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Further we have

logp ,(u logp ,(u log,x
@7 logp *(.J_) _ logp .(*x 25
L.<§€Lz pz ¢ k z,qu:szz Pz & k 1+0 logzx
_ %logz , (logx logsx
=JTe (mogz)‘f"‘”(”"(@;))-

As for G, we have similarly G, < (log,x/log,x)G,. Combining (4.1}4.7)
completes the proof of Theorem 2.
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B,-sequences whose terms are squares
by

J. CiLLERUELO (Madrid)

Introduction. A sequence of integers 1<a, <a,<... is called
a B,-sequence if the sums a,+a; are all different. Sidon asked for a B,- sequence
for which a, increases as slowly as possible. There is a trivial argument which
allows us to construct such a B,-sequence with a, < k* for all k. For a long
time, this bound was the best known one until Ajtai, Komlos and Szemereédi
[1] showed, with an ingenious method, the existence of a B,-sequence such that
a,/k® - 0. However, this result is far from Erdds’ conjecture on the existence,
for each ¢ > 0, of a B,-sequence with a, < k*** [3].

In this paper we deal with B,-sequences of squares, in other words,
sequences of integers 1 < a, < a, < ... where the sums a +aj are all distinct.

Again, thereiis an easy argument giving us, for each ¢ > 0, a sequence such
that g, < k*** and where the sums a? +aj are all different. Apparently, there is
not a simple argument to improve this result.

The purpose of this paper is to remove ¢, using a new method developed
by Javier Cilleruelo and Antonio Cérdoba in [2].

THEOREM. There exists a sequence A = {a,}, a,<k?, such that the sums
al+a? are all different.

Proof. Consider the sets I; = {a; 6/ <a < 6 +6/2, a=2 (mod 6)} and

I= (J I;- The sequence A will be given by the set I except for a few numbers
j=1
that we have to eliminate: 4 = ) 4;, 4;,< ;.

=1
Construction of A,. Once we have chosen the 4, j < k, we shall pick the

members of A, from among the elements of I,, with a few exceptions, to avoid
k

a4 b2 = 2 4+d?, with a,b,c,de | 4,
=1
LemMA 1. Let a, b, c, d belong respectively to I,, I,, I, I,,, where k > j
>m> 1, and suppose a*+b* = c*+d*, a>c>d>b. Then we have:
(1) k=J.
i) If | <m, k/2 < m < 3k/4.
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Proof. (i) Since k=>j>m > I, we have
62 < g’ 4+b% = c?+d* < 2(6/+6/)? < 8:-6%,

) sz*'” < 8 and this is possible only if k <.
(i) By (i) we know that a and d belong to the same I,. Hence

4-6* < (@a—c)(a+c) = (d—b)(d+b) < (6™ +6™2)2(6™+6™?)
= 2(6™+6™2)2 < 8-67m,
therefore 6* < 2:6*™ and so m > k/2.
Now, if [ <m,
6422(6* +6%2) > (a—c)(a+c) = (d—b)(d+b) > (6™ —(6' +6'2))6"
= 462 > (6"—6"/3)6™ = 662 > 62"=>m < 3k/4. m

LEMMA 2. Let n=a*+b*=c*+d?, n=0 (4), ¢, = arctan(b/a) ¢, =
arctan(d/c). Then there exist a,, by, c,, d, such that n = (a+b3)(c3 +d3) with
tan((‘Pl _"\oz}/z) =b,/a, and tan((‘Pl"‘ ‘Pz)/z) =d,/c,.

Proof. Put

_(a—c,b—d)
o= 5 .

b=a™ " T

a+ - -
_c acabd

It follows from a*+b?> =c?+d=n,a=b=c=d =0 (mod2) that

a, By, 0€Z, n=(@*+pY(y*+6?

and
2af _bc——da‘ a
P F " actbd - 2102
2y6  bct+da "
?2_62 = aC‘—bd - an(‘lol +(02)'
Hence
tanﬂ___‘pz =E or _E’
2 ] B
¢+, 8 y
tan =- 0r -—=.
2 y ')
Choosing @, =a,b; =fora, =f,b; = —axand¢; =y,d, =dor¢, =9
d, = —v accordingly we satisfy all the requirements of the Lemma. m
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~ End of the proof of the Theorem. For I, m fixed, | < m, we count how many
integers can be expressed in two different ways as a sum of two squares
n=g?4+b*=c*+d? a, cel, (by Lemma 1(i)), bel, del,.

Ifn =a?+b? = c*+d>? a, cel,, bel,, del,, we can describe the equality
with two lattice points (a, b) and (c, d) placed on the same circle. An easy
geometric observation gives the following estimate for which we use the
Notation introduced in Lemma 2:

Ilan((q)l —(Pz)/Z)— ¢l‘ <3-6m2k,
Where

|tan((¢, +@,)/2) — ®,| < $-6™>7F,

&, = tan((arc tan(6™*)—arctan(6' ~1)2),
&, = tan((arctan(6™ %)+ arc tan(6' *))/2).
So, there will be a,, by, ¢,, d, such that n= (@2 +b3)(ci+d}) and
|by/a, —®,| < .6m2-k,
(x) d,Jc, —®,) < §-6™27%,
62+ 67" < (af +bY)(ci +d) < (6*+647)7 +(3'+372).
Next, we count how many a,, b, ¢, d, satisfy (x). We have two different
Cases: [=m and | <m.
In the case | =m condition (¥) is
Ib,Ja,| < 3-6™27%, |d,Jc,—1/6*"™| < 3-6™27F,
6% + 62" < (a? +b)(c} +d?) < (6*+64%)7 +(6'+6"%)%.
If b, = 0, then tan((¢, —,)/2) = 0 and ¢, = @,; the lattice points (a, b)
and (c, d) are the same.
Ifm = kand d,/c, = 1, then @, + @, = n/2 and the lattice points (a, b) and
(c, d) are symmetric with respect to the diagonal.
Finally, if m<k and d,/c,=1/6""", then we must have
(b+d)/(a+c) = 1/6*"™, but this is impossible because a+c =4 (mod 6).
Then
0 <|by <ia,6™, 0<l|d 3 ™—c,| <3}c,67™2

Then

la)l =2-6""2 and || >2-6™2

Byt
lay ¢, < (@3 +b3)(ci +d})"* < 68 +0(6"%),

and we get a contradiction for k sufficiently large.

The case | <m will be analysed in several steps:

1st step. For fixed a,, by, d, we count how many ¢,’s can satisfy condition
() with ¢, > ay. (If ¢, < a,, we should fix ¢,, b,, d, and count the a,’s.)
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From the last inequality of (), we have
(624/(a3 +b})—d3)"2 < ¢, < ((6*+6™)/(a} +b])—d})".

The number of the possible ¢, will be less than 6%%/a, < 6™ *2p,.
2nd step. For fixed a,, b, we count how many d,’s can satisfy (*)

¢, =d,/®,+0(d,6732*%,  a, =b,/d,+0(b,6" 32"k,
because @,, @, > 6™ %, and so
(ai +b3)(ct +di) = (byd,)*(1+ 1/@})(1 + 1/@3)+O((b,d,)* 6% ~°™2).
Now b,d, < 6™ *a,6™ *c, < 6™ % and
(6*—6*"m™2)/((1 + 1/P3)(1 + I/(P%))”z <d,b,
< (6 +6 (1 +1/@D)(1 + 1/ .

Therefore, there will be at most 6~ ™2/(b,((1+1/@3)(1+1/®3)"?)+!
< 6>27%/b, +1 possible d,’s.

3rd step. For fixed b,, we count how many a,’s can satisfy (x).

If b, =0, then 6" * <|®,| <4-6™>~% but this is impossible becaus¢
m 2 k/2 (by Lemma 1(ii)). Thus b, > 0.

If a, and &) satisfy (*), then [b,/a,—b,/a}| < 6""'2"‘—4-b1(a'1—01]
<a}6™* " *=a)—a, <a}6™*"%/b, < b6 ™2 Thus, for fixed b,, therc are
at most b,6* ™2 +1 a.’s satisfying ().

4th step. by < a, 6™ * < 6™ %2 because we have supposed that a, <¢y
Then the number of solutions of () is at most

(ble—mmrz_'_1)(63m13—k/bl+ l)6m—k.r3/bl
by<6m-ki2
é(m—k)6""”2+6""'2+65"'"3*3"1’2 +(m—k]6"'_**'2 < 6m,-‘2
because m < 3k/4 (by Lemma 1(ii)).
To finish the proof, we count 6™2 for each I, m, | <m < 3k/4:
Z Z 6™? < k63K/8,
m<3kjdi<m

Now, each number of the k6>*'® integers can be expressed, for each & > 0
as a sum of two squares in at most 6* different ways.

Therefore, for each & > 0, we can pick up 0(6**®*9) numbers from I, t©
k

get A,, in such a manner that the equation a®+b% = ¢ +d% a, b, ¢, de | ) Ay
has only trivial solutions. i=1

Note that 6“*/°**® = o(6"), which easily yields the growth of the sequenc®
that we wanted to show.
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the proof of Lemma 2 which is much shorter than my original one.
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