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Some metric properties of subsequences
by

PiERRE LIARDET (Marseille)

1. Introduction

1.1. Notations and definitions. Metrical properties about independence of
Subsequences of given sequences in a compact metrizable space X are
'nvestigated. The set of X-valued sequences is identified with the compact
Product space X™. If i is a Borel probability measure on X, we denote by y,,
the infinite product measure induced by u on X™. Let u be an X-valued
Sequence and let ¢t be a non-negative integer. Then 4 denotes the X'-valued
Sequence given by

u(n): = (u(n), un+1), ..., u(n+r—1)).

Let # be a finite family of sequences u: N— X, where all X, ue%, are
(_:Ompact metrizable spaces. We recall [16] that % is said to be statistically
Mdependent if for all continuous functions f,: X,—C, ue%, one has

tim| (3 % (I Ae))-T1( & 4o | = o.
N=w n<N ue¥ = n<N

The family 4 is said to be completely statistically independent if 4
'= {u, ued} is statistically independent for all positive integers r. Now
2 family of sequences in compact metrizable spaces will be said independent
(resp, completely independent) if the corresponding property holds for all finite
Sub-families.

 Let & be a family of N-valued sequences o: N—N such that
}‘lm o(n) = + oo.

it

DEerFINITION 1.(a) A sequence u: N— X is called % -independent if the
4mily
&u, F):= {uog; seF}
'S statistically independent.

(b) The sequence u is said to be % -independent at rank t if the family
'f(“OO')m: oce F} is statistically independent.
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(c) If u is # -independent at rank ¢ for all positive integers ¢ then u is said to
be completely F -independent.

From now on, u denotes a given Borel probability measure on X.
Classically the X-valued sequence u is said to be p-uniformly distributed if for all
continuous functions f: X — C, one has

.1
(1) Lim — ¥ /(4,) = {£() u(d),
N=o N, Ty X
Recall that a family % of X-valued sequences u is equi-p-uniformly distributed
[9] if the limit in (1) holds uniformly in ue#.

DErINITION 2. The sequence u is called (#, p)-independently distributed if
the sequences uoo, ceF, are p-(uniformly) distributed and statistically
independent.

Now we introduce the notion of sparse family [4] and regular sequence.

DEFINITION 3. A sequence a: N— N is called regular if there is a subset
A of N with asymptotical density 1, such that o|, is one-to-one.

DermnviTION 4. A family .# of sequences of positive integers is called sparseé
if, for all (o, 1)e F x &, one has

o6 #1t = Lim(1/N)card{neN;n < N and a(n) =1(n)} =0.

N—w

1.2. Examples. The following standard families are sparse and regular
F . ={1,; ke N}, with 7,(n):=n+k,

F o= {m; leN*}, with my(n):= In,

F .= {10m; ke N and le N*},

F .= {n-p(n); p non-constant real polynomial with p(N) = N}.

Notice that by definition the sequence u: N — X is (#,, u)-independently
distributed if and only if u is completely y-uniformly distributed (cf. [9], p. 204)-
The corresponding notions where %, is replaced by &, or &, were studied by
J. Coquet [1]. Let # and #’ be different families among the above ones. The
existence of sequences u which are (Z, p)-independently distributed and such
that the family & (u, #') is equi-u-uniformly distributed is investigated in [4]. It
is well known that p_-almost all sequences u are (%, y)-independently
distributed and if i is not a Dirac measure, for any such sequence u, the family
& (u, #,) is never equi-p-uniformly distributed. The same assertion holds with
... The set

UX, py F).= {ue X", Eu, F) is equi-p-uniformly distributed}

Some metric properties of subsequences 121
for # = # . is not empty and one has (see [9])
2) u (U(X, u, F)) =0.

Due to [4] (Theorem 4), the same properties hold if & = %,_. In the case
# = #. . and more generally for any family # such that # oo = # for all
e, ., the set %(X, p, F) is empty ([4], Theorem 6).

We quote a last example. Let o,: N—=N, ke N, be strictly increasing
Sequences with disjoint images, then the family &: = {o,: ke N} is a sparse
fiirnily of regular sequences. Remark that we also have (2) for & = &.

~L3. In Part 2 one first proves that u,-almost all sequences are (¥, u)
‘Independently distributed whenever & is a countable sparse family of regular
Sequences and we discuss some consequences. Despite of (2) there are sparse
families & of regular sequences such that there exist sequences u in (X, p, %)
Which are also (¥, u)-independently distributed. In Part 3 we study the
('gzp, A)-independent distribution of n— 0" mod 1 where 1 is the Lebesgue
Measure on the one dimensional torus T identified with [0, 1[.

The last part is devoted to the construction of a sparse family & which
Wrns any countable family of sequences into a family of independent
S¢quences. Moreover, for each ¢ in © and each u-well-distributed sequence u,
the sequence uoo is u-well-distributed too. In terms of our notation, that
Means we have:

Yoe&, Yue¥(X, u, #): uoce¥(X, u, %)

The set S derives from the dyadic expansion of integers. If s(-) denotes the sum

of digits to base two then all sequences n— s(o(n)) are 2-additive and are also

Continuous generalized Morse sequences introduced by M. Keane [7]. More-

Over, using previous results ([8], [14]), we prove that the spectral measures of
ese sequences are mutually singular.

2. % -Independent sequences

2L THEOREM 1. Let & be a countable sparse family of reqular sequences of
integers and let p be a Borel probability measure on X, then u-almost all
Sequences u are F-independent, each uoo, o€ %, being p-distributed.

Proof. Let fi, ..., f be in €(X) satisfying jj}d,u =0forallil<i<h

X

and (flf;), = 0;; for all (i, j)e {1, ..., h}* where d;; = 0 or 1 according as i # j

Or i =j. Let (o)) ey be an indexing of # by N* and let A be a subset of
satisfying:

(Vi e{ly ..., h}?*) (i #] = VneA, o;(n) # a)(n)),
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and such that each g, , is one-to-one. The set A can be chosen of asymptotical
density one, in other words:

A(N):=card(An[0, N))~N, N +owo.
We set
1 X 2
= 3 m_],m;,ﬁ,qfl (u(al(nj}) ...f,,(u(cr,,(n})) ., (du)

Awnz}; I Ao, ) el ) -

S (“(%(m) )ﬁ. (H (r}',.,(nj}) u, (du)-

If n belongs to A, all the sets E,:= {5,(n), ..., 0,(n)} have h elements
From Fubini’s theorem and the choice of f;, the corresponding term in the sum
is zero whenever E, # E,.

If n and m belong to A, E,, = E, implies the existence of a permutation 7 of
{1, ..., h} such that for all k < h one has, say, o,(m)= a,4(n) = I,. Then

,,L"" (u(oy (m) fi(ule, () ... fi(u(onm) filu(o,(n) 1, (du)

= [/ () fuenr(u(l,) ..

X

f;(lf“,,}) fr[hl(u“n)) M, (du) = I_[ {J‘klfn(k))'
k=1

a product which vanishes if m # id and equals | if 7 =id. The last cas¢
corresponds to m = n if m and n belong to 4. Hence we obtain Sy = 1/4(N)-

x

=N, thus ) Sy.< +o and from the
N=1

Fatou-Karo lemma, for u_-almost every u, one has

For N large enough, A(N)

A(Nz}l Z fl( (O' (n)) A(u(ah(")))l i

r.rEA

Moreover,

NZ Z fl(u(o (ﬂ”)

n<N2

WATICAQ))
<AL 534w £ A o,) < Ao

nA.

Finally, consider

O(N): = % 2 Silu(o ) ... fil(u(oy(m)),
n<N
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then le 6(N?) =0, pu,-ae. and thus Lim O(N) =

N=x
l"-“"nal'kmg that an at most countable family of f, satisfying the previous
“onditions exists which spans, with the constant functions, a C-vector space
dense in ¢(X). m

0, u -a.e. We conclude by

2.2. THEOREM 2. Let 6,: N— N, ke N, be strictly increasing sequences with
disjoin images. Let & be the family {o,: ke N} and let u be a Borel probability
Measure on X. Then there exists a sequence u: N — X such that the family
€u, &) is both statisticall y independent and equi-p-distributed.

Proof There is no loss of generality if we assume that the family
= {0,(N); ke N} forms a partition of N. Let (k>0 be an increasing
S¢quence of integers such that if we define
M := Z qmm™,
m<k
thep
Lim k*/M, = 0.
k=
We denote by I, the interval [M,, M, ,[ and for any integer n i‘n I, let 7i be the
"mainder in the euclidian division of n—M, by k* We write

Y e (A)k’,

i<k

0 < e;(n) <k,

the expansion of /i to base k. Now we consider any p-distributed sequence
¥ and we define the family of X-valued sequences v, jeN, by

v(n): = {w(ef(m)
bRt w(ex -1 ()

FiIlally, we take the sequence u: N— X defined by

if nel, and j <k;
if nel, and j =k

u(m): = vy(n) <= m = o;(n).

We claim that u has the required properties. Let fi X —C be a continuous
Unction and assume that [f| is bounded by 1. For simplicity, we write
(l“ instead of [fdu and for all integers k >0, we write w, instead of

1 and |w,| < 1. By construction we have

k = (w(m)). Note that |w| <
m<y

5 f(v,(n)) = ck* o,

MiSn<Mp +ckk
for all integers j > 0 and c€{0, ..., g,—1}. Now let N, r and a be positive
'Megers satisfying the following inequalities:

M, +ar <N<M,+(@+)r and a<g,
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Then we have

|2 f(om)— X gkt o <7

n<N k<r
But Limw, = w so that LimMg' ) g, k*®, = w. Choose ¢ > 0; there exist®
] K-x k<K

an integer L, independent of j, such that we have both

kKM, < e/4  and  |w,—ow| < &/4

for all k> L. A straightforward computation gives for all N > M

| Y f(v;(m)—No| <27 +|Y g kM0, —w)| < (/2 M, +2M, + (/4 M,

n<N k<r

Therefore,

|5 10,0~ Na < o

n<N
holds for all j = 0 and all N > Max{8M, ¢~ ', M,}. We have thus established
that the family &(u, &)(={v;; je N}) is equi-u-distributed. It remains to pro¥’
that u is “-independent. For all positive integers J and all continuo¥
functions f;: X—-C, 0<j < J, we easily verify that

Y (T fifoym) = k=2 TT (X Siwim))
MiSn<My+ck® j<J j<d m<k
whenever k > J and ¢ < ¢,. But this is the crucial step which yields the desired (
result. We leave the details to the reader. =

2.3. Remarks.

1. Different notions of regular sequences can be defined which ensure the
conclusion of Theorem 1. We only quote two such definitions which ar
independent.

The mapping 6: N— N is called D-regular if d(B,) = 0 where d(B,) is th°
upper asymptotical density of B,:= {neN; card{oc™'(a(n))} > k}.

The second notion will be useful in the next section. The mappit?

o: N— N is called M-regular if the series Y A(N)N~3 converges, wher€
N=1

A(N): = card{(n, meN*, m< N, n < N, a(m) = a(n)}.

For « > 2, the sequence o, given by o,(n): = [(Logn)*] is M-regular but no!
D-regular ([-], as usual, denotes the integer part). Let (x,), be a stricth
increasing sequence of real numbers > 2 and write o, instead of ¢,,. Then the
family {o,; ke N} is sparse and M-regular (but also regular).

Now let 4 be the subset of N subjected to:

card{n < N; neA}:=[N/,/LogN]

for N2 2.
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The sequence defined by a(n) =0 if neA and o(n) =n if n¢ A is D-regular,
fegular but not M-regular.

2. Taking & = %, we see that the conclusion of Theorem 1 fails if
#-independence is replaced by #-independence at rank ¢ > 1. But for “very
Wwell sparse” families, Theorem 1 could be strengthened. We do not examine
this problem in detail but only claim that if 4:= {oor,; ceF , k<t} is
a sparse family of regular sequences, u  -almost every sequence u is # -indepen-
dent at rank t, each uoo, c€.#, being p-distributed. In particular:

COROLLARY 1. Let u be a Borel measure on X. For p-almost every
Sequence, the family of sequences {ucc; ce%,} is completely statistically
Independent, each of the uoc (c€%,) being completely p-distributed.

2.4. We-mention two other consequences of Theorem 1.

COROLLARY 2. Let & be a countable sparse family of regular sequences and
let q be a natural integer = 2. Then there is a % -independent sequence

ur N-{0,1,...,q—1}, each sequence uoo, o€ %, being uniformly distributed
Mod g4,

In fact, from Theorem 1, almost all sequences with respect to the infinite
€quidistributed measure has the required property. Moreover, such a sequence
U can be given using an explicit construction when & is asymptotically
Ordered, that is, totally ordered by means of the relation

o<t < AN, Vn= N: a(n) < t(n).

We refer to [15] for definition and characterization of normal sets. The
rﬂllowing result extends Theorem 4 in [1], its proof is similar and makes use of
the preceding corollary.

COROLLARY 3. Let # be an asymptotically ordered countable sparse family
of regular non-decreasing sequences of positive integers. For all normal subsets
A of R* there is a sequence A of real numbers such that:

(i) If xe A then xA is F-independent, each xAoo, c€ F, being uniformly
distributed mod 1.

(ii) If x¢ A then xA is not uniformly distributed mod 1.

3. Subsequences of ("

3.1. Let 0 be a real number > 1. It is well known [9] that, for almost every
Teal number x, the sequence n— x(0" is uniformly distributed mod 1, and even
Completely uniformly distributed mod 1 if 0 is a transcendental number. This
Means that such sequences are % -independent. In fact, from Corollary 4.3,
Page 35, [9], we can derive:
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ProPosITION 1. If 0 > 1 is transcendental, the sequence n— x0" is F,-in-
dependent (%, is the family of non-constant polynomial functions p such that
p(N) © N) for almost every real number x, each of the sequences n— x0?"™,
peF,, being uniformly distributed mod 1.

The complete proof is left to the reader, we only quote that if p,, ..., p, are
different polynomials in %, and (a,, ..., a)e Z*\{0, ..., 0}, there exist § > 0
and neN such that

5 5
m=ZN, m=N, n#m) = l«; a, ()Pktm__k)_:l a4, 074" > 5.

H. Niederreiter and R. Tichy proved [12] that for any sequence n— a, of
distinct positive integers, for almost every 0 > 1 the sequence n— (0 is
completely uniformly distributed (see also [13] for a more general result). Let
us consider now all the polynomial sequences simultaneously.

THEOREM 3. For almost every real number (0 > 1, the sequence n— (0" is
Fp-independent (the corresponding sequence n— ("™, pe %,, being uniformly
distributed mod 1).

3.2. Proof of Theorem 3.

3.2.1. We note that 0 is necessarily transcendental, which we assume from
now on. Let p,, ..., p, be different elements of #,. We assume that

0<py(n)< ... <pn) forn=N,.

Let a,, ..., a; be rational integers with a, > 0. We set

u0):= Y a 00
so that K=
Up(O)=1,0) = Y, a(p(m)0P™ " — p, ()07 ~1)
and k=

5

Un(0) =14 (0) = 3. a(py(m) (pilm)—1)0P<™ =2 — p, (n) (p () — 1) 0P =2).
k=1
Let ¢t be the element of {I,...,s} defined by t:=inf{j; Vk>J
deg(p;—py) =0}, and let 6, =p,—p, for k=1t (6,€ N*). We denote by
oy, ..., & the possible roots = 1 of the polynomial
Q)= Y a 0% %,
" 1=k=s

We may assume that a, # 0. Fix u > 0 and choose y > 0 such that [Q(0)] = ¢
provided that

3) 0>14y  and |0—o)>y for all je{l,...,1}.
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Let E, be the set of all numbers 0 satisfying (3). We will verify that:
@3>0, IN,eN, V(m, n)eN>:
m>n=N,) = (un0)—u(0) > A, YOE,),
and
§)  3n,eN, V(m, neN2:

(m>n=2N,) = (u,’,’,(O)—u;’(G)) has a constant sign on each interval
included in E,).

3.2.2. Verification of (4). One has:
Y a(p(m)0rm=1 _p, (n)grm-1)

ISk<s
= Q(O)U— 1 —al(ps(m)gpa{ml_ps{n)gpsin])_( Z a, 5“ 0! —ak) (Op,lm)_op,[nl)’
t<k<s
thus
Un(0)—up(0) = Z, + £,
Wi[h
2, 0= Q(0)0™%(py(m)0Pm =t — p (m) 07"~ 1)
angd
Zyi=—( Z a, 5,‘ 0! —du)(gpdm:-_ gp,m)
1<k<s
+ Y @ (pp (m) 0P = — p, (n) 0PI ).
k<t
Then
€ izi<omm1 T g8+ T la pum0rm =t < K, grem!
tSksSs k<t

for sufficiently large m. On the other hand:
p_,,(m)ﬂ"""‘" 1 __ps[nwp.(n)—l > Px(m] (Op.(ml—l _gp-tm—li— l)
> py(m)0P<m=1(1—1/0)
and since |Q(0) > u and LimQ(0)0™% = a, # 0,

G-
) 12,0 > K, p,(m)6rm =
Where g , depends on y. From (6) and (7) we derive (4).

3.2.3. Verification of (5) and conclusion. The map u,,—u; is continuous,
“'I')US we only have to give a lower bound for |ul,(0)—u; (0)|. The calculation is as
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From Koksma's theorem (Theorem 4.3, p. 34, [9]), the sequence
n—e(u,(0) has a zero mean-value for almost every OeE, Since

J1, +[ = |J Eym, this is true for almost every 0> I. This finishes the
nzi
proof. m

3.3. Remarks.

1. The family %, could be replaced by a sparse family & of one-to-one
sequences such that:

(Voe#F, VieF) (6 # 1 = o—1 is monotonic).

In the proof, we take 0,, ..., 0, in & such that 0 < 0,(n) < ... < o (n) for
n= N and t:=inf{j; Vk > j, 0,—0, is bounded}.
R
2. Theorem 3 can be generalized to sequences n— Y x,(0,)" = V(n) where
r=1
Xy, ..., Xg are fixed real numbers different from 0. For almost every
{0y, ..., 0z} €11, + o[, the corresponding sequence Vis #,-independent and
for all pe #,, the subsequences Vop are uniformly distributed mod 1.

4. Construction of independent sequences

4.1. Construction. Let E be an infinite part of N. Let 0: N—E be the
increasing one-to-one mapping of N onto E and let o, N — N be given by

(*) og(n):= ) ()2,
k=0

o

whenever n= Y £(n)2" is the binary expansion of n. According to the
r=0
definition of Gel'fond [5] the sequence o, is 2-additive.
Now let {E;; je N*} be a partition of N into infinite subsets E; and let

0;: N—E; be the increasing bijection of N onto E; We write g, instead of oy,

PROPOSITION 2. The set ©:= {a; je N*} is a sparse family of M-regular
Sequences.

Proof. Let o be the sequence (*) derived from the increasing one-to-on€
mapping 0 of N onto an infinite part E of N and set 7(x): = card ([0, x]n E).
By definition the equality o(n) =o(m) holds if and only if one has
&gek) () = &gqxy(m) for all integers k. Hence, for N > 1 and x = LogN/Log 2 on¢

gets A(N) < 2:2°9)-2%7"9 < 2N so that the series ). A(N)N ~* converges and
N=1

o is M-regular. Notice that o is not D-regular. Now let ¢’ and ' be given a$
above but EnE' = @. The equality o(n) = ¢’(n) means that g, (1) = &0
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LogN
Log2’

for a integers k. Consider 7'(x): = card([0, x] n E') and choose x =

Let 2 be an integer such that
(8) z=o0(n)=d'(n

for an integer n < N. Then at least t(x)+1'(x) digits of n are fixed. Hence, the
Mumber of solutions n of (8) is at most 25" =¥ Assume that t(x) < 7'(x),
then the number of different z is card {e({0, ..., N— 1})} < 2*%. Therefore, the

Mumber of n such that o(n) = ¢’(n) and n < N, is at most 2* ™%, Due to this we
Zet
card{n < N; a(n) = a'(n)} < N2™*®¥

With [im 1(x) = + 0 and the proof is complete. m

We now quote two simple lemmata:

LemMMA 1. Let Q,:= {0, 1, ..., 2'— 1} be endowed with the equiprobability 2,
nd let X, be the restriction of o; to Q, Then the random variables X,
I=1,2,..  are independent and equidistributed.

Proof. Let t; be the number of elements in €, N E; so that X () = Q,.
Or any m; in ©,, an easy computation gives

A{X;=m}p=2"".
But the events {X;=mj} are independent because of the disjointness of the

Iy

The proof of the next lemma is straightforward and we leave the details to
the reader.

LEMMA 2. Let n—x, be a complex valued sequence and let n—a, be an
mc"easing sequence of positive integers such that a,eO(n). Then
Y, x,€0(N) = 3 Xp4ay€0(N).
n<N n<N
4.2, Universal properties. We first give a universal property of a topological

ature satisfied by all sequences o, whenever E is an infinite part of N. After
al, we prove metrical properties of the above family &.

THEOREM 4. Let p be a Borel probability measure on X and let o (= o) be
Ny sequence defined by (x), the set E being an infinite part of N. Then for all
H-well-distributed sequences u: N— X the sequence uog is also p-well-dist-
Mbugeq.
Proof. Let g: X —C be a continuous map such that [gdu = 0. We have
0 prove that
-

©) Lim (Sup

N-oo seN

% Y. g(uoa(n+s))

n<N
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By assumption, there exists a sequence (g,), >, of non-negative real numbers &,
such that

(10) VseN: | ¥ g(uln+s)| <e2" and Lime = 0.

n<2r r=w
Notice that (10) is equivalent to the p-well-distribution of u. We may assume
lg(*))<1. Let e>0 be given and choose r such that g.<e/2 for

r':=card(En[O0, r[). Let N, t be positive integers and define integers a and
b by the inequalities

(@a—1)2"<t<a2” and b2 < N+t<(b+1)2.

Then
| T guoot) <2+ ¥ | T glulotn2)+olm))
(Sn<N+t asn<bh 0<m<2r
<M ¥ (@7 X glu(en2)+o(m))).
asn<h 0=m' <27
Hence

[ X

tsn<N+1

2
g(uoa(n)| < 27" '+ (b—a)2'¢, < (E+s,.)N.

Now for N = 27(2+4/¢) we have (b—a) = 4/¢ so that we obtain

| X

tEn<N+i

gluoo(n) <eN. m

THEOREM 5. Let (X ));- ¢ be a sequence of compact metrizable spaces. For
each j >0, let p; be a Borel probability measure on Xjand let up N> X; be
a p-distributed sequence. Then the family % -: = {u ;00,5 je N*} is statistically
independent, each of the sequence u;00; being u-distributed.

Proof. From the definition, we have to show that, given an integer d > |
and f;e%(X)) for all j <d, if we put

d
=]
j=

1

d
[fidy; and G(n):= [ fi(u,00,(n)),
X; j=1
then
w= hl[_im(l;'N) 2, G(n).

n<N

If N= ) a2 is the dyadic expansion of N, with a, #0, we put N

r=0
= ) a2 for ¢ < v. Moreover, let t; be the counting function of 0;(N), i.e-
CErsy

tj(m) = card{r < m; re0,(N)}.
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Fixing ge N*, o < v, we have

1y Y Gm= Y G+ Z] (Y Gm)+0(N-279

n<N n<2v c=v—g Nc+v15En<N;

because G is bounded. On the other hand, due to Lemma 1, we get

d
(= I 0 d

Y Gm=2 """ JI( X fiwm).

n<2v Ji=1 mj<2tjiv)
Choose ¢ > 0; the hypothesis concerning u; leads to
12) | Y G—w2|<e2

n<2v

for (ie. for N) sufficiently large.
In the same way, if a. #0, and ¢ > v—p:

d
Z G(Pl)= z G(Nc+1+ﬂ)= z nj}(uj(aj(Nf+l)+aj{n)))
NeyySn<N, n<2c n<2cj=1
t:'e‘ca-llsf: 0j(Nes1+n) = 0;(Ncsy)+0;(n) for all n <2
As above, we get
(13] Z
Ne+i1En<Ne

Byt one has

9News) _ 0)(N) _oj(142+ ... +2)
W S one-a S 2000

%0 that

(14) 0,(Nesy) € 202 2409,

NoW, ¢ being fixed, we then derive from (13), (14) and Lemma 2 that:
(15) | ¥ G-w2]|<e2

NesrSn<ie
for (i.e. for N) large enough. Joining (11) to (12) and (15), we obtain
| Y G)—wN| <eN+O(N-279
n<N
for sufficiently large N. Thus
Lim sup|(1/N) ¥ G(n)—w| < C-27¢
Rt n<N

“here C js an absolute constant and p is arbitrary. Therefore w is the mean
Value of G. m

d
= I t5(c)) d

Gn=2 " D;( Y Suymt0i(Nev )

mj < 2t jlc)

1424 .00 20011 :
< S < 20%2
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THEOREM 6. Let % be a family of sequences u: N— X, where X, denotes
a compact metric space. Assume that each sequence u is p,-distributed with
respect to a Borel measure pi, on X,. Let ¢ (= o) be any sequence defined by (*)
(E being infinite). If 4 is statistically independent then the family
Yoac:= {uoac; ued} is also statistically independent.

Proof. Without loss of generality, we may assume that % is finite. For
each u in %, let g,: X,—C be continuous and set

@:=[]f g.dp, and G(n):= []g.(uoa(n)).
ueW X, ue

By Theorem 5 the sequence uog is also p,-distributed in X, hence we have t0
show that

o = Lim(1/N) Y. G(n).

N=w n<N

v
Let N = ) a,2" be the dyadic expansion of N. Use N, and g as in the proof of

r=0
Theorem 5 and let ¢(-) be the counting map of E. To estimate ) G(n) we start
n<N

from equality (11). By Lemma 1, we obtain

Y Gn)=2"" % ] gululm)).

n<2v m< 20 uedr

Let & > 0; by assumption on % there is v, such that

e I, [owm)=T1e7 3 alum) <2

m< 24V} yedy m< 28]

whenever v > v,. But we may choose v, > v, such that for all M > 2'™) oné
has

1
n(ﬁ 3 Qu(“(m}))—c?) < &/2.
ued m<M
Therefore,
(16) | ¥ Gm—o2 < 62"

n<2av
whenever v 2 v,.

Now we consider the sum Z_:= )
Nev1Sn<Ne

G(n), with a, # 0. As above wé

get

z:r — zc*l(l'] z n gu(u(U(N¢+1)+m))'

m < 2t} yedy
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On the other hand, we have by assumption Lim (1/M) Y []g.(u(m))=a
M=w m<M ued
4nd since inequality (14) holds, it follows from Lemma 2 that we also have

,332“‘2{ = @. Therefore, there exists v, (= v, —p) such that ¢ > v, implies

(17) IZ.— 23| < 2.

USiﬂg (11), (16) and (17) we derive a constant (which only depends on the
Unctions ¢,, ue) such that

| Y G(n)—@&N| <eN+CN-27¢
n<N

for Sufficiently large N. Since g is arbitrary, the desired result follows. m

l 4.3. Spectral properties. Recall that s(-) denotes the sum of digits to base

0‘:0- Let E be any nonempty subset of N, let @ be the increasing counting map
E and let y,: N—{+1, —1} be the 2-multiplicative sequence defined by

Xe{n): = (— 1)@= where o, is still given by (*). Now, we endow N with the

E“’“P law @ corresponding to the addition to base two without carry. Let

«(n) be the kth digit in the dyadic expansion of n. By definition, for all integers
and m one has

gn@dm)=¢gm)+egmmod2, k=0,1,2,...

i Now we remark that y, is a character on (N, ®). Conversely, for any
Aracter y on (N, @®) (also called Walsh character) one has y = y; where
= {teN; x(2") = —1}. Clearly, y is periodical whenever E is finite. Spectral

E::mnies of y; was studied by M. Mendés France [11] and dynamical point of
“W was first investigated by S. Kakutani [6] in order to give examples of
'Nimal uniquely ergodic discrete symbolic systems. More results and generali-
tions are due to M. Keane [7], [8]. From now on, we recognize any Walsh
aracter y as a generalized Morse sequence (to base two) in the terminology of
®ane. To see this, we assume familiarity with [7] but change the 0's to +1s
d the 15 to —1's. Thus we have

(x(M)az0 = B0 s pD 5 piD s

Yhere p®; = (41, —1) for keE otherwise b®:=(+1, +1).
Recall that the Borel measure Ag on the torus T= R/Z is said to be the
tral measure of y; if the Fourier transform 4, is the correlation function of
b that is to say:

9 1= ie""*‘lﬂdt):Lim% Y g4k, keZ.
N=a n<N
n+kz0
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From basic results [3], the spectral measure A exists and is given by the
weak-limit
Ag(dt) = *-Lim %j Y xe(n)e™ 22 h(dr).
N—wx

n<N

The 2-multiplicativity leads to the product formula
(19) 2p(dt) = »-Lim ([ (1 + xz(2%)cos2** ! mt))h(dr).
K

“® k<K
It is known that A is singular with respect to the Haar measure. Moreover 4g
is continuous if E is infinite. If E is finite then y, is periodic with period 2
where T= 1+MaxE and 4, corresponds to the Haar measure of the finit¢
sub-group of T generated by 2~ 7. Now, we shall say that E is thick if ther¢
exists K > 0 such that

Vm=0, En[m m+K[#0.

THEOREM 7. Let E and E’ be thick subsets of N. Then the spectral measures
Ag and Ag. are equivalent or mutually singular. Moreover the following statements
are equivalent:
(i) Az and Ag. are equivalent (Ap~ ip).
(i) The symmetric difference EAE’ is finite.

(i) The series Z |A£(2)— AR (2 converges.
k=0
(iv) 2p(2%) = 2.(2%) for sufficiently large k.

Proof. It is known from [8], Lemma, that either 2, and 4. are mutually
singular or Az~ A,. Now we compute A(2¥) from (18). The product
1e)xe(n+2%) is constant, equal to yg(2%) ... xz(2**) on the arithmetical
progressions A,(0): = {neN; g/(n) = 0} for s =0 and

As):=1{neN;gm) =1, ..., g4s-1(n) = 1, g4,(n) = 0}

for all s = 1. Hence,

12 2e@Y ... x5(2**)
3 gky _ o E E
AE[Z ) = 232“0 2s -
Put ef(s): = 3(1+x£(2") ... xg(2**¥) such that ef’(s)e{0, 1} and
(20) 142,025 = ¥ effi(s)275.
5=0
Notice that ¢§(s) takes the values 0 and 1 infinitely often.
Obviously (iv) implies (iii). Assume property (iii) and use (20). Since E and
E' are thick, then for each integer S = 0 there exists K = 0 such that th®
equalities ef¥'(s) = £{¥(s) hold for all k = K and all s=0,1,...,8.1In particular,
this implies ¥.(2%) = 7..(2) (and consequently i.(2*) = 4,.(2") for k > K.
Therefore (ii1) implies (i)} and (iv).
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Assume (ii) (recall that E n E’ is infinite). Since A; and 4. are continuous,
Ormula (19) gives easily

Jg(d)= T] (tan@™nt))> || (cotan(2"mt))?-Ag(dt)
meE\E" neE"\E
S0 that property (i) holds. It remains to prove that (i) implies (iii). We may
derive this implication from [14], Lemma 4, using the sequence n— X, of
®Omplex random variables given on T by X,(t):=e™""" (such that the
®Xpectation of X, with respect to 4 is 15(2"). =

44. Remark. The above construction to base 2 is typical but it also holds
to base g > 2 and Theorems 4, 5, 6 remain valid in this case.
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