corresponding estimates
for ¢(m)

The plan of this paper is as follows. First, in Section 2, we prove Theorem

by reducing (0) to a Pell equation with congruence conditions. This is
Cssentially the strategy of Schinzel [5], but our tactics are somewhat different.
Then, in Section 3, we prove Theorem 2 by considering generalized Pell
E‘l]llllations of the form ax?+cy? = 1. This extends the work of Lagarias [3] and
CIS.
Finally, in Section 4, we make more precise the connections between the
ell equation and the general quadratic equation (0).
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2. The upper bound (14H)**: Proof of Theorem 1. We reduce the general
quadratic equation to a Pell equation with congruence side conditions, and
then use an upper bound, due to Hua [2], for the least positive solution of the
Pell equation.

For most of the proof we assume a # 0, é = b*—4ac nonsquare >"0. At
the end we treat the remaining cases.

First, remove the cross term: multiply (0) by 4a (a #0) to get the
equivalent equation

(2ax +by)* —8y* +4adx +4aey+4af = 0.
Let

(1 u=2ax+by, v=y.

Then integers x, y satisfy (0) if and only if corresponding integers u, v (via (1))
satisfy the system:
) u? —6v* +2du—(2bd —4ae)v+4af =0,

u = bv (mod 2a).

(If integers x, y satisfy (0) then the corresponding integers u, v satisfy system (2).
Conversely, if integers u, v satisfy system (2), then the corresponding x,
y (x = (u—bv)/2a, y = v) satisfy (0), and x, y are integers.)

Now remove the linear terms: rewrite the equation in (2) as:

(3) (u+d)*—6v> —(2bd —4ae)v—d> +4af = 0.
Multiply by —é (6 # 0 by assumption):
(0v+bd —2ae)* — 6 (u+d)* —(bd — 2ae)* + 6d* —4daf = 0.

Letting
4) u' =u+d, v =3dv+bd-—-2ae,
we see that the last equation is equivalent, via (4), to the system:

v'2—6u'? = (bd —2ae)* — 6d* + 4daf,

v’ = bd—2ae (mod 9).

Now it is clear that integers u, v satisfy system (2) if and only if corresponding
integers u, v, u, v’ (via (4)) satisfy

v'2—du'? = (bd—2ae)* —6d* +44af,
(5) v' = bd —2ae (mod §),
u = bv (mod 2a).
Hence we have reduced equation (0), via (1) and (4), to system ().
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Now consider system (5). Let
(6) L = (bd—2ae)* — dd* +4daf
f’enote the right-hand side of the equation in (5). We can assume that L +# 0: for

if L = 0, then we have v'? = du’2, whose only solution is ¥’ = v’ = 0. By (1) and
(4), this forces

x = —d/2a+ b(bd —2ae)/2ad, = —(bd —2ae)/d,

y
from which it follows easily that max (x|, | y|) < 3H® < (14H)*", which verifies
the Theorem in this case.
Let o, B be the least positive integers satisfying

(7) a2—5p% =1

(recall the current assumption that d is a positive nonsquare), and let «;, §, be
defined by

0 ay+ Byn/3 = (o + B3P
Where k is an arbitrary integer. Consider the product
©) (' +u \/3)(&,‘4-3,, \/3) =1 +u;\/3
Where

(10) uy =0 P+u oy, vi=0va+0up,.

By the theory of the Pell equation, we know that if integers «’, v’ satisfy the
€quation in (5), then for all integral k, the integers u, vi satisfy the same
€quation. -

Let integers u,, v, correspond to u, vj via (4) in the same way that u,

U correspond to u/, v'; that is,
(11 u, = ty—d, v, = (vk—(bd—2ae))/s.

CramM. If o, v and corresponding u, v are integers which satisfy the
Congruences in (5), then uy, vy and corresponding u,, v, are integers which also
Satisfy these congruences.

Proof of Claim. Assume the hypotheses. By (7), a? = 1 (mod J), so
by (8), @, = a+ 582 = «* = 1 (mod §). Since o+ B3 = (@, + By /O) by the

inomial expansion we see that o, = of =1 (mod ) for all nonnegative k.
Since o, =o_,, we have
(12) a, = 1 (mod J)
for all integral k. Using this and (5), we see that
vy = v o +Ou' B = v, =v' = bd—2ae (mod §).

Thus v, satisfies the relevant congruence condition in (5).
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Also from (4), (10), and (11) we find that

u, — b, = (u—bv) oy +(5v—2ae —bu) B, +((o, — 1)/6) (d6 — b (bd — 2ae)).
But by (12), (¢, —1)/6 is an integer; and we also have

é = b®*—4ac = b? (mod 2a).
Finally u—bv = 0 (mod 2a), and these give the required congruence
u,—bv, = 0 (mod 2a).
This completes the verification of the claim.

Thus we have shown: If «', v’ and corresponding u, v are integers which
satisfy system (5), then for all integral k, u}, v} and corresponding u,, v, are
integers which also satisfy this system,

Now for a suitable choice of k, we will get a good upper bound for |u}), |vj|
in terms of «,, B,. Then by (1) and (11), we get a similar upper bound for [u,],
logl Ixils | yils where x,, y, correspond to u,, v, via (1).

We proceed as follows. By multiplying by an appropriate integral power
k of

M =tx,+,31\/5
as in (9) (a;+B,./0 > 1), we can get

(13) VLI < ok+ui /8] < /ILIn, -
Now v;—u;‘\/s = L/(v+uj \/5}, so by (13) we have
(14) L, < lvi—u /8] < /ILIn,.
Using (13) and (14), we see that

(15) Juid, [vil < /ILI7,.

Now we estimate n,, by appealing to the following result of Hua [2]: If
D=0 or 1(mod 4) is a positive nonsquare integer, then the least positive
integer solution z, ¢t of the equation z?>—Dt? = 4 satisfies

(16) (z+t/D)/2 < D'®?exp(,/D).

(We note in passing that Pintz [4] improves the exponent ﬁ/Z in (16) to
(1—1/\/;+o(l))\/5/4 for sufficiently large D.) Since z =2a, t = f clearly
provide the smallest positive solution of

(17) 224512 = 4,
by Hua we have

2+ B /6 = 2/2+1./8 = (z+1./45)/2 < (48)/%2 exp (,/45)

< (20H2)Y2H 12 exp (( /20H?) (8 = b*—4ac < SH?)
< (A4BH) 48H 2724484 < (12,19H)**8H
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Hence
(18) 1y = (@+ B0 < (12.19H)**¢".

We now estimate [L|. By (6),

L = (bd—2ae)* — 5d* +4daf = —4abde +4a*e* +4acd® +43df,

80 we easily find that
(19) |L| < 32H%.

Estimate |ugl, [oil, [y [0y X |3z by (15), (18), and (19),

luil, 10kl < </ILIn, < /32H*n, < 5.66H*(12.19H)***" =D (say).

By (11),

|u,| < |uil+1dl < D+H,
5 |v,) < |vi|+|bd —2ae| < D+3H?

S0
luyl, lvil < D+3H2.
By (1),
|y = Iv) < D+3H?,
and
2a%,) < Juyl +1byyl < (D+3H?)+H(D+3H?) = (H+1)(D+3H?)
50

Ix,| < (H+1)(D+3H?)2.

By the above, we see that this is also a bound for | y;|. One can easily verify that
3H? < 02H?(12.19H)**3", hence the above bound for |xl, |yl is less than

(H+1)(5.68H? (12.19H)*4*4)/2 = 2.84H* (H +1) (12.19H)***" = E (say).
For H > 8 we have
E < 2.84H* (2H)(14H)* %" = 5.68H° (14H)**"
< H4(]4H)4.5H < (14”)"‘!’""'4 < (14H)5H,

and for H < 8, one can verify by direct calculation that E < (14H )3H. Hence we
have shown that |x,], |yl < (14H)*".

To summarize: we started with a solution x, y to (0), derived from this
a solution «, v', u, v to (5), then obtained a ‘small’ solution uy, vy, 4, v, to (5),
and finally derived a small solution X, y; to (0).

We have proved: if a # 0, 6 is nonsquare >0 and (0) haguan integer
solution, then there is an integer solution with |x, | y| < (14H)™".
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It remains to consider the other cases; these are easier to handle. Schinzel

[5] has already treated the nondegenerate cases among these; for completeness
we give the details here.

We first need the following (best possible) linear analogue of Theorem 1.

LemMA. If Ax+By = C (A, B, C integers) has an imeéer solution, then
there is one with max(|x|, | y|) < H where H = max (141, |Bl, |C)).

Proof. Assume without loss of generality that C # 0 (the result is trivial
for C = 0) and |4| < |B). Let X, Yo be a solution. Then B # 0 (since otherwise
we have 4 = B = 0 and then the equation has no solutions), and x = x,+ Bt,
Y = yo— At is also a solution for any integer . Clearly we can choose ¢ so that
—|Bl < x < |B| and Ax has the same sign as C. Then |x| < |B| < H, and

| ¥l = |C— A4x/|B| < max (|C|, |4x])/|B| < max (IC|, |x|) < H.
This completes the proof of the Lemma.
We now tackle the remaining cases.

a #0, é square > 0. Let § = 42. Then equation (6) can be written as the
hyperbola (possibly degenerate)

(V'—4u')(v'+ du') = L.

First assume that L s 0. If there is a solution, then we necessarily have
[v'—A4u'), o'+ 4u'| < |L|, hence (19) implies that |«/, [v'| < |L| < 32H*. From this
and (1), (4) we then easily verify that

IxI, |yl < 35H% < (14H)%4,

Now assume that L=0. Then the equation becomes (v —Au’)
x (v'+ 4u') = 0, so we have v’ = + Au'. After making the substitutions (1) and
(4), we see that system (5) reduces to the single linear equation

Ax+By=C
where
A = F2ad,

B=4*Fbd4, C = +Ad—bd+2ae.

Since |4%| = |b*—4ac| < SH?, by the Lemma we easily find the bound

8H? < (14H)P"  for  max(|x], | yi).

a#0,6<0. Let , = —8 > 0. Then the equation in (5) has the form
v*+0,u? = L. This is an ellipse; hence by (19), all points satisfy

], Iv'] < /IL| < \/32H* < 6H?2,

As before, these bounds on |u|, |v'| lead to bounds on |xl, |yl which are
majorized by (14H)5H,
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a#0,5=0. Proceed from the beginning of the proof of tht‘: main case of
the Theor,em, up through the equation (3), which becomes (since 6 =0):
(u+d)*—(2bd—4ae)v—d*+4af = 0.
This equation (a parabola) is equivalent to the congruence
(u+d)? = d*—4af (mod 2bd —4ae).

Suppose first that the modulus is nonzero. Then if there is a2 solution, we
can take 0 < u+d < |2bd —4ae| < 6H?, so |u| < 6H*+H < TH?. From this
bound on u), it follows that |v] < 41H*, and from these bounds 01’1 Jul, [v| we get,
as before, bounds on |x|, |y| which are majorized by (14H)*". .

On the other hand, if the modulus is zero, then we get tl}?, equatn':m
(+d)y> = d>—4af, so (u+d)* <5H? hence |u+d| <3H which implies
le| < 4H. The only condition on v is given by (cf. system (2)): u = bv (mod 2a),
SO if there is a solution then we can take |v] < |2a] < 2H. As above, these
bounds Jead to bounds on x|, |y| which are less than (14H)*".

a=0,5#0.If ¢ #0, then switch the roles of x and y, and we have one of
the previous cases. 1f ¢ = 0, then we have the hyperbola bxy+dx+ey+f =0,
Which can be factored as

(bx+d)(by+e) = de—bf.

By reasoning similar to that used in the a # 0, § square >0 case, we get
bounds on [x|, | y| which are majorized by (14H)".

Finally, we have the case a = 6 = 0. Note that 0 =6 = b%—4ac = b?, so
b= 0.1f ¢ # 0, then switch the roles of x and y, and apply the case a # 0,6 = 0.
fe= 0, the equation reduces to

dx+ey = —f.
By the Lemma proved above, if there is a solution, then we can take
max (x|, | y|) < H < (14H)%H,
This completes the proof of Theorem 1.

Remark. By a slight modification of the proof, one can sho?w that if (0)
s some integer solution, then there is an integer solution with

max (x|, | y]) < (14H)*#°- Hi,
Where
H, = max(lal, ||, |c|) and H,= max (||, lel, | f1)-
Hence the bound depends only polynomially on d, e and f.

3. The lower bound 2%/*: Proof of Theorem 2. We use a few lemmas.
A variant of Lemma 1 below was proved in Lagarias [3]; for completeness,
2 proof is provided here,
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In what follows, let d > 0 be nonsquare, and let u, v be the least positive
integer solution to

(20) U2—dv? =1,
Define integers u(k), v(k) by
1 uk)+vk)/d = +v/df, k=0,1,2,...

LEMMA 1. Suppose that b, f are positive integers such that b’ divides v and
(v/b’, b) = 1. Then for each n >0,

(i) b"*/ divides v(k) if and only if b" divides k,

(i) (0(0")/b"*7, b) = 1.

Proof. We use induction on n. Assume that b > 1 since the result is
trivial for b= 1.

Suppose n = 0. Then (i) says that b’ divides v(k) for all positive k. But

vik+1)=u-vk)+v-u(k)

so (i) is true by induction on k. (ii) is immediate from the second hypothesis.

Assume that (i), (ii) hold for some n > 0. We prove (i), (ii) for n+ 1. Now the
left side of (i) says that b"*'*/ divides v(k), a fortiori b"*7 divides v (k). By the
induction hypothesis (i), b" divides k, so we can write k = b"k, and

u(k)+v(k)/d = (u (B + v (") /d),
where k, is a positive integer. .
Since b"*/ divides v(b") and 3(n+f) > n+2+/, the binomial expansion
gives
(22) ’ v(k) =k, (u(d")* Vo (b") (mod b"*2+/),

Also because (20) holds with U = u(k), V = v(k) we have (u(b"), b)= 1. Then
since b"*'*/ divides v(k), we sec that (22) and (ii) of the induction hypothesis
imply that b divides k,. Therefore b"* ' divides k. This proves one direction of (i).
For the other dircction, take k = b"k,, k, divisible by b. Then (22) implies
that b"*'*/ divides v (k).
Finally we prove (ii) for n+1. From (22) with k = b"*' we find that

o™ b = (w B o B/b (mod b).

Since (u (b"), b) = 1, this together with (ii) of the induction hypothesis imply (ii)
for n+1. This proves Lemma 1.

LEMMA 2. Suppose that a, e are positive integers, a odd > 1, such that a°
divides u and (u/a®, a) = 1. Then for each n> 0,

(i) a"** divides u(k) if and only if k is odd and a" divides k,

(i) (u(a")/a"*c, a) = 1.

Proof. We use induction on n. Note that (a,d)=(a,v)=1 since
a divides u and u, v satisfy (20).
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Suppose n = 0. Then (i) says that a° divides u(k) exactly when k is odd.
Now

u(2) +(2)/d = (u+v. /A = @ +v*>d)+2uv/d.
Because (a, d) = (a, v) = 1, we have (a, v 2d) = 1 and hence (u(2), a) = 1. Also,
v(2) = 2uv is divisible by a°, so we have
(23) ulk+2) = u@uk)+vQ@)v(k)d = u)u(k) (mod a°).

Since u(0) =1 and u(1) = u, (i) follows from (23) and induction on k. (i) is
immediate from the second hypothesis.

Next assume (i), (i) hold for some n > 0. We prove (i), (ii) for n+ 1. Now
the left side of (i) says that a"***¢ divides u(k), a fortiori a"** divides u(k). By
induction hypothesis (i), k is odd and a" divides k, so we can write k = ak,, k,
0dd, and

u(k)+v (k) /d = (u(@)+v(@)/df.
Since g"*¢ divides u(a") and 3 (n+e) > n+2+e, the binomial expansion gives
(24) u(k) =k, m{a")-(v(‘a"})"“‘“-d"“_”"2 (mod a"*2%°).

Because (20) holds with U = u(k), V = v(k), we have (v(a, a)= 1. T}'len since
a"*1+e divides u(k) and (a, d) = 1, we see that (24) and (ii) of the induction
hypothesis imply that a divides k,. Therefore a"** divides k. This proves one
direction of (i).

For the other direction, take k = a"k,, k, odd and divisible by a. Then (24)
implies that a"*!*¢ divides u (k).

Finally we prove (ii) for n+1. From (24) with k = a"*! we find that

u(@* et = u@)a e (o(@)) "t de" 2 (mod a).

Since (a, v(a") = (a, d) = 1, this together with (ii) of the induction hypothesis
imply (i) for n+ 1. This proves Lemma 2.

LemMA 3. Let a, b, e, f be positive integers, a > 1, such that a, b are odd,‘a"'
divides u, b’ divides v, (u/a*, a) = 1, and (v/b’, b) = 1. Then for all nonnegative
integers m, n, the equation

{25) aZ(m+e] x bZtn*-Ide =1
has positive integer solutions, and they are all given by the formula
(26) a"'+"x+b"+fy\/¢}=:(u+u\/c})"m"’"'l', L=1; 3, 5% Tsives

Proof. Let k = a™- b"- L, L an odd positive integer. Then k is odd, and by
Lemmas 1 and 2 we see that

27 am*e divides u(k),
Thus the values x = u (k)/a™*<, y = v(k)/b"*/ given by formula (26) satisfy (25).

p**/ divides v (k).
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Conversely, by the theory of the Pell equation, every positive solution of
(25) is obtained from (21) for some positive k such that u(k), v(k) satisfy (27). By
(i) in Lemmas 1 and 2, a™ divides k, b" divides k, and k is odd. But (a, b) = 1
since a divides u, b divides v, and wu, v satisfy (20). Hence a™: b" divides k, so
k =a™-b" L, L an odd positive integer. Therefore all positive solutions to (25)
arise from formula (26). This proves Lemma 3.

Proof of Theorem 2. Let d be any positive nonsquare integer for
which the least positive integer solution u, v of (20) has the property that u is
divisible by 5 but not by 5% and v is divisible by 3 but not by 32 (for example
d=11,u = 10, v = 3). It follows from takinga = 5,b = 3,e = f = 1 in Lemma
3 that the least positive integer solution to

(28) 52m+2x2_32n+2dy2 s |
(m, n nonnegative integers) is given by
(29) 5"’“x+3"“y\/3=(u+u\/¢_i)5"“3"_

We shall show that this leads to the lower bound c” of Theorem 2, for any

positive ¢ < A(d) = (u+v./d)"/**¥4,
From [1] we find that when d = 631 then

u = 48961575312998650035560,
v = 1949129537575151036427,

and A(d) > 2'/5. This will prove Theorem 2.
Let 0 <& < 1. It is easily seen from Kronecker’s Theorem applied to the

irrational number log 5/log3 that there are arbitrarily large positive integers
m, n with

l—e < 52m*2/(32"%24) < (1—¢)"!.

. Thus
H = max (5*™*2, 328+24. 1)

satisfies

(1—e)H <5?m*2 -and (1—g)H < 32+24
and therefore

53" > H(1—g)/15,/d.
From (28) we see that 5"*'x > 3""'y./d, and thus by (29),
smtly S %(u_‘_v\/’;r)ml—zmw}_

Since 5m*! < \/!_:' this clearly gives a lower bound of ¢” for any positive
¢ < A(d). Since all integer solutions of (28) arise from positive ones by changes

of sign, this establishes Theorem 2.
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Remarks. 1. By slightly modified arguments, one can show that the
least positive integer solution to

32m+4x2__52n+3y2 =1
(for given m, n > 0) is provided by

3m+2x+5n+1yﬁ =(9+4\/§)3ms"“_

This family of equations also gives, for suitable m, n, the lower bound 2%/° of
Theorem 2.

2. The equation ax?+cy? =1 in Theorem 2 is as simple a form of
equation as one can use (there is no cross term, and no linear terms), and still
have an exponential lower bound. For if either the x* or y? term does not
appear in (0), then a =0 or ¢ =0, so § = b>—4dac = b?* is a square, and the
Proof of Theorem 1 for this case shows that we can choose a solution (if any
€xist) with |x|, | y| bounded by a polynomial in H.

4. Concluding remarks. Theorems 1 and 2 imply that we can take g(H) to be
at most ¢H19%H for some c, and that g (H) must infinitely often exceed ¢! for some
€, > 1, where g(H) bounds the size of the least integer solution (if any) to (0).

Similarly, Hua’s estimate and Lemma 1 imply that we can take g, (d)
< cf?1°8 4 for some c,, and that g, (d) > c§? for some ¢, > 1 and infinitely many
d, where g, (d) is an upper bound for the size of the least positive integral
Solution u, v to (20).

In fact the estimates for g and g, are related.

PROPOSITION 1. If we can take g, (d) < c}*? for some monotone nonde-
creasing function ¢ > 1 and some c,, then we can take g(H) < ¢"*®"? for some
C.

The proof is a straightforward application (as in the proof of Theorem 1)
of the bound for g, to get a suitable bound for g.

PROPOSITION 2. Let p be an odd prime. If we can take g(H) < "™ for

Some function ¢ > 1 and some c, then we can take g,(d) < V%) for some ¢,
(depending on p) and all d such that u is divisible by p but not by p*.

The proof (of the contrapositive form) is a straightforward application of
the ideas of the proof of Lemma 2.

Proposition 1 implies that an improvement in the upper bound for the
least positive solution to the Pell equation leads to a corresponding im-
Provement in the upper bound for the least solution to the general quadratic
®quation. In particular, taking ¢ identically equal to 1, we see that the most
Optimistic upper bound for the Pell leads to the most optimistic upper bound
for the general quadratic.

Proposition 2 gives a partial result for the opposite implication; it would

complete if we could remove the divisibility condition.
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LV (1990)

Uber die asymptotische Dichte gewisser Teilmengen
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1. Uberblick. Wir werden als Verallgemeinerung eines wohlbekan'ntcn
Ergebnisses von B. Saffari, P. Erdds und R. C. Vaughan (vgl. [3], [8]) zeigen:
nter einschrinkenden Bedingungen an eine Teilmenge T der natiirlichen
Zahlen existiert fir die Faktoren M,, M, eines direkten Produkts
T=m 1 X M, ihre “asymptotische Dichte” stets.

2. Asymptotischer und logarithmischer Mittelwert. Im folgenden ist stets
N:={1,2,3, ..} (ohne die Null).

DerviTioN. Gegeben sei eine zahlentheoretische Funktion f: N - C.
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heiBen untere (resp. obere) logarithmische Dichte der zahlentheoretischen
Funktion f. Gilt dabei sogar

ém = a—(ﬂa

SO besitzt f einen logarithmischen Mittelwert
m L5 100
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DermniTioN. Fiir eine zahlentheoretische Funktion f heillen

M) = liminfl- E £ (n),

X~ @ nEx

M():= limsupl- Z f(n)
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