- Contributions à la théorie des corps et des polynômes cyclotomiques, Ark. mat. 5 (1963).
 153-192. [MR 29#96].
- 107. Thoralf Skolem in memorium, Acta math. 110 (1963), i-xi, 300. [MR 27#2389].
- Sur une propriété des unités d'un corps algébrique, Ark. mat. 5 (1964), 343–356.
 [MR 32 # 7542].
- Sur quelques catégories d'équations diophantiennes résolubles par des identités, Acta Arith-9 (1964), 227-235. [MR 30#57].
- Sur les représentations de l'unité par les formes binaires biquadratiques du premier rang, Arkmat. 5 (1965), 477-521. [MR 32#7497].
- Contributions à la théorie des modules et des anneaux algébriques, Ark. mat. 6 (1965).
 161-178. [MR 36#136].
- Quelques résultats sur les diviseurs fixes de l'index des nombres entiers d'un corps algébrique.
 Ark. mat. 6 (1965), 269-289. [MR 33 # 5608].
- Sur quelques propriétés arithmétiques des formes binaires à coefficients entiers, Ark. mat. 7 (1967), 241-248. [MR 36#3724].
- 114. Sur les discriminants des nombres algébriques, Ark. mat. 7 (1967), 265-282. [MR 38#5744].
- Remarques sur les formes à plusieurs variables décomposables en facteurs linéaires, Ark. mat. 7 (1967), 313-329. [MR 38#4407].
- Sur les unités dans les corps biquadratiques primitifs du premier rang, Ark. mat. 7 (1968). 359-394. [MR 39 # 5511].
- Quelques propriétés des nombres algébriques du quatrième degré, Ark. mat. 7 (1968).
 517-525. [MR 39 # 1428].
- 118. Sur les diviseurs premiers des polynômes, Acta Arith. 15 (1969), 235-244. [MR 40 # 1368].
- Remarques sur une catégorie d'équations diophantiennes à deux indéterminées, Ark. mat. 8 (1969), 49 62. [MR 41 # 3391].
- Quelques problèmes relatifs aux unités algébriques, Ark. mat. 8 (1969), 115–127.
 [MR 42 # 3053].
- 121. Sur un type particulier d'unités algébriques, Ark. mat. 8 (1969), 163-184. [MR 42 # 3064].
- Remarques sur une classe d'équations indéterminées (Includes errata to papers 26, 27 and 29), Ark. mat. 8 (1970), 199 215. [MR 42#5902].
- Über die Lösbarkeit gewisser diophantischer Gleichungen zweiten Grades, Arch. Mat. 21 (1970), 487–489. [MR 43 # 154].
- Sur la résolubilité d'une équation cubique à deux indéterminées, Norske Vid. Sclsk. Forh.. Trondheim 1970, No 8, 8 pp. [MR 45#3318].
- Sur une catégorie d'équations diophantiennes insolubles dans un corps réel, Norske Vid. Selsk. Forh., Trondheim 1971, No 4, 5 pp. [MR 45#3318].
- Sur la solubilité en nombres entiers des équations du second degré à deux indéterminées, Acta Arith. 18 (1971), 105-114. [MR 44#5273].
- 127. Über die Darstellung der Zahlen ±1 als die Summe von zwei Quadraten in algebraischen Zahlkörpern, Arch. Math. 23 (1972), 25-29. [MR 46#7192].
- Sur quelques équations diophantiennes de degré supérieur à plusieurs variables, Norske Vid. Selsk. Forh., Trondheim 1972, No 5, 6 pp. [MR 47#1740].
- Sur la représentabilité de zéro par certaines formes quadratiques, Norske Vid. Selsk. Forh... Trondheim 1972, No 6, 7 pp. [MR 46#7162].
- 130. Sur la résolubilité de l'équation $x^2 + y^2 + z^2 = 0$ dans un corps quadratique, Acta Arith. 21 (1972), 35-43. [MR 46 # 1702].
- Sur la représentation de zéro par une somme de carrés dans un corps algébrique, Acta Arith. 24 (1973), 379-383. [MR 48#8379].

ACTA ARITHMETICA LV (1990)

Some metric properties of subsequences

b

PIERRE LIARDET (Marseille)

1. Introduction

1.1. Notations and definitions. Metrical properties about independence of subsequences of given sequences in a compact metrizable space X are investigated. The set of X-valued sequences is identified with the compact product space X^N . If μ is a Borel probability measure on X, we denote by μ_{∞} the infinite product measure induced by μ on X^N . Let μ be an μ -valued sequence and let μ be a non-negative integer. Then $\mu^{(t)}$ denotes the μ -valued sequence given by

$$u^{(t)}(n) := (u(n), u(n+1), \dots, u(n+t-1)).$$

Let \mathscr{U} be a finite family of sequences $u: N \to X_u$ where all X_u , $u \in \mathscr{U}$, are compact metrizable spaces. We recall [16] that \mathscr{U} is said to be statistically independent if for all continuous functions $f_u: X_u \to C$, $u \in \mathscr{U}$, one has

$$\lim_{N\to\infty}\left[\left(\frac{1}{N}\sum_{n< N}\left(\prod_{u\in\mathcal{U}}f_u(u(n))\right)\right)-\prod_{u\in\mathcal{U}}\left(\frac{1}{N}\sum_{n< N}f_u(u(n))\right)\right]=0.$$

The family \mathscr{U} is said to be completely statistically independent if $\mathscr{U}^{(t)} := \{u^{(t)}; u \in \mathscr{U}\}$ is statistically independent for all positive integers t. Now a family of sequences in compact metrizable spaces will be said independent (resp. completely independent) if the corresponding property holds for all finite sub-families.

Let \mathscr{F} be a family of N-valued sequences $\sigma: N \to N$ such that $\lim_{n \to \infty} \sigma(n) = +\infty$.

DEFINITION 1.(a) A sequence $u: N \to X$ is called \mathscr{F} -independent if the family

$$\mathscr{E}(u,\mathscr{F}):=\{u\circ\sigma;\,\sigma\in\mathscr{F}\}$$

is statistically independent.

(b) The sequence u is said to be \mathscr{F} -independent at rank t if the family $\{(u \circ \sigma)^{(t)}; \sigma \in \mathscr{F}\}$ is statistically independent.

(c) If u is \mathcal{F} -independent at rank t for all positive integers t then u is said to be completely \mathcal{F} -independent.

From now on, μ denotes a given Borel probability measure on X. Classically the X-valued sequence u is said to be μ -uniformly distributed if for all continuous functions $f: X \to C$, one has

(1)
$$\lim_{N\to\infty} \frac{1}{N} \sum_{n< N} f(u_n) = \int_X f(x) \, \mu(dx).$$

Recall that a family \mathcal{U} of X-valued sequences u is equi- μ -uniformly distributed [9] if the limit in (1) holds uniformly in $u \in \mathcal{U}$.

DEFINITION 2. The sequence u is called (\mathcal{F}, μ) -independently distributed if the sequences $u \circ \sigma$, $\sigma \in \mathcal{F}$, are μ -(uniformly) distributed and statistically independent.

Now we introduce the notion of sparse family [4] and regular sequence.

DEFINITION 3. A sequence $\sigma: N \to N$ is called *regular* if there is a subset A of N with asymptotical density 1, such that $\sigma|_A$ is one-to-one.

DEFINITION 4. A family \mathcal{F} of sequences of positive integers is called *sparse* if, for all $(\sigma, \tau) \in \mathcal{F} \times \mathcal{F}$, one has

$$\sigma \neq \tau \Rightarrow \lim_{N \to \infty} (1/N) \operatorname{card} \{ n \in \mathbb{N}; n < N \text{ and } \sigma(n) = \tau(n) \} = 0.$$

1.2. Examples. The following standard families are sparse and regular.

$$\mathscr{F}_r := \{\tau_k; k \in \mathbb{N}\}, \text{ with } \tau_k(n) := n + k,$$

$$\mathcal{F}_{\pi} := \{ \pi_l; l \in \mathbb{N}^* \}, \text{ with } \pi_l(n) := ln,$$

$$\mathcal{F}_{\tau,\pi} := \{ \tau_k \circ \pi_l; k \in \mathbb{N} \text{ and } l \in \mathbb{N}^* \},$$

$$\mathcal{F}_{p} := \{n \to p(n); p \text{ non-constant real polynomial with } p(N) \subset N\}.$$

Notice that by definition the sequence $u: N \to X$ is (\mathcal{F}_r, μ) -independently distributed if and only if u is completely μ -uniformly distributed (cf. [9], p. 204). The corresponding notions where \mathcal{F}_r is replaced by \mathcal{F}_π or \mathcal{F}_P were studied by J. Coquet [1]. Let \mathcal{F} and \mathcal{F}' be different families among the above ones. The existence of sequences u which are (\mathcal{F}, μ) -independently distributed and such that the family $\mathscr{E}(u, \mathcal{F}')$ is equi- μ -uniformly distributed is investigated in [4]. It is well known that μ_{∞} -almost all sequences u are (\mathcal{F}_r, μ) -independently distributed and if μ is not a Dirac measure, for any such sequence u, the family $\mathscr{E}(u, \mathcal{F}_r)$ is never equi- μ -uniformly distributed. The same assertion holds with \mathcal{F}_r . The set

$$\mathscr{U}(X, \mu, \mathscr{F}) := \{ u \in X^{\mathbb{N}}; \mathscr{E}(u, \mathscr{F}) \text{ is equi-}\mu\text{-uniformly distributed} \}$$

for $\mathcal{F} = \mathcal{F}_r$ is not empty and one has (see [9])

(2)
$$\mu_{\infty}(\mathscr{U}(X,\,\mu,\,\mathscr{F}))=0.$$

Due to [4] (Theorem 4), the same properties hold if $\mathscr{F} = \mathscr{F}_{\pi}$. In the case $\mathscr{F} = \mathscr{F}_{\tau,\pi}$ and more generally for any family \mathscr{F} such that $\mathscr{F} \circ \sigma \subset \mathscr{F}$ for all $\sigma \in \mathscr{F}_{\tau,\pi}$, the set $\mathscr{U}(X, \mu, \mathscr{F})$ is empty ([4], Theorem 6).

We quote a last example. Let σ_k : $N \to N$, $k \in N$, be strictly increasing sequences with disjoint images, then the family $\mathcal{S} := \{\sigma_k : k \in N\}$ is a sparse family of regular sequences. Remark that we also have (2) for $\mathcal{F} = \mathcal{S}$.

1.3. In Part 2 one first proves that μ_{∞} -almost all sequences are (\mathcal{F}, μ) independently distributed whenever \mathcal{F} is a countable sparse family of regular sequences and we discuss some consequences. Despite of (2) there are sparse families \mathcal{S} of regular sequences such that there exist sequences u in $\mathcal{U}(X, \mu, \mathcal{S})$ which are also (\mathcal{S}, μ) -independently distributed. In Part 3 we study the $(\mathcal{F}_{P}, \lambda)$ -independent distribution of $n \to 0^n \mod 1$ where λ is the Lebesgue measure on the one dimensional torus T identified with [0, 1].

The last part is devoted to the construction of a sparse family $\mathfrak S$ which turns any countable family of sequences into a family of independent sequences. Moreover, for each σ in $\mathfrak S$ and each μ -well-distributed sequence u, the sequence $u \circ \sigma$ is μ -well-distributed too. In terms of our notation, that means we have:

$$\forall \sigma \in \mathfrak{S}, \ \forall u \in \mathfrak{U}(X, \mu, \mathcal{F}_t): \ u \circ \sigma \in \mathfrak{U}(X, \mu, \mathcal{F}_t).$$

The set \mathfrak{S} derives from the dyadic expansion of integers. If $s(\cdot)$ denotes the sum of digits to base two then all sequences $n \to s(\sigma(n))$ are 2-additive and are also continuous generalized Morse sequences introduced by M. Keane [7]. Moreover, using previous results ([8], [14]), we prove that the spectral measures of these sequences are mutually singular.

2. F-Independent sequences

2.1. Theorem 1. Let \mathscr{F} be a countable sparse family of regular sequences of integers and let μ be a Borel probability measure on X, then μ_{∞} -almost all sequences u are \mathscr{F} -independent, each $u \circ \sigma$, $\sigma \in \mathscr{F}$, being μ -distributed.

Proof. Let f_1, \ldots, f_h be in $\mathscr{C}(X)$ satisfying $\int_X f_i d\mu = 0$ for all $i, 1 \le i \le h$ and $(f_i|f_j)_{\mu} = \delta_{ij}$ for all $(i, j) \in \{1, \ldots, h\}^2$, where $\delta_{ij} = 0$ or 1 according as $i \ne j$ or i = j. Let $(\sigma_i)_{i \in \mathbb{N}^*}$ be an indexing of \mathscr{F} by N^* and let A be a subset of N satisfying:

$$(\forall (i,j) \in \{1,\ldots,h\}^2)$$
 $(i \neq j \Rightarrow \forall n \in A, \sigma_i(n) \neq \sigma_j(n)),$

and such that each $\sigma_{i|A}$ is one-to-one. The set A can be chosen of asymptotical density one, in other words:

$$A(N) := \operatorname{card}(A \cap [0, N]) \sim N, \quad N \to +\infty.$$

We set

$$S_{N} = \int_{XN} \left| \frac{1}{A(N)} \sum_{n < N, n \in A} f_{1}\left(u(\sigma_{1}(n))\right) \dots f_{h}\left(u(\sigma_{h}(n))\right) \right|^{2} \mu_{\infty}(du)$$

$$= \frac{1}{(A(N))^{2}} \sum_{\substack{m,n < N \ XN \\ hi,n \in A}} \int_{XN} f_{1}\left(u(\sigma_{1}(m))\right) \overline{f_{1}\left(u(\sigma_{1}(n))\right)} \dots f_{h}\left(u(\sigma_{h}(m))\right) \overline{f_{h}\left(u(\sigma_{h}(n))\right)} \mu_{\infty}(du).$$

If n belongs to A, all the sets $E_n := \{\sigma_1(n), \ldots, \sigma_h(n)\}$ have h elements. From Fubini's theorem and the choice of f_i , the corresponding term in the sum is zero whenever $E_m \neq E_n$.

If n and m belong to A, $E_m = E_n$ implies the existence of a permutation π of $\{1, \ldots, h\}$ such that for all $k \le h$ one has, say, $\sigma_k(m) = \sigma_{\pi(k)}(n) = l_k$. Then

$$\int_{XN} f_1(u(\sigma_1(m))) \overline{f_1(u(\sigma_1(n)))} \dots f_h(u(\sigma_h(m))) \overline{f_h(u(\sigma_h(n)))} \mu_{\chi}(du)$$

$$= \int_{XN} f_1(u(l_1)) \overline{f_{\pi(1)}(u(l_1))} \dots f_h(u(l_h)) \overline{f_{\pi(h)}(u(l_h))} \mu_{\chi}(du) = \prod_{k=1}^h (f_k | f_{\pi(k)}),$$

a product which vanishes if $\pi \neq id$ and equals 1 if $\pi = id$. The last case corresponds to m = n if m and n belong to A. Hence we obtain $S_N = 1/A(N)$.

For N large enough, $A(N) \ge \frac{1}{2}N$, thus $\sum_{N=1}^{\infty} S_{N^2} < +\infty$ and from the Fatou-Karo lemma, for μ_{∞} -almost every u, one has

$$\lim_{N\to\infty}\frac{1}{A(N^2)}\Big|\sum_{\substack{n< N^2\\n\in A}}f_1\Big(u\big(\sigma_1(n)\big)\Big)\dots f_h\Big(u\big(\sigma_h(n)\big)\Big)\Big|=0.$$

Moreover,

$$\left| \frac{1}{N^2} \sum_{n < N^2} f_1(u(\sigma_1(n))) \dots f_h(u(\sigma_h(n))) \right| \\
\leq \left(\prod_{k=1}^h \|f_k\|_{\infty} \right) \frac{N^2 - A(N^2)}{N^2} + \frac{1}{A(N^2)} \Big| \sum_{\substack{n < N^2 \\ n \text{ or } n \text{ or }$$

Finally, consider

$$\theta(N) := \frac{1}{N} \sum_{n < N} f_1(u(\sigma_1(n))) \dots f_h(u(\sigma_h(n))),$$

then $\lim_{N\to\infty}\theta(N^2)=0$, μ_{∞} -a.e. and thus $\lim_{N\to\infty}\theta(N)=0$, μ_{∞} -a.e. We conclude by remarking that an at most countable family of f_k satisfying the previous conditions exists which spans, with the constant functions, a C-vector space dense in $\mathscr{C}(X)$.

2.2. THEOREM 2. Let σ_k : $N \to N$, $k \in N$, be strictly increasing sequences with disjoint images. Let $\mathscr G$ be the family $\{\sigma_k: k \in N\}$ and let μ be a Borel probability measure on X. Then there exists a sequence $u: N \to X$ such that the family $\mathscr E(u,\mathscr S)$ is both statistically independent and equi- μ -distributed.

Proof. There is no loss of generality if we assume that the family $E := \{\sigma_k(N); k \in N\}$ forms a partition of N. Let $(q_k)_{k \ge 0}$ be an increasing sequence of integers such that if we define

$$M_k:=\sum_{m\leq k}q_m\,m^m,$$

then

$$\lim_{k\to\infty} k^k/M_k = 0.$$

We denote by I_k the interval $[M_k, M_{k+1}]$ and for any integer n in I_k let \tilde{n} be the remainder in the euclidian division of $n-M_k$ by k^k . We write

$$\sum_{j \le k} e_j(\tilde{n}) k^j, \quad 0 \le e_j(\tilde{n}) < k,$$

the expansion of \tilde{n} to base k. Now we consider any μ -distributed sequence w and we define the family of X-valued sequences v_p $j \in N$, by

$$v_j(n) := \begin{cases} w(e_j(\tilde{n})) & \text{if } n \in I_k \text{ and } j < k; \\ w(e_{k-1}(\tilde{n})) & \text{if } n \in I_k \text{ and } j \ge k. \end{cases}$$

Finally, we take the sequence $u: N \rightarrow X$ defined by

$$u(m) := v_j(n) \Leftrightarrow m = \sigma_j(n).$$

We claim that u has the required properties. Let $f: X \to C$ be a continuous function and assume that |f| is bounded by 1. For simplicity, we write ω instead of $\int f d\mu$ and for all integers k > 0, we write ω_k instead of $\lim_{k \to \infty} f(w(m))$. Note that $|\omega| \le 1$ and $|\omega_k| \le 1$. By construction we have

$$\sum_{M_k \leq n < M_k + ck^k} f(v_j(n)) = ck^k \omega_k,$$

for all integers $j \ge 0$ and $c \in \{0, ..., q_k - 1\}$. Now let N, r and a be positive integers satisfying the following inequalities:

$$M_r + ar^r \le N < M_r + (a+1)r^r$$
 and $a < q_r$.

Then we have

$$\left|\sum_{n < N} f(v_j(n)) - \sum_{k < r} q_k k^k \omega_k\right| \leqslant r^r.$$

But $\lim_{k\to\infty} \omega_k = \omega$ so that $\lim_{K\to\infty} M_K^{-1} \sum_{k< K} q_k k^k \omega_k = \omega$. Choose $\varepsilon > 0$; there exists an integer L, independent of j, such that we have both

$$k^k/M_k \le \varepsilon/4$$
 and $|\omega_k - \omega| \le \varepsilon/4$

for all $k \ge L$. A straightforward computation gives for all $N \ge M_L$

$$\left|\sum_{n < N} f(v_j(n)) - N\omega\right| \leq 2r^r + \left|\sum_{k < r} q_k k^k (\omega_k - \omega)\right| \leq (\varepsilon/2) M_r + 2M_L + (\varepsilon/4) M_r.$$

Therefore,

$$\left|\sum_{n\leq N} f(v_j(n)) - N\omega\right| \leq \varepsilon N$$

holds for all $j \ge 0$ and all $N \ge \operatorname{Max} \{8M_L \varepsilon^{-1}, M_L\}$. We have thus established that the family $\mathscr{E}(u, \mathscr{S}) (= \{v_j; j \in N\})$ is equi- μ -distributed. It remains to $\operatorname{pro}^{v\ell}$ that u is \mathscr{S} -independent. For all positive integers J and all continuous functions $f_j \colon X \to C$, $0 \le j < J$, we easily verify that

$$\sum_{M_k \leq n < M_k + ck^k} \left(\prod_{j < J} f_j(v_j(n)) \right) = ck^{k-J} \prod_{j < J} \left(\sum_{m < k} f_j(w(m)) \right)$$

whenever $k \ge J$ and $c < q_k$. But this is the crucial step which yields the desired result. We leave the details to the reader.

2.3. Remarks.

1. Different notions of regular sequences can be defined which ensure the conclusion of Theorem 1. We only quote two such definitions which are independent.

The mapping $\sigma: N \to N$ is called *D-regular* if $\overline{d}(B_k) = 0$ where $\overline{d}(B_k)$ is the upper asymptotical density of $B_k := \{n \in N; \operatorname{card} \{\sigma^{-1}(\sigma(n))\} \ge k\}$.

The second notion will be useful in the next section. The mapping $\sigma: N \to N$ is called M-regular if the series $\sum_{N=1}^{\infty} \Delta(N) N^{-3}$ converges, where

$$\Delta(N) := \text{card}\{(n, m) \in \mathbb{N}^2; m < N, n < N, \sigma(m) = \sigma(n)\}.$$

For $\alpha > 2$, the sequence σ_{α} given by $\sigma_{\alpha}(n) := [(\text{Log } n)^{\alpha}]$ is M-regular but n^{01} D-regular ([·], as usual, denotes the integer part). Let $(\alpha_k)_k$ be a strictly increasing sequence of real numbers > 2 and write σ_k instead of σ_{α_k} . Then the family $\{\sigma_k; k \in N\}$ is sparse and M-regular (but also regular).

Now let A be the subset of N subjected to:

$$\operatorname{card}\{n < N; n \in A\} := [N/\sqrt{\log N}] \quad \text{for } N \ge 2.$$

The sequence defined by $\sigma(n) = 0$ if $n \in A$ and $\sigma(n) = n$ if $n \notin A$ is D-regular, regular but not M-regular.

2. Taking $\mathscr{F} = \mathscr{F}_t$, we see that the conclusion of Theorem 1 fails if \mathscr{F} -independence is replaced by \mathscr{F} -independence at rank t > 1. But for "very well sparse" families, Theorem 1 could be strengthened. We do not examine this problem in detail but only claim that if $\mathscr{G} := \{\sigma \circ \tau_k; \ \sigma \in \mathscr{F}, \ k < t\}$ is a sparse family of regular sequences, μ_{∞} -almost every sequence u is \mathscr{F} -independent at rank t, each $u \circ \sigma$, $\sigma \in \mathscr{F}$, being μ -distributed. In particular:

COROLLARY 1. Let μ be a Borel measure on X. For μ_{∞} -almost every sequence, the family of sequences $\{u \circ \sigma; \sigma \in \mathcal{F}_{\pi}\}$ is completely statistically independent, each of the $u \circ \sigma$ ($\sigma \in \mathcal{F}_{\pi}$) being completely μ -distributed.

2.4. We mention two other consequences of Theorem 1.

COROLLARY 2. Let \mathcal{F} be a countable sparse family of regular sequences and let q be a natural integer ≥ 2 . Then there is a \mathcal{F} -independent sequence $u: N \rightarrow \{0, 1, ..., q-1\}$, each sequence $u \circ \sigma$, $\sigma \in \mathcal{F}$, being uniformly distributed mod q.

In fact, from Theorem 1, almost all sequences with respect to the infinite equidistributed measure has the required property. Moreover, such a sequence u can be given using an explicit construction when \mathcal{F} is asymptotically ordered, that is, totally ordered by means of the relation

$$\sigma \leqslant \tau \Leftrightarrow \exists N, \ \forall n \geqslant N: \ \sigma(n) < \tau(n).$$

We refer to [15] for definition and characterization of normal sets. The following result extends Theorem 4 in [1], its proof is similar and makes use of the preceding corollary.

COROLLARY 3. Let \mathcal{F} be an asymptotically ordered countable sparse family of regular non-decreasing sequences of positive integers. For all normal subsets A of R^* there is a sequence Λ of real numbers such that:

- (i) If $x \in A$ then xA is \mathcal{F} -independent, each $xA \circ \sigma$, $\sigma \in \mathcal{F}$, being uniformly distributed mod 1.
 - (ii) If $x \notin A$ then xA is not uniformly distributed mod 1.

3. Subsequences of θ^n

3.1. Let θ be a real number > 1. It is well known [9] that, for almost every real number x, the sequence $n \to x \theta^n$ is uniformly distributed mod 1, and even completely uniformly distributed mod 1 if θ is a transcendental number. This means that such sequences are \mathscr{F}_{τ} -independent. In fact, from Corollary 4.3, page 35, [9], we can derive:

Some metric properties of subsequences

127

PROPOSITION 1. If $\theta > 1$ is transcendental, the sequence $n \to x \theta^n$ is \mathcal{F}_p -independent (\mathcal{F}_p is the family of non-constant polynomial functions p such that $p(N) \subset N$) for almost every real number x, each of the sequences $n \to x \theta^{p(n)}$, $p \in \mathcal{F}_p$, being uniformly distributed mod 1.

The complete proof is left to the reader, we only quote that if p_1, \ldots, p_s are different polynomials in \mathscr{F}_P and $(a_1, \ldots, a_s) \in \mathbb{Z}^s \setminus \{0, \ldots, 0\}$, there exist $\delta > 0$ and $n \in \mathbb{N}$ such that

$$(n \geqslant N, m \geqslant N, n \neq m) \Rightarrow \left| \sum_{k=1}^{s} a_k \theta^{p_k(n)} - \sum_{k=1}^{s} a_k \theta^{p_k(m)} \right| \geqslant \delta.$$

H. Niederreiter and R. Tichy proved [12] that for any sequence $n \to a_n$ of distinct positive integers, for almost every 0 > 1 the sequence $n \to 0^{a_n}$ is completely uniformly distributed (see also [13] for a more general result). Let us consider now all the polynomial sequences simultaneously.

THEOREM 3. For almost every real number 0 > 1, the sequence $n \to 0^n$ is \mathscr{F}_P -independent (the corresponding sequence $n \to 0^{p(n)}$, $p \in \mathscr{F}_P$, being uniformly distributed mod 1).

3.2. Proof of Theorem 3.

3.2.1. We note that θ is necessarily transcendental, which we assume from now on. Let p_1, \ldots, p_s be different elements of \mathcal{F}_{P} . We assume that

$$0 < p_1(n) < \ldots < p_s(n)$$
 for $n \ge N_0$.

Let a_1, \ldots, a_s be rational integers with $a_s > 0$. We set

$$u_n(\theta) := \sum_{k=1}^s a_k \, \theta^{p_k(n)}$$

so that

$$u'_{m}(\theta) - u'_{n}(\theta) = \sum_{k=1}^{s} a_{k}(p_{k}(m)\theta^{p_{k}(m)-1} - p_{k}(n)\theta^{p_{k}(n)-1})$$

and

$$u_m''(\theta) - u_n''(\theta) = \sum_{k=1}^{s} a_k (p_k(m)(p_k(m)-1)\theta^{p_k(m)-2} - p_k(n)(p_k(n)-1)\theta^{p_k(n)-2}).$$

Let t be the element of $\{1, ..., s\}$ defined by $t := \inf\{j; \forall k \ge j, \deg(p_s - p_k) = 0\}$, and let $\delta_k = p_s - p_k$ for $k \ge t$ ($\delta_k \in N^*$). We denote by $\alpha_1, ..., \alpha_l$ the possible roots ≥ 1 of the polynomial

$$Q(\theta) = \sum_{t \leq k \leq s} a_k \, \theta^{\delta_t - \delta_k}.$$

We may assume that $a_t \neq 0$. Fix $\mu > 0$ and choose $\gamma > 0$ such that $|Q(\theta)| \geqslant \mu$ provided that

(3)
$$0 \ge 1 + \gamma$$
 and $|0 - \alpha_j| \ge \gamma$ for all $j \in \{1, ..., l\}$.

Let E_n be the set of all numbers θ satisfying (3). We will verify that:

(4) $\exists \lambda > 0, \exists N_1 \in N, \forall (m, n) \in N^2$:

$$(m > n \ge N_1) \Rightarrow (|u'_m(\theta) - u'_n(\theta)| \ge \lambda, \ \forall \theta \in E_u),$$

and

(5) $\exists N_2 \in \mathbb{N}, \ \forall (m, n) \in \mathbb{N}^2$: $(m > n \ge N_2) \Rightarrow ((u_m''(\theta) - u_n''(\theta)))$ has a constant sign on each interval included in E_n).

3.2.2. Verification of (4). One has:

$$\begin{split} &\sum_{t \leq k \leq s} a_k \big(p_k(m) \theta^{p_k(m)-1} - p_k(n) \theta^{p_k(n)-1} \big) \\ &= Q(\theta) \theta^{-1-\delta_t} \big(p_s(m) \theta^{p_s(m)} - p_s(n) \theta^{p_s(n)} \big) - \big(\sum_{t \leq k \leq s} a_k \, \delta_k \, \theta^{-1-\delta_k} \big) \big(\theta^{p_s(m)} - \theta^{p_s(n)} \big), \end{split}$$

thus

$$u'_m(\theta) - u'_n(\theta) = \Sigma_1 + \Sigma_2$$

With

$$\Sigma_1 := Q(0)\theta^{-\delta_t}(p_s(m)\theta^{p_s(m)-1} - p_s(n)\theta^{p_s(n)-1})$$

and

$$\begin{split} \boldsymbol{\Sigma}_2 :&= - (\sum_{t \leq k \leq s} a_k \, \delta_k \, \theta^{-1 - \delta_k}) (\theta^{p_s(m)} - \theta^{p_s(n)}) \\ &+ \sum_{k \leq s} a_k \big(p_k(m) \theta^{p_k(m) - 1} - p_k(n) \theta^{p_k(n) - 1} \big). \end{split}$$

Then

(6)
$$|\Sigma_2| \le \theta^{p_s(m)-1} \sum_{t \le k \le s} |a_k \delta_k| + \sum_{k \le t} |a_k| p_k(m) \theta^{p_k(m)-1} \le K_2 \theta^{p_s(m)-1}$$

for sufficiently large m. On the other hand:

$$p_{s}(m)\theta^{p_{s}(m)-1} - p_{s}(n)\theta^{p_{s}(n)-1} \ge p_{s}(m)(\theta^{p_{s}(m)-1} - \theta^{p_{s}(m-1)-1})$$
$$\ge p_{s}(m)\theta^{p_{s}(m)-1}(1 - 1/\theta)$$

and since $|Q(\theta)| \ge \mu$ and $\lim_{\theta \to \infty} Q(\theta) \theta^{-\delta_t} = a_t \ne 0$,

$$|\Sigma_{\cdot}| \ge K \cdot p_{s}(m) \theta^{p_{s}(m)-1}$$

Where K_1 depends on γ . From (6) and (7) we derive (4).

3.2.3. Verification of (5) and conclusion. The map $u_m'' - u_n''$ is continuous, thus we only have to give a lower bound for $|u_m''(\theta) - u_n''(\theta)|$. The calculation is as above.

From Koksma's theorem (Theorem 4.3, p. 34, [9]), the sequence $n \to e(u_n(\theta))$ has a zero mean-value for almost every $\theta \in E_\mu$. Since $]1, +\infty[=\bigcup_{n\geq 1} E_{1/n}$, this is true for almost every $\theta > 1$. This finishes the proof.

3.3. Remarks.

1. The family \mathcal{F}_P could be replaced by a sparse family \mathcal{F} of one-to-one sequences such that:

$$(\forall \sigma \in \mathcal{F}, \ \forall \tau \in \mathcal{F}) \ (\sigma \neq \tau \Rightarrow \sigma - \tau \text{ is monotonic}).$$

In the proof, we take $\sigma_1, \ldots, \sigma_s$ in \mathscr{F} such that $0 < \sigma_1(n) < \ldots < \sigma_s(n)$ for $n \ge N$ and $t := \inf\{j; \forall k \ge j, \sigma_j - \sigma_k \text{ is bounded}\}.$

2. Theorem 3 can be generalized to sequences $n \to \sum_{r=1}^{R} x_r (\theta_r)^n = V(n)$ where x_1, \ldots, x_R are fixed real numbers different from 0. For almost every $\{\theta_1, \ldots, \theta_R\} \in]1, +\infty[^R]$, the corresponding sequence V is \mathscr{F}_p -independent and for all $p \in \mathscr{F}_p$, the subsequences $V \circ p$ are uniformly distributed mod 1.

4. Construction of independent sequences

4.1. Construction. Let E be an infinite part of N. Let $\theta: N \to E$ be the increasing one-to-one mapping of N onto E and let $\sigma_E: N \to N$ be given by

(*)
$$\sigma_E(n) := \sum_{k=0}^{\infty} \varepsilon_{\theta(k)}(n) 2^k,$$

whenever $n = \sum_{r=0}^{\infty} \varepsilon_r(n) 2^r$ is the binary expansion of n. According to the definition of Gel'fond [5] the sequence σ_E is 2-additive.

Now let $\{E_j; j \in N^*\}$ be a partition of N into infinite subsets E_j and let θ_j : $N \to E_j$ be the increasing bijection of N onto E_j . We write σ_j instead of σ_{E_j} .

PROPOSITION 2. The set $\mathfrak{S} := \{\sigma_j; j \in \mathbb{N}^*\}$ is a sparse family of M-regular sequences.

Proof. Let σ be the sequence (*) derived from the increasing one-to-one mapping θ of N onto an infinite part E of N and set $\tau(x) := \operatorname{card}([0, x] \cap E)$. By definition the equality $\sigma(n) = \sigma(m)$ holds if and only if one has $\varepsilon_{\theta(k)}(n) = \varepsilon_{\theta(k)}(m)$ for all integers k. Hence, for $N \ge 1$ and $x = \operatorname{Log} N/\operatorname{Log} 2$ one gets $\Delta(N) \le 2 \cdot 2^{\tau(x)} \cdot 2^{x-\tau(x)} \le 2N$ so that the series $\sum_{N=1}^{\infty} \Delta(N) N^{-3}$ converges and σ is M-regular. Notice that σ is not D-regular. Now let σ' and θ' be given as above but $E \cap E' = \emptyset$. The equality $\sigma(n) = \sigma'(n)$ means that $\varepsilon_{\theta(k)}(n) = \varepsilon_{\theta'(k)}(n)$

for all integers k. Consider $\tau'(x) := \operatorname{card}([0, x] \cap E')$ and choose $x = \frac{\operatorname{Log} N}{\operatorname{Log} 2}$.

Let z be an integer such that

(8)
$$z = \sigma(n) = \sigma'(n)$$

for an integer n < N. Then at least $\tau(x) + \tau'(x)$ digits of n are fixed. Hence, the number of solutions n of (8) is at most $2^{x-\tau(x)-\tau'(x)}$. Assume that $\tau(x) \le \tau'(x)$, then the number of different z is card $\{\sigma(\{0, \ldots, N-1\})\} \le 2^{\tau(x)}$. Therefore, the number of n such that $\sigma(n) = \sigma'(n)$ and n < N, is at most $2^{x-\tau'(x)}$. Due to this we get

$$\operatorname{card}\{n < N; \ \sigma(n) = \sigma'(n)\} \leq N2^{-\tau(x)}$$

With $\lim \tau(x) = +\infty$ and the proof is complete.

We now quote two simple lemmata:

Lemma 1. Let $\Omega_i := \{0, 1, ..., 2^t - 1\}$ be endowed with the equiprobability λ_t and let X_j be the restriction of σ_j to Ω_t . Then the random variables X_j , j = 1, 2, ... are independent and equidistributed.

Proof. Let t_j be the number of elements in $\Omega_t \cap E_j$ so that $X_j(\Omega_t) = \Omega_{t_j}$. For any m_i in Ω_{t_i} , an easy computation gives

$$\lambda_t(\{X_j=m_j\})=2^{-t_j}.$$

But the events $\{X_j = m_j\}$ are independent because of the disjointness of the sets E_j .

The proof of the next lemma is straightforward and we leave the details to the reader

LEMMA 2. Let $n \to x_n$ be a complex valued sequence and let $n \to a_n$ be an increasing sequence of positive integers such that $a_n \in O(n)$. Then

$$\sum_{n \le N} x_n \in o(N) \implies \sum_{n \le N} x_{n+a_N} \in o(N).$$

4.2. Universal properties. We first give a universal property of a topological nature satisfied by all sequences σ_E whenever E is an infinite part of N. After that, we prove metrical properties of the above family \mathfrak{S} .

Theorem 4. Let μ be a Borel probability measure on X and let σ (= σ_E) be any sequence defined by (*), the set E being an infinite part of N. Then for all μ -well-distributed sequences u: $N \to X$ the sequence $u \circ \sigma$ is also μ -well-distributed.

Proof. Let $g: X \to C$ be a continuous map such that $\int g d\mu = 0$. We have to prove that

(9)
$$\lim_{N\to\infty} \left(\sup_{s\in N} \left| \frac{1}{N} \sum_{n\leq N} g(u \circ \sigma(n+s)) \right| \right) = 0.$$

By assumption, there exists a sequence $(\varepsilon_r)_{r\geq 0}$ of non-negative real numbers ε_r such that

(10)
$$\forall s \in \mathbb{N}: \left| \sum_{n < 2^r} g(u(n+s)) \right| \leqslant \varepsilon_r 2^r \quad \text{and} \quad \lim_{r \to \infty} \varepsilon_r = 0.$$

Notice that (10) is equivalent to the μ -well-distribution of u. We may assume $|g(\cdot)| \le 1$. Let $\varepsilon > 0$ be given and choose r such that $\varepsilon_r \le \varepsilon/2$ for $r' := \operatorname{card}(E \cap [0, r[)$. Let N, t be positive integers and define integers a and b by the inequalities

$$(a-1)2^r \le t < a2^r$$
 and $b2^r \le N+t < (b+1)2^r$.

Then

$$\begin{split} \Big| \sum_{t \leq n < N + t} g(u \circ \sigma(n)) \Big| &\leq 2^{r+1} + \sum_{a \leq n < b} \Big| \sum_{0 \leq m < 2^r} g(u(\sigma(n2^r) + \sigma(m))) \Big| \\ &\leq 2^{r+1} + \sum_{a \leq n < b} \Big(2^{r-r'} \Big| \sum_{0 \leq m' < 2^{r'}} g(u(\sigma(n2^r) + \sigma(m'))) \Big| \Big). \end{split}$$

Hence

$$\left|\sum_{1 \leq n < N+1} g(u \circ \sigma(n))\right| \leq 2^{r+1} + (b-a)2^r \varepsilon_{r'} \leq \left(\frac{2}{b-a} + \varepsilon_{r'}\right) N.$$

Now for $N \ge 2^r(2+4/\varepsilon)$ we have $(b-a) \ge 4/\varepsilon$ so that we obtain

$$\Big|\sum_{1\leq n\leq N+1}g(u\circ\sigma(n))\Big|\leqslant \varepsilon N. \quad \blacksquare$$

Theorem 5. Let $(X_j)_{j>0}$ be a sequence of compact metrizable spaces. For each j>0, let μ_j be a Borel probability measure on X_j and let $u_j\colon N\to X_j$ be a μ_j -distributed sequence. Then the family $\mathscr{U}_{\mathfrak{T}}:=\{u_j\circ\sigma_j;\ j\in N^*\}$ is statistically independent, each of the sequence $u_i\circ\sigma_j$ being μ_i -distributed.

Proof. From the definition, we have to show that, given an integer $d \ge 1$ and $f_i \in \mathcal{C}(X_i)$ for all $j \le d$, if we put

$$\omega := \prod_{j=1}^d \int_{X_j} f_j d\mu_j$$
 and $G(n) := \prod_{j=1}^d f_j (u_j \circ \sigma_j(n)),$

then

$$\omega = \lim_{N \to \infty} (1/N) \sum_{n < N} G(n).$$

If $N = \sum_{r=0}^{\nu} a_r 2^r$ is the dyadic expansion of N, with $a_{\nu} \neq 0$, we put $N_c = \sum_{c \leq r \leq \nu} a_r 2^r$ for $c \leq \nu$. Moreover, let t_j be the counting function of $\theta_j(N)$, i.e.:

$$t_j(m) = \operatorname{card} \{r < m; \ r \in \theta_j(N)\}.$$

Fixing $\varrho \in N^*$, $\varrho < v$, we have

(11)
$$\sum_{n < N} G(n) = \sum_{n < 2^{\nu}} G(n) + \sum_{c = \nu - \varrho}^{\nu - 1} \left(\sum_{N_{c+1} \le n < N_{c}} G(n) \right) + O(N \cdot 2^{-\varrho})$$

because G is bounded. On the other hand, due to Lemma 1, we get

$$\sum_{n<2^{\nu}} G(n) = 2^{\binom{\nu-\sum\limits_{j=1}^{d} t_{j}(\nu)}{j}} \prod_{j=1}^{d} \left(\sum_{m_{j}<2^{\nu} j(\nu)} f_{j}(u_{j}(m_{j})) \right).$$

Choose $\varepsilon > 0$; the hypothesis concerning u_i leads to

(12)
$$\left|\sum_{n \leq 2^{\nu}} G(n) - \omega 2^{\nu}\right| \leq \varepsilon 2^{\nu}$$

 $^{lor} v$ (i.e. for N) sufficiently large.

In the same way, if $a_c \neq 0$, and $c \geqslant v - \varrho$:

$$\sum_{N_{c+1} \leq n < N_c} G(n) = \sum_{n < 2^c} G(N_{c+1} + n) = \sum_{n < 2^c} \prod_{j=1}^d f_j (u_j (\sigma_j(N_{c+1}) + \sigma_j(n)))$$

because $\sigma_i(N_{c+1}+n) = \sigma_i(N_{c+1}) + \sigma_i(n)$ for all $n < 2^c$.

As above, we get

(13)
$$\sum_{\substack{N_{c+1} \leq n < N_c \\ N_{c+1} \leq n \leq N_c}} G(n) = 2^{\frac{c - \sum\limits_{j=1}^{a} t_j(c)}{j}} \prod_{j=1}^{d} \Big(\sum_{\substack{m_j < 2^t j^{(c)} \\ m_j \leq 2^t j^{(c)}}} f_j \Big(u_j \big(m_j + \sigma_j (N_{c+1}) \big) \Big) \Big).$$

But one has

$$\frac{\sigma_j(N_{c+1})}{2^{t_j(c)}} \leqslant \frac{\sigma_j(N)}{2^{t_j(v-\varrho)}} \leqslant \frac{\sigma_j(1+2+\ldots+2^v)}{2^{t_j(v-\varrho)}} \leqslant \frac{1+2+\ldots+2^{t_j(v+1)}}{2^{t_j(v-\varrho)}} < 2^{\varrho+2}$$

so that

(14)
$$\sigma_i(N_{c+1}) \leq 2^{\varrho+2} 2^{t_j(c)}$$
.

Now, ϱ being fixed, we then derive from (13), (14) and Lemma 2 that:

$$\left|\sum_{N=1}^{\infty}G(n)-\omega 2^{c}\right|\leqslant \varepsilon 2^{c}$$

 f_{OI} c (i.e. for N) large enough. Joining (11) to (12) and (15), we obtain

$$\left|\sum_{n\leq N}G(n)-\omega N\right|\leqslant \varepsilon N+O(N\cdot 2^{-\varrho})$$

for sufficiently large N. Thus

$$\lim_{N \to \infty} \sup |(1/N) \sum_{n \le N} G(n) - \omega| \le C \cdot 2^{-\varrho}$$

where C is an absolute constant and ϱ is arbitrary. Therefore ω is the mean value of G.

Theorem 6. Let \mathscr{U} be a family of sequences $u: N \to X_u$ where X_u denotes a compact metric space. Assume that each sequence u is μ_u -distributed with respect to a Borel measure μ_u on X_u . Let $\sigma (= \sigma_E)$ be any sequence defined by (*) (E being infinite). If \mathscr{U} is statistically independent then the family $\mathscr{U} \circ \sigma := \{u \circ \sigma; u \in \mathscr{U}\}$ is also statistically independent.

Proof. Without loss of generality, we may assume that \mathscr{U} is finite. For each u in \mathscr{U} , let $g_u: X_u \to C$ be continuous and set

$$\tilde{\omega} := \prod_{u \in \mathcal{U} X_u} g_u d\mu_u$$
 and $G(n) := \prod_{u \in \mathcal{U}} g_u (u \circ \sigma(n)).$

By Theorem 5 the sequence $u \circ \sigma$ is also μ_u -distributed in X_u , hence we have to show that

$$\tilde{\omega} = \lim_{N \to \infty} (1/N) \sum_{n < N} G(n).$$

Let $N = \sum_{r=0}^{\nu} a_r 2^r$ be the dyadic expansion of N. Use N_c and ϱ as in the proof of Theorem 5 and let $t(\cdot)$ be the counting map of E. To estimate $\sum_{n < N} G(n)$ we start from equality (11). By Lemma 1, we obtain

$$\sum_{n\leq 2^{\nu}}G(n)=2^{\nu-\iota(\nu)}\sum_{m\leq 2^{\iota(\nu)}}\prod_{u\in \mathscr{U}}g_{u}(u(m)).$$

Let $\varepsilon > 0$; by assumption on \mathscr{U} there is v_0 such that

$$\left|2^{-t(v)}\sum_{m<2^{\epsilon(v)}}\prod_{u\in W}g_u(u(m))-\prod_{u\in W}\left(2^{-t(v)}\sum_{m<2^{\epsilon(v)}}g_u(u(m))\right)\right|\leqslant \varepsilon/2$$

whenever $v \ge v_0$. But we may choose $v_1 \ge v_0$ such that for all $M \ge 2^{l(v_1)}$ one has

$$\left| \prod_{u \in \mathcal{U}} \left(\frac{1}{M} \sum_{m < M} g_u(u(m)) \right) - \tilde{\omega} \right| \leq \varepsilon/2.$$

Therefore,

(16)
$$\left| \sum_{n < 2^{\nu}} G(n) - \tilde{\omega} 2^{\nu} \right| \leqslant \varepsilon 2^{\nu}$$

whenever $v \ge v_1$.

Now we consider the sum $\Sigma_c := \sum_{N_{c+1} \le n < N_c} G(n)$, with $a_c \ne 0$. As above we get

$$\Sigma_{c} = 2^{c-t(c)} \sum_{m < 2^{t(c)}} \prod_{u \in \mathcal{U}} g_{u} \left(u \left(\sigma(N_{c+1}) + m \right) \right).$$

On the other hand, we have by assumption $\lim_{M\to\infty} (1/M) \sum_{m< M} \prod_{u\in \mathcal{U}} g_u(u(m)) = \tilde{\omega}$ and since inequality (14) holds, it follows from Lemma 2 that we also have $\lim_{c\to\infty} 2^{-c} \Sigma_c = \tilde{\omega}$. Therefore, there exists v_2 ($\geqslant v_1 - \varrho$) such that $c \geqslant v_2$ implies

$$|\Sigma_c - 2^c \tilde{\omega}| \leq \varepsilon 2^c.$$

Using (11), (16) and (17) we derive a constant (which only depends on the functions g_{ν} , $u \in \mathcal{U}$) such that

$$\left|\sum_{n\leq N}G(n)-\tilde{\omega}N\right|\leqslant \varepsilon N+CN\cdot 2^{-\varrho}$$

 f_{0r} sufficiently large N. Since ϱ is arbitrary, the desired result follows.

4.3. Spectral properties. Recall that $s(\cdot)$ denotes the sum of digits to base two. Let E be any nonempty subset of N, let θ be the increasing counting map of E and let $\chi_E: N \to \{+1, -1\}$ be the 2-multiplicative sequence defined by $\chi_{E}(n) := (-1)^{s(\sigma_E(n))}$ where σ_E is still given by (*). Now, we endow N with the group law \oplus corresponding to the addition to base two without carry. Let $\varepsilon_k(n)$ be the kth digit in the dyadic expansion of n. By definition, for all integers n and m one has

$$\varepsilon_k(n \oplus m) \equiv \varepsilon_k(n) + \varepsilon_k(m) \mod 2, \quad k = 0, 1, 2, \dots$$

Now we remark that χ_E is a character on (N, \oplus) . Conversely, for any character χ on (N, \oplus) (also called Walsh character) one has $\chi = \chi_E$ where $E := \{t \in N; \chi(2^t) = -1\}$. Clearly, χ_E is periodical whenever E is finite. Spectral properties of χ_E was studied by M. Mendès France [11] and dynamical point of view was first investigated by S. Kakutani [6] in order to give examples of minimal uniquely ergodic discrete symbolic systems. More results and generalizations are due to M. Keane [7], [8]. From now on, we recognize any Walsh character χ as a generalized Morse sequence (to base two) in the terminology of Keane. To see this, we assume familiarity with [7] but change the 0's to +1's and the 1's to -1's. Thus we have

$$(\chi(n))_{n\geq 0} = b^{(0)} \times b^{(1)} \times b^{(2)} \times \dots$$

Where $b^{(k)} := (+1, -1)$ for $k \in E$ otherwise $b^{(k)} := (+1, +1)$.

Recall that the Borel measure λ_E on the torus T = R/Z is said to be the spectral measure of χ_E if the Fourier transform $\hat{\lambda}_E$ is the correlation function of χ_E , that is to say:

(18)
$$\lambda_{E}(k) := \int_{\mathbf{T}} e^{2inkt} \lambda_{E}(dt) = \lim_{N \to \infty} \frac{1}{N} \sum_{\substack{n < N \\ n+k > 0}} \chi_{E}(n+k) \overline{\chi_{E}(n)}, \quad k \in \mathbf{Z}.$$

From basic results [3], the spectral measure λ_E exists and is given by the weak-limit

$$\lambda_E(dt) = *-\lim_{N\to\infty} \frac{1}{N} \Big| \sum_{n< N} \chi_E(n) e^{-2i\pi nt} \Big|^2 h(dt).$$

The 2-multiplicativity leads to the product formula

(19)
$$\lambda_E(dt) = *-\lim_{K \to \infty} \left(\prod_{k < K} \left(1 + \chi_E(2^k) \cos 2^{k+1} \pi t \right) \right) h(dt).$$

It is known that λ_E is singular with respect to the Haar measure. Moreover λ_E is continuous if E is infinite. If E is finite then χ_E is periodic with period 2^T where T = 1 + Max E and λ_E corresponds to the Haar measure of the finite sub-group of T generated by 2^{-T} . Now, we shall say that E is thick if there exists K > 0 such that

$$\forall m \geq 0$$
, $E \cap [m, m+K[\neq \emptyset.$

THEOREM 7. Let E and E' be thick subsets of N. Then the spectral measures λ_E and $\lambda_{E'}$ are equivalent or mutually singular. Moreover the following statements are equivalent:

- (i) λ_E and $\lambda_{E'}$ are equivalent $(\lambda_E \sim \lambda_{E'})$.
- (ii) The symmetric difference $E\Delta E'$ is finite.
- (iii) The series $\sum_{k=1}^{\infty} |\hat{\lambda}_{k}(2^{k}) \hat{\lambda}_{k'}(2^{k})|^{2}$ converges.
- (iv) $\hat{\lambda}_{F}(2^{k}) = \hat{\lambda}_{F}(2^{k})$ for sufficiently large k.

Proof. It is known from [8], Lemma, that either λ_E and $\lambda_{E'}$ are mutually singular or $\lambda_E \sim \lambda_{E'}$. Now we compute $\hat{\lambda}(2^k)$ from (18). The product $\chi_E(n)\chi_E(n+2^k)$ is constant, equal to $\chi_E(2^k)\ldots\chi_E(2^{k+s})$ on the arithmetical progressions $A_k(0):=\{n\in N; \varepsilon_k(n)=0\}$ for s=0 and

$$A_k(s) := \{ n \in \mathbb{N}; \ \varepsilon_k(n) = 1, \dots, \ \varepsilon_{k+s-1}(n) = 1, \ \varepsilon_{k+s}(n) = 0 \}$$

for all $s \ge 1$. Hence,

$$\hat{\lambda}_E(2^k) = \frac{1}{2} \sum_{s=0}^{\infty} \frac{\chi_E(2^k) \dots \chi_E(2^{k+s})}{2^s}.$$

Put $\varepsilon_E^{(k)}(s) := \frac{1}{2} (1 + \chi_E(2^k) \dots \chi_E(2^{k+s}))$ such that $\varepsilon_E^{(k)}(s) \in \{0, 1\}$ and

(20)
$$1 + \hat{\lambda}_E(2^k) = \sum_{s=0}^{\infty} \varepsilon_E^{(k)}(s) 2^{-s}.$$

Notice that $\varepsilon_E^{(k)}(s)$ takes the values 0 and 1 infinitely often.

Obviously (iv) implies (iii). Assume property (iii) and use (20). Since E and E' are thick, then for each integer $S \ge 0$ there exists $K \ge 0$ such that the equalities $\varepsilon_E^{(k)}(s) = \varepsilon_{E'}^{(k)}(s)$ hold for all $k \ge K$ and all s = 0, 1, ..., S. In particular, this implies $\chi_E(2^k) = \chi_{E'}(2^k)$ (and consequently $\hat{\lambda}_E(2^k) = \hat{\lambda}_{E'}(2^k)$) for $k \ge K$. Therefore (iii) implies (ii) and (iv).

Assume (ii) (recall that $E \cap E'$ is infinite). Since λ_E and $\lambda_{E'}$ are continuous, formula (19) gives easily

$$\lambda_{E'}(dt) = \prod_{m \in E \setminus E'} (\tan(2^m \pi t))^2 \prod_{n \in E' \setminus E} (\cot(2^n \pi t))^2 \cdot \lambda_E(dt)$$

so that property (i) holds. It remains to prove that (i) implies (iii). We may derive this implication from [14], Lemma 4, using the sequence $n \to X_n$ of complex random variables given on T by $X_n(t) := e^{i\pi 2^{n+1}t}$ (such that the expectation of X_n with respect to λ is $\hat{\lambda}_E(2^n)$).

4.4. Remark. The above construction to base 2 is typical but it also holds to base g > 2 and Theorems 4, 5, 6 remain valid in this case.

References

- [1] J. Coquet, Type de répartition complète des suites, Ann. Fac. Sc. Toulouse 2 (1980), 137-155.
- Sur certaines suites uniformément équiréparties modulo 1, Acta Arith. 36 (1980), 157-162.
- [3] J. Coquet, T. Kamae and M. Mendès France, Sur la mesure spectrale de certaines suites arithmétiques, Bull. Soc. Math. France 105 (1977), 369-384.
- J. Coquet and P. Liardet, Répartitions uniformes des suites et indépendance statistique, Compos. Math. 51 (1984), 215-236.
- A. O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265.
- [6] S. Kakutani, Ergodic theory of shift transformations, Proc. V Berk. Sym. II (1967), 405-414.
- M. Keane, Generalized Morse sequences, Z. Wahrsch. Verw. Gebiete . 10 (1968), 335-353.
- Strong mixing g-measures, Invent. Math. 16 (1972), 309-324.
- [9] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley-Interscience, 1974.
- [10] P. Liardet, Propriétés harmoniques de la numération suivant J. Coquet, Pub. math. Orsay 88-02. Journées SMF-CNRS, Colloque "Jean Coquet", CIRM, 23-27 sept. 1985, p. 1-35.
- M. Mendes France, Nombres normaux, applications aux fonctions pseudo-aléatoires,
 J. Anal. Math. Jérusalem 20 (1967), 1-56.
- H. Niederreiter and R. F. Tichy, Solution of a problem of Knuth on complete uniform distribution of sequences, Mathematika 32 (1985), 26-32.
- [13] Metric theorems on uniform distribution and approximation theory, Soc. Math. France,
 Astérisque 147-148 (1987), 319-323.
- M. Quessélec, Mesures spectrales associées à certaines suites arithmétiques, Bull. Soc.
 Math. France 107 (1979), 385-421.
- G. Rauzy, Caractérisation des ensembles normaux, ibid. 98 (1970), 401-414.
- [16] Propriétés statistiques de suites arithmétiques, P.U.F. Collection Sup. le Mathématicien 15 (1976).

UNIVERSITÉ DE PROVENCE

UNITÉ ASSOCIÉE CNRS N°225 3. Place Victor Hugo

F-13331 Marseille Cedex 3, France