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§1. Introduction. In his thesis [18] Stevenhagen has recently managed to
Prove one of the conjectures of Cohn and Lagarias [1] concerning the
clil!ssgroup € (Dp) in the quadratic field Q(\/D_p). His theorem can be stated as
Ollows:

THEOREM 1 (Stevenhagen). Let D # 2 (mod 4) be a nonzero integer and let
Ky, be the field generated over Q by all the square roots \/(; Jfor which q|D and
9 is a prime fundamental discriminant. Then the isomorphism type of
?(Dp]/‘g (Dp)® in the field k = Q(\/D_p), for primes p for which Dp = 0, 1 (mod 4),
Only depends on the Frobenius class of p in the maximal abelian extension Q, of

b that is unramified outside 2Dco and has a Galois group of exponent 2 over
b-

The classgroup 4(Dp) in this theorem is the restricted (or narrow)
classgroup of the quadratic order of discriminant Dp in k. Recall that
2 fundamental discriminant 4 is a discriminant of a quadratic field (i.e. of the

Maximal order in such a field), and is a product of prime fundamental
Uiscriminants, integers of the form —4, 8, —8 or g* = (—1)9~"/2q, where g is

m odq prime. Further, the Frobenius class of p in Q,,, denoted (#), is

2 conjugacy class in the Galois group of 2,/Q which is intimately related to the
Way in which p splits into prime ideals in @, and its subfields.

This beautiful theorem (and its proof, which involves the idelic for-
Mulation of classfield theory) generalizes the qualitative results of [11]-[13]. If,
' close agreement with Cohn and Lagarias [1], we define the minimal
Y0verning field Z (D) for the structure 6/€® = €(Dp)/¢(Dp)® in k = Q(\/DTJ) to

the smallest normal extension of Q (containing Q(./ — 1)) with the property
that the Frobenius class of p (for primes p¥2D with Dp=0,1 (mod 4)) in

al(X,(D)/Q) determines the isomorphism type of €/4®, then Stevenhagen’s
"sult says that 2, (D) is contained in the field Q. (Z5(D) is assumed to contain
\-“‘—-—-—-—_.-—

N * The author gratefully acknowledges the support of AT&T Bell Laboratories, Murray Hill,
J, during the period this article was written.
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Q(./—1) so that primes p for which Dp = 0, | (mod 4) can be sorted out using
. b2
the Frobenius class (—ﬁ—Q) Note that €, does contain Q(,/—1).)

In more generality, and deviating only slightly from Cohn and Lagarias,
we define Z,(D), if it exists, to be the smallest normal extension of Q (cot

taining Q(,/ —1)) with the property that (%Q) determines the structure of
€/¢* in Q(./Dp). The uniqueness of Z,(D) (see [1], appendix) implies
rpyez,bDs...cz,D)c<...

The importance of the governing fields X, lies in the fact that they can be used
to compute the density of the set of primes p for which €(Dp)/$(Dp)*" b2
a given structure. See [11]-[13].

In this paper I take a look at a special case of this theorem, namely the ca%

1) = —q,q9,, where g, =g, =3 (mod 4),

and the g; are distinct primes. This case is interesting for several reasons. As
stated in [1], the case g, = 3, g, = 7 is the simplest case to which the methods
I used in [11] and [12] do not apply. The first step of the method used thef®
depends on a trick that was thoroughly exploited by Rédei and is only valid fof

primes g = 1 (mod 4), the trick being that the Legendre symbol (E) can b¢
expressed as a 4th power residue symbol: d

(-,

This is useful if a® is one term of a ternary quadratic equation that can be
replaced by a combination of terms involving ¢. But it forced me to look at
integers D which were products of primes = 1 (mod 4). (See also the fin
remarks in [4].)

-In [1] the simplest D = —21 of (1) was considered. Based on extended
numerical calculations, Cohn and Lagarias conjectured that the field (-2
is a subfield of

B) K =0(/=1, /3.7, V=2B+21), V1+2J7,/2(1++/21)).

In [18] Stevenhagen shows that.Q_m is a quadratic extension of K, but does
not determine Z,(—21).* The way in which K arises in [1] is of interest. Ther®
the following more explicit conjecture is stated. (Z, is shorthand for the grovP
Z/nZ) '

* Added in proof. While this article was in press, Stevenhagen [19] found a different
method of determining Z,(—21).
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ConsecTUuRE (Cohn-Lagarias). If p=3 (mod 4), then
@[—ZIP)/‘K(—ZIP)E ~Z.,x2Z,
¥ and only if

(A) (‘%) = (g—) = 41 and p splits completely in
K,=0(/=3./~7,v—23+/21));
(B) (;—J) = +1, (g) = —1 and p splits completely in
Kp=QW/ =3, VT, V1+2J7); or
(C) @) (%) = —1 and p splits completely in
Ke = O(/3, /7, V2(1++/21).

In this paper I prove this conjecture, along with the analogous result in the
More general case (1). In particular, it follows that X'(—21) equals the field
K of (3). In the proof I make essential use of the quadratic reciprocity law in
Quadratic fields, along with the smallest positive solution (a, b) in integers of
the Diophantine equation
4 a*q,—b*q, =1 ((?) = +1).

1

See § 3.) The use of quadratic reciprocity replaces (2). This leads me to believe
that 3 more elementary proof of Stevenhagen’s theorem can be given, if one
Uses a system of Rédei equations of type (4) (see [16], [11]), along with some
orm of quadratic reciprocity. '

As a corollary of the proof one can easily compute the density of the set of
Primes p for which €(—g,q,p)/€(—4q,q,p)® has a given structure. These
densities are given in the adjoining table:

€€t = Density of p=3 (mod 4)
Z,xZ, 1/8
Z,xZ, 3/16
ZyxZg 316

In addition, the explicit nature of the results given here leads directly to
2 curious kind of 3-termed reciprocity law. Such a law arises from general
Considerations in the following way.
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If the normal field Z (D) exists for all D (or all D # 2 (mod 4)) then ther¢
must be a relationship between the Frobenius class of p in Z (D) and the

D
Frobenius class of a prime divisor g of D in ZU(Ep), since both fields gover®

%(Dp)/%(Dp)*". More explicitly, fix an isomorphism type T of %’(Dp)/‘f(Dp)r
and let A,(D) represent the union of the conjugacy classes in Gal(E,(D)/Q) for
which

(Ei‘oplg) < A (D) = G(Dp/S(DPF = T.

Then the above relationship takes the form of a reciprocity law:
D

z,( p)/Q
(:"MQ) c Ap(D) iff (—i—) = AT(EP)’
p K ’

for any odd prime g dividing D.

In particular, Stevenhagen’s Theorem 1 shows that such a result holds fof
y = 3 and for the field ©,, in place of Z,(D). To state a symmetrical result, 1
the odd prime divisors of Dp = 4 be py, ..., p,, where we take the p; to be
distinct:

r

(5 A=+2[] p;=0,1 (mod 4).

i=1
Then we have the

GENERAL RECIPROCITY THEOREM. Let A have the form (5) and wri¥
D, = 4A/p;, 1 <i < r. If Tis any finite abelian 2-group and A r(D;) represents the
union of the conjugacy classes in Gal(Q,,/Q) (Qp, as in Stevenhagen's theorem
for which

(%Q) S A7(D) = 6(D;p)¢D;p)’ =T,

then for 1 <i, j<r, i #j we have

i j

Here 1 work out the form of the law (6) when 4 = —g,g,9; and t°
primes g; are = 3 (mod 4). In order to state it, let me first state the general rest '
corresponding to the above conjecture of Cohn and Lagarias.

THeOREM 2. (D = —¢,4,) If g, =g, =3 (mod 4) and (?) = +1, the”
é(—q,q:0)/€(—q,q,p)® = Zyx Z, if and only if
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(A) (qi) == q_p_) = +1 and p splits completely in K ,(q,, 4,);
2

p

= +1, (a—) = —1 and p splits completely in Kg(q,, q,); or
2

(©) (qﬁ) = qﬂ) = —1 and p splits completely in Kc(qy, 4,);
where K ,, Kg and K. are the fields

K, (q,, q,) = Q(\/ —qys+/ 25~/ o)
) Kp(@1> 32) = @/ — 1> /a2, V)
Kc@y, 42) = Q41,420 v/ —223/22m)),

and where

Normm,, = —¢, in Ky = Q(/4:1492),
M = (+2-) (mod 4);
q,

Norm, = —q% in k; = Q(/q,), with
()  h, = classnumber of k,,
w, =1 (mod 2),
n, <0 for the infinite prime of k, for which \/q—z >0,
(n,, I—a\/a) #£ 1, where a is as in (4);

and

&, > 1 is the fundamental unit of k,.

If(qﬂ) =-b (qi) = +1, then €(—q,4,p)/6(~4,0,P)° = Z; X Z,. If one of

2
the Legendre symbol conditions in (A}{C) holds but p does not split completely in
the corresponding field, then 6(—q,q,p)/6(—q,9,p)° = Z, X Z,.

An “explicit” reciprocity theorem of the form (6) results from Theorem
2 by taking T= Z,;xZ, and replacing p by g, =3 (mod 4). Its statement
requires us to introduce a directed graph G on the vertices gy, 43, 93, aS

follows. The directed edge (g;, g,) (from g; to g;) liesin G iff (‘-;1) = +1.(See [7]
for a similar graph) If G contains a cycle, the triple (q;., g, 42) will be called
Cyelie, otherwise the triple is noncyclic. (Cyclic triples correspond to primes for

Which 6(—q,4,4,)/6(—4,929)° = Z, % Z,.)
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SPECIAL RECIPROCITY THEOREM. (4 = —q,4,43) If (4. 42, q3) is a now
cyclic triple of primes =3 (mod 4), with directed graph

, /Qz
m\\
qa

q, splits completely in Kc(q,, q3) if

q, splits completely in Kg(qy, q5) if
qs splits completely in K ,(q;, q5)-

then:

The fields K,, Ky, K¢ are thus naturally associated to edges of G

qz
G Ke
\
g

This theorem may be expressed in terms of Legendre symbols using the
fact that g, splits in an appropriate subfield of K ,(q;, 4,)- From (8) we find that

0 ()
q3 q; Gy
where:

Norm m,, = —g, in k;; = Q(/4:42),

My = (3) (mod 4);
4,

Norm 7, = —g%* in k3 = Q(\/q,), with

h, = classnumber of kj,

n, =1 (mod 2),

n, <0 when /g, >0,

(my, 1—ay/q3) # 1, where a’q;—b’*q, =1, a>0;
g, > 1 is the fundamental unit of k,,

NOl’I’ﬂ 1[2 = _q’i) ll'l k3,

n,=1 (mod 2), m, <0 when /q; >0,

(ny, 1—c4/q;3) # 1, where c¢*q;—d?*q, =1, ¢>0;
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also q5, q,, q, are prime ideals lying over g3, 45, 4, respectively in ky, ks, k;
and the Legendre symbols are taken in the same fields. Noting that

(3)-G)--()--)

in k, (see § 4) shows that the last equality in (9) is equivalent to

(-6

in the field k,.
Equations (9) and (10) can be viewed as the analogue for primes
=3 (mod 4) of a quartic reciprocity law due to E. Lehmer [8], [9]: let

P,=p, =1 (mod 4) be primes for which (i—‘) = 41, and let

2
i

="
if'p, and p, are prime ideals of Q(,/p,) and Q(/py) lying over p, and p,,
respectively, then for an appropriate choice of sign of a;,

()-GG).-()

A proof of this result is given in [13] which is completely parallel to the proof
We have given here for (9) and (10);and corresponds to the case 4 = p, p, of the
general reciprocity theorem.

It is interesting to note that Lehmer’s result concerns two primes =1
(mod 4), while the corresponding statement (9) for primes = 3 (mod 4) requires
three primes for its formulation. The role of the equations p; = af +4b7 is
Played here by the diophantine equations '

(9> 9))€ G.
Lehmer’s result is closely related to a cyclic quartic extension of @, while (9)
and (10) come from extensions which are nonabelian (and dihedral) over Q.
The results presented here are also related to the prime decomposition
Symbols discussed by Rédei [15], Frohlich [2] and Furuta [3]. See especially
the “inversion law” in [3, p. 99] which concerns triples of primes, at least two of
which are = 1 (mod 4). The reader is also referred to [6], which discusses
Tesults similar to (10) using classfield theory, in the case where at least one of
the primes involved is =1 (mod 4).
I take this opportunity to correct two misreferences in [10]. The first is
3 reference to Dirichlet in the introduction and § 3 and § 4 of that paper,
teferences which should be to Dedekind. (See Dirichlet-Dedekind, Vorlesungen

af +4bf = p;;

a’q—bq;= 1,
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iiber Zahlentheorie.) The second occurs in footnote 2 of the introduction. Ther¢

I mention an algorithm for computing the structure of the 2-classgroup of

Q(ﬂ} which uses quadratic forms, in connection with Lagarias’ determinatio?
of its computational complexity. The algorithm itself is due to D. Shanks [17]

§ 2. Preliminaries. In this section we set up notation and state several
elementary lemmas. Sections 3-5 are devoted respectively to proving Cases
(AYHC) of Theorem 2. The last two sections of the paper use Theorem 2 t0
compute X,(—q,4,) and to derive the special reciprocity theorem as stated in
the introduction.

We shall make use of the algorithm given in [10], which combines ideas of
Rédei, Hasse and Bauer. The algorithm starts with the ramified primes i

k=0(/~q,9,p), namely q,, q, and p, where
(11) a? =(q), p»*=0(),

and where we assume (2
q1
independent quadratic characters on the classgroup € of k, defined for any

ideal of k by the Hilbert symbol

)= + 1. The algorithm also makes use of the tw0

(12) 1:l0) = (N""“ Dol )
4q;
Norm a .
=( = ), if (g;, Norm a) =1.

Using the ideals in (11) and the characters in (12) we form the matrix

q1 (i) -1 -|
x1(a,)  x2(ay) 91
(13) M= z(q,) 12(‘7!2) =4 1 o £) s
xi®  x(p) 9,
R
5 i 4y 92

?md think of the rows and columns of M as being indexed respectively by the
ideals and characters in (11) and (12).

We put M into “reduced” form, obtaining a new matrix M’ using
elementary (multiplicative) row and column operations:

w-[2 1]
+ +
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where D is a “diagonal” matrix with — 1's on the diagonal and + I's elsewhere.
Further, the rows and columns of M’ are indexed by the ideals and characters
that arise when applying the operations that lead from M to M ’ to the indexing
ideals and characters of M. Call these the row ideals and column characters of
M and M'.

The purpose of reducing M is to find a basis for quadratic characters on
% which have square roots in the character group of ¢. Such a basis is provided
by the column characters corresponding to columns of + ’s in M'. In addition,
the row ideals corresponding to rows of +1’s in M’ generate the classes of
order 2 in € which have square roots. Call these characters and ideals the
square (indexing) characters and ideals of M'.

Let e, be the 2"-rank of &, ie. the number of invariants of € which are
divisible by 2. From (13) and the above remarks it is not hard to see that

e, =2-r,

where r is the multiplicative rank of M, and that e, = 0 or 1. Further, ife, = 1,
then either of the two square indexing ideals a of M’ generates the unique
square class of order 2 in €. Let y be the square indexing character of M'. Then
we have the rule:

eg =1 iff x(3)= +1, where 32~a.

(For proofs of these elementary facts see [11].) Character theory usually
requires that x(3) = + 1 for all quadratic  characters of ¢, in order for 3 fo be
a square. That it suffices to consider only the square (indexing) character of M’
follows easily from the form of M’ and cuts our work in half.

In every case e, depends on Legendre symbols in Q. The problem is to
show that e; depends on Legendre symbols in quadratic extensions of Q. We
divide the discussion into 4 cases.

In the first and easiest case

X) (ﬁ) o A, (-‘l) _ 4l
gy 9>

Here (13) gives

-1 -1
M= 1 -1
-1 1
S0
-1 1
M'= l __1 ]
1 1

implying that e, = ¢; =0 and 6/6° =Z,xZ,.
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We turn now to the three nontrivial cases, for which we need several
lemmas.

LEMMA 1. If a is a square indexing ideal of M’ and (x, y, z) is a positive
primitive solution of
x2+q,q,py*—az* =0, a=Norm a,
then 32> ~a, where 3 is an ideal for which

Norm = s z odd,
3= zf2, z even.

The proof is given in [10] or [11] for the case that z is even, and is easily
adapted to the case in which z is odd. This proof gives a3® = (y), where

)= {x+y\/—qlqz , if z is odd,
Yx+y/—4q,9,p), 1if z is even.

LEMMA 2. (See [16], Lemma 1.) Let x = (u+v./d)/2, where d = 1 (mod 4)
and u, v are odd integers. If o is relatively prime to 2, then 0*eZ [\/:i].

We omit the straightforward proof. (See also [13], Lemma 2.)

LemMma 3. If g is a prime = 3 (mod 4), then a fundamental unit in Q(ﬁ) has
the form

e=2r+s./q,
where r, s€e Z and s is odd.

Proof. If ¢ is not of this form, it must have the form r+25ﬁ, in which
case all powers of ¢ have the same form and all solutions of x*—qy? = 1 have
2|y. Thus it suffices to show that

4x?—qy* =1
is solvable. Write this equation as
2x—1)(2x+1) = gy*.

+2
It is well known that m*—n*q = 12 is solvable according as (_T) = +1

(A proof can easily be given using Rédei’s theory [10], [16].) Set
2x—1=m? 2x+1=m*+2=n?q in case (_—q_2)= +i'

5x—l =ﬂ2q, 2x+1 = u2q+2 =m?" in case (%) = 1.
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Since m, n are odd, xeZ. Setting y = mn we have
4x*—1=m’n*q=qy*. m

This lemma will find application in Cases B and C.

§ 3. Case A: (1) = (3) — +1. In this case
q, q2

x2 1

1 -1 a@ -1 1
M= 1 =11, M =aqa 1 11
1 1 P 11

Hence e, = 1,and ez = 1iff ,(3) = +1, where 3> ~p. From (12) and Lemma 1,

z
(14) @) = (a—)

where (x, y, z) is a positive primitive solution of
x2+q,q,py*—4pz* = 0.

Putting x = px,, this equation becomes

(15) pxi = 42’ —q,4,y%,

which begs to be considered in_the field ki = Q(\/4192)-
To solve it recall that the absolute classnumber h,, of k,, is odd and the

equation

(16) q,a*—q,b* =1  (recall (&) = +1),

q

is solvable, giving

—q, = Norm(g,b+a./q,9,) = Norm=,,

as the norm of the prime element ,, = q,b+a./q,4, in s, T.his may be seen
by applying Rédei’s theory [10], [16] to the field k,, using the matrix
analogous to (13):

d(q_z)
= fl(al) = q; —1 ]
M”"[f,(ﬁz)] (qz) =[ 1]'

91
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here

Norma,
Zl(a) s ( ‘hq!)
q

is the unique quadratic character on the restricted classgroup of k;, and ; is
the prime ideal of k,, lying over g;. Since the rank of M, is 1, the restricted
classnumber hy, = 2h,, = 2 (mod 4), and so h,, is odd. Further, the form of
M, shows that Q, is principal (in the restricted sense), and hence that (16) is
solvable. (See [10], § 4.) As is known (see [16], Lemmas 1-and 2), the smallest
positive solution of (16) has the property that

(ay/ 42+b\/q_1)2 = ¢ Or &3,

where g;, > 1 is the fundamental unit of k;.

Now we solve (15). Since (q_p_) = +1, a prime ideal *B of k,, lying over p is
. 1
in the principal genus in k;, ie. is equivalent to an ideal square a? in ky, (i0

the restricted sense). Hence B2~ a*i2~ 1 is generated by an integer of k,, with
positive norm. By cubing (see Lemma 2) and taking conjugates we may assume

(17) P =(y), n=2z+y/4:4:
p*h =4z'—q,q,)%

note that n can be assumed to have the given form since (7, 2) =1 and p = 3
(mod 4). This solves (15) with x, = pB®h2~1i2,
Using (14) and computing

1103 = (i) = (i)
q1 USH

in ky, gives, since n =2z (mod =,,), that

w0 =(2)(%)
41/ \T12

To the last term in this expression we apply the quadratic reciprocity law in

ki, (see [5], Part II)

o ()-GInenG)

where p, and p,, run respectively over the prime divisors of 2 and the infinite
primes in k,,, and the symbols behind the product signs are norm residué
symbols. Certainly the terms corresponding to the infinite primes are + 1, sinc®
7> 0 by (17). I claim that the terms involving p, are +1 also.

To see this write 7, =r+s./q,9, with r.seZ. The equatiod

y,z2>0,
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~q, = r*—q,g,s* shows that r is odd and s is even, since the left-hand side is
= | (mod 4). If 4Js, either m;, or — 7y, is = 1 (mod 4). If 2||s, then we still have

+my, =2u+1+2v/q,9, (uodd)

= 144810 2‘“"2 =1 (mod 4).

It follows that the conductor of k;,(s/+7,,) over ky is prime to 2 (see [14], p.
200), so that the residue symbols in (18) involving 2 are +1. Replacing m;, by
~n,, if necessary, (18) gives

2\(m, 2\(m2 . s
%16 = (_q:)(%) = (a)(%), with p= PP in ky,.

: . 2 :
Finally by replacing m,, by —m;, in case (—) = —1 we can write

4,
(19) @)= (g)

It is easy to see that the expression (19) does not depend on the choice of .

Further, in case A it is clear that p splits completely in Q(\/ —41,+/ —q,), and
therefore (19) shows that eg depends only on the splitting of p in the normal

field

(0)

Normm,, = —q, in ki, = @(/4:92),
K, = 0(/—41,/—92, \/™;) Where (2
Ma:=— [mod 4).

1
We have proven
CRITERION A. If (ﬂ) = (i) = +1, eg=1in Q(/—4q,9,p) ifi P splits

Ul U]
completely in the field K, defined by (20).

In the special case g, =3, g, =7, the relation 22-7-3*3 =1 gives
N0m{9+2\/ﬁ)=—3, and since (§)=—1 we take m,=942/21
= —1 (mod 4). Also,

i (500 (L)
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so that

K, =0G/-3,/~7.v/9+2J21) = 0(/=3, /=7, /=23 +/21))

is indeed the field conjectured by Cohn and Lagarias.
§ 4. Case B: (£)= +1, (io-)= —1. Here

q, q:
X2 X1

1 -1 L [ |

M= 1 11, M=% 1

1 —1 Qup 1

and again e, = 1, while eg = 1iff y, (3) = 1, where 3’ ~q,. To compute , (3) ¥

are required to solve

x*+q,q,py* —q,2* = 0,

or
21 pq,y* =22 —q,x},  x=gq,x,.
We will solve this with an odd value of z, so from Lemma 1 we have
(22) 1B = (i)
q

In this case we work in the field k, = Q(,/2,). In k, the restricted
classnumber is h3 = 2h,, where h, is the (odd) absolute classnumber of Kz

g 14 -
Since (q_) =-1, (%z-) = +1 and for some prime ideal P of k, and some
2
nek,
23 PB* =), Normpy= —ph.
We set
(24) n=u+v/q, (u,v>0).

Using the fundamental unit ¢, of k; and the result of Lemma 3, we may assume
that u is odd and v is even, since

ne, = (u+0./4,)2r +5./q,) = 2ur+vsq, + (Qvr + us)\/q,.

This allows us to assume n = 1 (mod 2). Also, since (q—‘) = -1, there is an el¢-
. . qz
ment =, in k, whose norm is —g¥2. Let Q be the prime ideal in k, lying over 4y
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for which
(25) - n, =(Q", Normn, = —g%, =, =1 (mod 2).

(The last condition holds for m, or m¢,, as above.)
From § 3 we use the positive solution (a, b) of equation (16), which we

write here as
(26) —q,b*> =1—q,a* (2la since g, =3 (mod 4)).

Putting & = 1+a./q,, we assume Q'|¢, where Q' is the conjugate of the prime
Q in (25). We can certainly achieve this by a suitable choice of n,. Hence we

require
@7) (r,, 1—a/q;) # 1.

Now. compute :

né = {u+v\/q_2)(l +a\/q_z) = u+avq3+(au+v)\/q_2.
Taking norms in this equation and using (23) and (26) leads to
p*q,b* = Norm(nf) = (u+avq,)* —g,(au+v)*;
this is a solution of (21) with
(28) x, =au+v, y=bp" V2  z=ytavg, =1 (mod 2).

Before continuing we check for the primitivity of this solution. If / is
a prime dividing g.c.d. (x, y, z), then | = p or l|b. If | # p, then l|y¢ implies /|,
which is impossible since & = l+a\/q—2. Thus [ = p. But then p|n¢ and
(¢) = Q'b? imply that the conjugate ideal B’ of P in k, divides the ideal b and
hence p divides Normb =b. We can therefore guarantee primitivity by
requiring that ptb. We make this assumption temporarily and show later how
to proceed when plb.

To compute x,(3) we use the assumption (27) in the form

l-{-a\/q_2 =0 (mod ).
From (22)-and (28) we have
2.3 -,
n,)

_ (utavgy) _ (u—=vy/ds) _ i _ 5‘_"‘= n _
o9 ww=(5m) - (5%) - (3)- (&) - ()~
Appealing to quadratic reciprocity in k,, we find

n nl ulvq nl!” 2 .
30 )= )— —_ = (2 k,.
- (m) (4)( P2 ).EL( P. ) MR

If p__ is the infinite prime for which /g, > 0, then n > 0 for p,, by (24). If we
assume n, < O for p.,, then by (25), n, > O for p. and the infinite terms in (30)
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drop out. (This can be achieved by taking — =, in place of x,.) Finally, the fact
that 7 =7, = 1 (mod 2) implies (f;—") = +1, which is equivalent to 5 being

2

a norm residue from the field k,(y/m,). To see this, note that the 2-conductor of
ky(\/m,)/k, divides 2, by Theorem 5.6 in [14]. The congruence

=1 (mod 2) = Norm, sy (mod 2)

now makes the claim obvious. Hence (29) and (30) give

- (2)-(3)

at first with the restriction ptb.

If plb, then from above PB'|b but Btb since & = 1+a./q, is primiti
In this case replace ' by B and go through the above argument w

n =u—v\/q_2 in place of n:
ne= (u—v\/q:)(l +a\@} = u-—avq2+(au—v)\/q_2.

Note that u? —a?v2q, < u>—v?q, < 0 since n has a negative norm, and her
u—avg, < 0. This requires that we take z = —u+avq, > 0, and from (2

o (225 -(r) - (2)- (20)- 3

by the same reasoning that follows (30), since #’ < 0 for p_, —n' > 0 for p
and m, >0 for p/,. Thus

o (3)-(2)- ()30 )- )

and the restriction ptb is unnecessary.

This proves

CriTeriON B. If (£)= +1, (£)= —1, then eg=1 in the fi
91 CH

Q(\/ —49,9,p) if and only if p splits completely in the normal field
(32) Kz = Q(/ =4y, /a2, /7)),

where

(33) Norm 7, = —¢q}* in Q(\/Q_;)v

n, =1 (mod 2) and =, <O for p, (when \/q, > 0),
(7, 1—a\/q,) # 1, where a’q,—b%q, = 1.
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Ifg,=3and g, =7,¢, = 8+3,/7 and 22-7—32-3 = | as in § 3. Hence 7,
must be chosen so that (n, 1—2\/'_?} # 1. Since h, =1, n, is principal and

Norm n, = —3. The right choice for =, is n, = —5—2./7, since ;|1 —-2./7,
SO

Kg=0(/-3, ﬁ, Y —5—2\/5}.
Note that 1-2./7=@2+/7*(-5-27) and (1+2/N(1-2/7)
= —27=(3/=3) so
Ks=0(/-3, /7. V1+2J7),

the field Cohn and Lagarias conjecture in [1].

§ 5. Case C: (ﬂ)=(ﬁ)= —1. In the last case

q, q;
b 41 Xix2

-1 -1 @ -1 1
M= 1 1|, M=a 1 11,
=1 =1 ar 1 1

and e, depends on y,x,(3), where 3°~q,p~q,. We are required to solve
x*+q,4,py*—q,2* =0,
or
q,py’ =.zz—‘h-"§: X ={q3Xy,

as in Case B. '
If (16) holds and ptb then a primitive solution is given by (28). With the
same notation we have

u+avq,

112209 ='( ) (note (u, g;) = 1)

()= ()6 -6

where 7, = (\/q,) in k, = Q(\/4,).

In case p|b, using z = —u+avq, as in (31) leads to

(,_(-_u)(w)
X1 X23) = P a4
=(_"f)=( ; )(__p)=( ; )
M, myn,/\414, mn,
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If we choose n, =1 (mod 2) and n, <0 for p_, say n, = —./q,¢&,, then
n,m, > 0 and quadratic reciprocity gives just as in § 4 that

= (57) - (2g7)
CrITERION C. If (3) = (ﬁ) = —1, then eg = 1 in the field Q(\/m)

q q;
if and only if p splits completely in the normal field

(34) Ke=0/21. Va2 N —e2a2m0).

with n, defined as in (33).

When g, = 3, g, = 7, the same choice of n, as in § 4 gives
—633/427m, = —(8+3/NJ/U-5-27)

—@+3 /M J1e-N = @+3 /121 —2/7).

Hence K is alsc; generated over Q(ﬁ. ﬁ} by m or its conjugate

\H+2\ﬁ. Finally,
w7 2
142./7 =(2 \/:;+\/'}) .7+2,/21

shows that K. is the field conjectured by Cohn and Lagarias.
This completes the proof of Theorem 2 and the Cohn-Lagarias conjecture
stated in the introduction.

§ 6. The governing field for ¥(—q,q,p)/4(—q,q9,p)°. An immediate
consequence of Theorem 2 is the following

DensiTY THEOREM. If q,, q,, p are distinct primes = 3 (mod 4), the density

of p for which the classgroup € in Q(\/—q,q,p) satisfies

Z,xZ, 1/8
Cl€° =< Z,xZ, is < 3/16
ZyxZ, 3/16.
Proof. Case X (in § 2) gives a set of primes of density 1/8 for which
€/%® ~ Z, x Z, (keep in mind that p = 3 (mod 4)). On the other hand, each of

the criteria A, B, C gives a set of primes of density 1/16 for which
€/€® =~ Zyx Z,. (Use the Frobenius density theorem [5], Il applied to the

fields K ,(v/ —1), Kg(v/—1), Kc(y/ = 1)) These sets are clearly disjoint, since
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they correspond to primes p for which respectively

((ﬂ) (3))=(1, g, 0, < D=t
4y ) :

The theorem follows.

We now show that the field K = K K K is the exact governing field for
the structure 4(—q,4,p)/€(—q,4,p)°, ie. that

Z3(—4,9,) = K KgK.

We first prove that [K: Q] = 64. By Kummer theory it suffices to show that

My,, m, and 32\/q_2 are square-independent over F = Q(\/ —1, \/4,, \/4,) (see
(7)), ie. that the relation

3s) ni.mi(e0/q2)f = n*,  neF,

implies a=b=c=0 (mod 2).
First apply the automorphism

W= =21 V=05 /=11
of F to (35) and multiply the resulting equation by (35), ie. take norms to

0(./~1, /q,). This gives
(—a) =ni, meQW/ -1,V
Which is only possible if 2la. Now take norms in
4 (e20/. =n*, neF,
to Q(\/TI, \/q—‘). This. gives
(—a)*(—q,)f =n}, 1, =NormneQ(/—1, /a,)-

Since —g, is a square in Q(,/—1, \/q,) this shows that 2Jc. Finally, if it were
true that

n,=n% neF,

the field Ky = @(/— 41> /42 /1) would be a subfield of the abelian field F,
hence Q(,/7;) would be abelian, which it is not. (Note \/7, /71 = (/—a,"
does not lie in Q{\/n_i], so this field is not even normal)

This proves our claim that [K: Q] = 64 and also shows that K is the

independent composition of K, (/—1), Kz(./-1), K(/—1) over F =
(/=1 /a,, \/2,). We now prove
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THEOREM 3. We have
Ziy(—9,9;)=K= KAKBKC;

i.e. K is the smallest normal extension of Q which contains Q(,/ — 1) and governs
the structure @(_4142!’)/@(—‘?1‘1217)8-

Proof. Suppose Z;(—g,9,) = L. Then L € K by Theorem 2 and F € L
since F = X,(—q,4,). (This follows from the Rédei-Reichardt theorem, or from
our computations in § 2-§ 5.) For some o, eGal(L/Q), the following im-
plication holds:

(L/ Q

(36) T) = {0} = €(—4,9,0)/€(—q,9,0)* = Z,x Z,,

where {0,} is the conjugacy class of ¢, in Gal(L/Q), and p =3 (mod 4). BY
Theorem 2 and the Frobenius density theorem there must be automorphisms

o, satisfying (36) which fix any one of the quartic subfields Q(/ —4q,, \/jq:. s
O/ =415 /92 Q(\/q_l, \/4,)- Suppose that ¢, fixes the first of these fields.

Then we claim K, < L. If not,

LK, (/—=1)=0(/—1,\/—41, v/ —42):

and by the Chebotarev density theorem there are primes p =3 (mod 4) for
which
LK, /Q\ _ f{o.}
o BRE

But by Criterion A, 6/$® =~ ZyxZ, for any such prime p, by virtue of

K
(—‘fg) = 1. This contradicts (36) and shows that K, < L. In the same way

P
Kg, Kc = L, and the theorem is proved.

onlL,
on K,.

§ 7. A reciprocity theorem. Since the primes q,, g, and p are all

= 3 (mod 4), the fact that Q(,/ —q,4,p) is symmetric in ¢,, 4, and p leads t©
some interesting relationships between the fields K 4, K and K. In order t0
derive them we replace p by g, and write K ,(q,, g,) for K , etc,, to make the

dependence on g, and g, explicit. Note that the order of ¢, and g, is importéllflt
since we have assumed %) _ +1 in our discussion so far.

4,
Criteria A, B, and C may be stated as follows. Here eg refers as always t©

the 8-rank in Q(/ —q,4,4,)
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= eg =1 iff g, splits in K, (g, q5)

q2

B: (_a) Y (ﬁ) — —1 = ey =1 iff g, splits in Ky(gy,q,)

C: (‘_1_3) = -1, (ﬁ)= —1 = eg =1 iff g5 splits in Kc(q,, q,)

Rtt\vriting the Legendre symbol conditions in these statements in terms of the
Pime q, and referring to the appropriate field gives the following statements:

A: (ﬁ) = +1, (ﬁ) = —1 = ey =1 iff q, splits in Kp(q,, q3)
4y q3

B: (%) = +1, (%)= +1 = eg =1 iff g, splits in K ,(q,, q3)
1 3

C: (ﬁ): +1, (&)= +1 = eg =1 iff q, splits in K (43, 4;)
UE] USt

Note (ﬁ) = +1 in A and B while (ﬁ) = +1in C)
q, UE)

In the same way, taking g, to.be the featured prime gives the respective
Watements:

A: (9_‘)= -1, (gi)= —1 = eg=1iff g, splits in K¢(q;, q3)
q: q3)

B: (ﬁ): - (q_‘)'= —1 = eg =1 iff g, splits in K¢(gs, q;)
UEY 9>

C: (‘;_')= +1, (%l) = —1 = ey =1 iff q; splits in Kg(q3, 92)
3 2

(gi)-_- +1 in A, while (ﬁ) = +1in B and C)
2

4q3
Each of the formulations of Case A are equivalent, as are the formulations

of Cases B and C. Collecting the equivalent forms of A, B and C together, we
ave:

Case A: ff(gé)= +1, (ﬁ)= +1, (—"‘)= +1, then
4, q, 4,
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q, splits in K ,(q,, q,) iff
q, splits in Kg(q,, q5) iff
q, splits in Kc(qz, 43)-

CAsE B: If(ﬁ)*—* +1, (b)-—* +1, (ﬁ)= —1, then
q1 QI QZ

q5 splits in Kg(q,, q,) iff
q, splits in K ,(q,, q5) iff
g, splits in K:(q,, q5)

Case C: If(g—z-)= +1, (2:1)= -1, (ﬁ)= —1, then
q, q, q:

g splits in Ko(qy, q5) iff
q. splits in K (g5, q,) iff
q, splits in Kg(qs, q,).

It is easy to see that Cases B and C arise from Case A by renaming tl}‘"
primes g;. The one combination of Legendre symbols which does not occur 12
these formulations is the one for which e, =0, ie.

(9—2)= +1, (@)= =1 (23)= +1.
U5 9 q:

Rewriting this as

37) (ﬁ)z +1, (q—’)= +1, (ﬁ)= +1
qs3 q, q4

shows that this case represents a cyclic combination of q,, g, and g,. Defin®
a triple of primes (= 3 (mod 4)) to be a quadratic cyclic triple if (37) holds fof
some ordering of the primes, and noncyclic if (37) holds for no ordering of the
primes.

This can be put in graph-theoretic terms using the graph G defined in the
introduction: the directed edges of G are (g;, g;) (from g; to g, wher¢

(q—j) = +1. For example, the triple (3. 7, 11) has the graph

4q;
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and is therefore a cyclic triple, while (3, 7, 19) has the graph

19

£
3

ad is noncyclic. Thus (g, g,, g5) is cyclic iff G has a cycle.
The above formulation of Case A may now be stated as the

ReciproCITY THEOREM. If (g4, 4,, G3) is a noncyclic triple of primes

S 3 (mod 4), with graph
/G‘z
q!\ l
qa

q3 splits completely in the.ﬁeld K (9., q7) iff

q; splits completely in Ky(q,, q;) iff
q, splits completely _I'ﬂ Kc(q'p q3),

then;

Where the respective fields are defined in equation (7) (or in (20), (32) and (34)).

This is the special reciprocity theorem as stated in the introduction.
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Explicit reciprocity laws on
relative Lubin-Tate groups

by

Yurtaka SugevosHr (Fukuoka)

§ 1. Introduction. In [6], E. de Shalit proved an explicit reciprocity law
conjectured by R. F. Coleman [3, 4]. It gives an explicit formula for the norm
residue symbol on fields generated by division points of Lubin-Tate formal
groups, and generalizes the explicit reciprocity laws of Artin—Hasse, Iwasawa,
Kudo and Wiles [1, 9, 12, 17]. In the present paper, we extend it to relative
Lubin-Tate formal groups and give a refinement of the explicit formulas of
Iwasawa, Kudo and Wiles.

Let p be a-prime number, k/Q, a finite extension, and g the number of
clements in the residue field of k. Let d be a positive integer, k' the unramified
extension of k of degree d, and ¢ the Frobenius automorphism of k'/k. Let
o and o' denote the integer rings of k and k', respectively, and p the maximal
ideal of o. Let v: k* = Z denote.the normalized valuation of k, and let x be an
element of k such that v(x) = d. Let mek’ be such that Ny ,n = x, and take
a power series feo'[[X]] satisfying f(X)=nX moddeg2 and f(X)
= X7 modn. There exists a unique one-dimensional commutative formal
group law (called a relative Lubin-Tate formal group (5]) F ¢€ o’ [[X, Y]] such
that feHom(F, F7). We write 4!— for its addition. For aeo we denote by

[a],€ X0’ [[X]] the endomorphism of F; such that [a]/(X) = aX mod deg 2
and [a]fof = fola],-

Let Q..Qenote the completion of the algebraic closure of k, an_d pq the
maximal ideal of the integer ring of Q. Let W, denote the set of all p'-divisibn
points of F ;(pg). The field k,; = k'(W}), i > 1, does not depend on the choices

of 7 and f, and is an abelian extension over k with norm group {x) x (1+p).
Any element of W} = Wj—W;j~! is a prime element of k.. The Tate module

=1li i
W, 1!_“1 We-un
i

(the limit is taken with respect to the maps ¢~ (/) of F is a free o-module of
rank 1 by [a],() = ([ade-4n()) for a€o and y = (y);€ W}, and
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