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Explicit reciprocity laws on
relative Lubin-Tate groups

by

Yurtaka SugevosHr (Fukuoka)

§ 1. Introduction. In [6], E. de Shalit proved an explicit reciprocity law
conjectured by R. F. Coleman [3, 4]. It gives an explicit formula for the norm
residue symbol on fields generated by division points of Lubin-Tate formal
groups, and generalizes the explicit reciprocity laws of Artin—Hasse, Iwasawa,
Kudo and Wiles [1, 9, 12, 17]. In the present paper, we extend it to relative
Lubin-Tate formal groups and give a refinement of the explicit formulas of
Iwasawa, Kudo and Wiles.

Let p be a-prime number, k/Q, a finite extension, and g the number of
clements in the residue field of k. Let d be a positive integer, k' the unramified
extension of k of degree d, and ¢ the Frobenius automorphism of k'/k. Let
o and o' denote the integer rings of k and k', respectively, and p the maximal
ideal of o. Let v: k* = Z denote.the normalized valuation of k, and let x be an
element of k such that v(x) = d. Let mek’ be such that Ny ,n = x, and take
a power series feo'[[X]] satisfying f(X)=nX moddeg2 and f(X)
= X7 modn. There exists a unique one-dimensional commutative formal
group law (called a relative Lubin-Tate formal group (5]) F ¢€ o’ [[X, Y]] such
that feHom(F, F7). We write 4!— for its addition. For aeo we denote by

[a],€ X0’ [[X]] the endomorphism of F; such that [a]/(X) = aX mod deg 2
and [a]fof = fola],-

Let Q..Qenote the completion of the algebraic closure of k, an_d pq the
maximal ideal of the integer ring of Q. Let W, denote the set of all p'-divisibn
points of F ;(pg). The field k,; = k'(W}), i > 1, does not depend on the choices

of 7 and f, and is an abelian extension over k with norm group {x) x (1+p).
Any element of W} = Wj—W;j~! is a prime element of k.. The Tate module

=1li i
W, 1!_“1 We-un
i

(the limit is taken with respect to the maps ¢~ (/) of F is a free o-module of
rank 1 by [a],() = ([ade-4n()) for a€o and y = (y);€ W}, and
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W, =lim W
is the set of all o-generators of W,.
Let p,; denote the maximal ideal of the integer ring of k, ;. Let neN,
2€ F (p.,) and Bek;,. Take any E€ F,-n(p,) satisfying a = ¢ 'o...0f* "(&)
and define a norm residue symbol on k., by

(@, B)yn = 6,...09)(5),:(”6 EWo-ny),

where o, .(B) e Gal((k,,)"°/k,) denotes the Artin symbol for .
Let w = (w);€ W} Take any power series seF (Xo'[[X]]) satisfying
« = s(w,) and define

l =-n
s = Afos-—;al}‘os“of" ’

where 1,: F, 5 G, denotes the unique logarithm map satisfying AX)=X+..-
Generalizing Coleman’s interpolation theorem [2, Theorem 15; 5, Theorem 4J.
we see that there exists a power series e 0'((X))* such that N,__,_ B = t*"'(®)
for 1 <i < n. Define o

1  dt/dX
Ak =d/1,r/dX t/t eX~1o'[[X]],
S Dpp= ﬂ’;&(n‘,——n;ljm{ Y ((@1)(6,0° "))

W
d
+=20)(1 --((./Vft)"”‘,/t)"'"(O))})Ek,

where A" ;: 0'((X))— o'((X)) denotes Coleman's norm operator [2, 5] associated
with f. Our first result is (§ 3):

S, Drn€0; (@ Blrn = [<5, O rade-nin(@,)-

Using this formula, we deduce some explicit formulas under certain conditions
on o and § (§ 4). .

There are some different approaches to explicit reciprocity laws on
Lubin-Tate groups. Vostokov [13-15] and Vostokov and Fesenko [16] gave
an explicit formula for («, B)., on any field E containing division points W} of
a Lubin-Tate group by using a power series expansion for a with coefficients in
the inertia subfield of E/k and a power series expansion for § with coefficients
in the absolute inertia subfield of E. Kolyvagin [11] gave a generalization of
the formulas of Artin-Hasse, Iwasawa and Wiles on any field containing
division points for a wider class of formal groups.
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§ 2. Analytical pairing (s, t),. Let K denote the closure of the maximal
unramified extension of k, and o, the integer ring of K. Let ¢ also denote the
Frobenius automorphism of K/k. In this section, we extend the definition of
(s, t);, to power series with coefficients in oy and describe its properties.

Let 7 be a prime element of K. Take a power series fe o [[ X]] satisfying
f(X)=nX moddeg 2 and f(X) = X* mod =, and let F eog[[X, Y]] be the
corresponding formal group law such that fe Hom(F, F§) [10, Chap. IV]. For
such an F, we define [a],, -}-, Wi, W,, Wj, W,, A,, @} and &, as in § 1.

The field K; = K(W}), i > 1, does not depend on the choices of 7 and f. Let
® = (w);€ W,. As in [6, § 2], we define

% {teox((X))' ‘(./Vft}"'fte 1 +%f""_:o...of(X]ox[[X]]}

= {teog(X)* [ (@) = Nyt (@i40), 1 S i<}

for n> 1 and put
M7 = (| M} = {teog(X)* | At = t°}.
n=1
For seF (Xog[[X]]) and te M} we define

d=1 l
$$y fm= ) {W 2

i=0 veW g - niny

(©39)6,1)" ")(v)}w .

i=
d- -
*

(5. Db = T {rsers s O (07 10}

s, ‘)J’.n = (s, I)}',,-}-(S, t)}_"EK.
Remark 1. (i) Since A;=limf® ‘o...offn® """, we obtain

O%se Xo [[X]] as in [2, Lemmas 20 and 21]. Using the properties of
Coleman’s trace operator ¥, [2], we see that

<8, b= i{—‘“_na—-J..+¢—-(-5’3-”(;;((9}5)(5;”"- ))(01} ey,
i=0

Where 5 -np) = Fp-10)0-..0F o-nyy. On the other hand, by the definition of
MY, we have (s, t)F,€0x. If f; s and t have coefficients in o, then s, t) s €0.
(ii) ¢s, t);, modn" is o-linear in s and linear in t.
(iii) Let U denote the unit group of o,. Let ' be another prime element

of K. We define
ox(n, ') = {neog| n°n=n=n'},

Then Ug(x, n') # @ and ox(n, ) = o by [10, Lemma 3.11]. If =, n’ek’ and
N, .n = Ny, then og(n, o) = o' by the same lemma. Take a power series

Ugln, ') = Ugnog(n, o).
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f'eo[[X]] satisfying f'(X)=n'X moddeg 2 and f'(X)= X? modn. For
neog(n, ') there exists a unique power series § = [, e Hom(F, F)s
that 8(X) = nX moddeg2 and 6°0f = f'of [10, Proposition 3.12]. In par
ticular, f = []/.¢(s)- The assertion of [5, Theorem 2] also holds for [#],- Let
neUg(n, @), then 8: W,3(y),—(6° '(v)).€ W, is an o-module isomorphis®
Put ;

§ = 00s0(0° ")~ ' e F (X0, [[X]]),

Then @%s =y~ (035)00° ", 5,t = n(6,.1)08, ¥ ;t = (¥ ;.)00” and ther¢
fore {5, )50 =<5, L)s n- .

(iv) Suppose that fe o' [[X]], Nyxn = x and that s, ¢ have coefficients in0:
Let ;€ Wi-nyy for 0 <j<n—1 (yo = 0). Write’

t=to0 'eM}.

= (N 0" Jt=1+7""""*""0...0 AX)W(X)/X

with some weo’[[X]]. Then, as in the proof of [4, Lemma 13], we see fro®
P (0 ,8) = W gupy(N (1) = (3t +0,0)" [2, p. 115] that

1
(5, fn= Tl-u(ﬂ?m{ 3

WG -nin

i ¥

yeWn_\ ;) —(0)

((2,05)(6,0° "))

(ufosx«s,vr'")m})-

Since (5,0)° "(y) = n® e te e () fy for ye WiZh,—{0} and since

(5. 09}n=— n-,k((’lf"sw*'")(O)),
X
] -n
(S, r)f.l! = nx.ni’k(nw" T Foarn +w— leos(wn)(éft}w (wn))

n=1
Fral(e o)

Put a = 5(a,) € F ;(Ps,») and let <, )., denote the first term of the right-hand
side of this equality. Since

ﬂx.;;k((i‘;—?fw"_"){?;))en [17, Lemma 11],

we obtain

we have (a, t),€o. In particular, if te M7 N0'((X))", then w = 0 and we have
(&, g = S, t)s.n€0. In this case, since & (5,1) = Mdg(r)(A pt) = 7(8,)" we
ha\'c (ﬁ, t>!li = <E| £>I.h for i =n. .
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§ 3. The Coleman—de Shalit formula in the relative case. Let x, 7, fand w be
as in § 1. Let «e F(p,,) and b = (B),€ B, = lim ky; (the limit is taken with

respect to the norm maps). Then the symbol («, b), = (&, B;) 7.i)izn defines an
element of W,. We write («, b),,; = («, B)s.i for i=>n. Lette M7 no'((X))”
be such that f; = t® ‘(w;) for all i > 1 [7, Theorem 2.2]. By Remark 1(iv),
we define <{a,b),=<a,t);;€0 with i>n and define [a,b],
= [{a, b),],(w)e W,. We denote by [, b],; the ith component of [a, b],.

THEOREM 1. (a, b); = [«, b],,-

Proof. It suffices to prove (a, b)s,; = [@, by, for all i (> n)edZ. Fix such
an i and put o; = [xY~9] (o) for j (> i)edZ. Then, since (%, by, = (;, bl
and [a, b, = [, blo,, it is enough to show (x, b)y,; = (a;, b],,; for suf-
ficiently large j. However, this can be proved in a similar way to [6, § 3].

Remark 2. In the case where p is odd, Theorem 1 was proved by Imada
[8], by computing (a, b), for f(X) = nX +X".

THEOREM 2. Let o, B, s and t be as in § 1. Then

(@, B)rin = [€85 £ p,n)e-nin)(@,).

Proof. We prove the theorem by translating the proof of [6, Theorem 1]
to relative Lubin—Tate groups. Since both sides of the equality are linear in B,
we may assume that f is a prime element of k. ,. Put 7’ = Ny B, X' = Nyp '
and u = x'/x. Then ue 1+4p" and k,; = k,; for 0 <i < n. Take a power series
f'eo’[[X]] satisfying f'(X)=n'X moddeg2 and f'(X)= X* mod = Let
neUg(m, n') and put |
0 = [l eXox[[XT]", @ = (@), =0@eW;, ¢ =o'
Since #n* ! = u, we have 0° = fo[u], = [u],00. Put
- §=00s50(0°" ") e Fp(Xog[[X]]).

Then §* = [u]f»os'o[u“],-..u.,. It is easy to see from [10, Lemma 3.11] (or
from [6, Lemma]) that there exists a power series he F (X0, [[X]]) such that
§ = h® & h. Therefore we have

(h'“" 7 h)w' = ([u]r.oho[u = 1]0""(!'})?’ i [u]f‘oho[u— 1]0_ -
Put _
s = b 7 [u);-0holu™ Iy, € F (X0 [[X]]),

o = s'(wp) € Fp(psn)

Then 6° (@, B)s.m) = (&', BYy.a [6, Lemma 1]. Since Ny, ,xp = X', there exists
some b’ = (f)),€ B, such that f = ;. Let Y e MR X0 [[X]]* be such that
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Bi = t'"* ‘() for all i > 1. Then, from the above and Theorem 1, we have

(@, By = [K5, UD  nlo-nn(@,). So, we must show (s, 1)y, =<5, '), mod "
Put t =to0 'e M} N Xo,[[X]]”. By Remark 1(iii), we only need to show
i t)pa=Ls, E)_,- » mod ", or equivalently,

E=v, pa=Ls, U/t)p, mod 7"
Since EFS’EXZDK[[X]], we have (555, £)}, =0 and the term correspon-

ding to y =0 in <§3¥, )5 is 0. Since u =1 mod zn", we have
PEFS)0) = w—1)OFh)(y) for ye W-n,y—{0}.

Using 0.t =X"'+... and [2, Lemma 6], we see that

<S-? S’, '[_>f'.ll = (s-FS’! iw)}’.n

@t

-y {% X {(@}'h)(éf-r‘)"")tr)}

i=0 YEW —niey —(0)

= "(w)dh
_E=ZO {W(JX(O)_TM(O) )} mod 7"

u—1 ds'
TR e g

[

(0).
Put r = t'/teog[[X]]*. Since §,reog[[X]], the term corresponding to y =0
in {s', r>}, is 0. Since r* (W) =1, 1 <i<n, we may write

r(X) =140 of (X)p(X)/X, yeo [[X]].

Then (6,7)° "(y) = a'® "+ **7"y""(3)/y for y€ Wy-ny,—{0}. Therefore, by
[2, Lemma 6], we see that

AN G =i U
—dZ {(——(0) _;_,{“) & ) '"(0}}"; mod &

On the other hand, since (4 ,r)(0) = r(0) = 14+2'*" ' **1y(0), we have
—ll— 1{7‘;]

<A Edf {%(0)( °"(0)— ——_-i-(——)*y“‘ "“(0))}’1 mod 7",

(' 15

Hence, using r(0) = (¢'/t)(0) = (t'/t)(Q)nen k'™, we see that
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il : d n—1+d “n=1
S pa = L D007 0 -y 0) mod
l d =-n—-li+d n=1
= e TraTeTg X(O)(f“’ ©)/r*"""'(0)—1) mod "
u—1 ds’
= W&?“’"

Thus we obtain the desired congruence and conclude the proof.

§ 4. Some explicit formulas. Let x, n, f, o, fand w be asin§ 1. Let m = n
and suppose that f = Ni_, x..B, B €ksm. Take any power series te€o’((X))"
satisfying B = 1* "(w,). We define

l -m
<¢¢, t)f.m = nx‘mfk(wlf(a)(éft}w (CDM))Ek.
Let e MTA0o'((X))* be such that f =" "(w,). We have {a, t'); €0 by
Remark 1(iv).

THEOREM 3. If (a) m = 2n, or (b) m = n+1 and ae F ((p%, "I for some
L (0<I<n—1), then

(aa ﬁ}j‘,n = [(a, t.‘)f.m]&'"(ﬂ(mn)'

Proof. Take a power series s€F (Xo'[[XT]]) satisfying a = s(w,,). By
Theorem 2, we have

@, B =f"_"_'0---0f°‘"."((a. B)ym) = [$85 U p.mlo-min(@y)-

Write (A, £)° "/t = 1+7°" ' f*" 0. of (X)W(X)/X, weo'[[X]). Let y;e
Wi for 0 <j<m. By Remark 1(iv), we have

S D pm =Lt D pm— z T, J;k((lj;s )( ;))

We estimate the second term of the right-hand side of this equality. By thé
assumption of the theorem, we may assume that se X*" "o'[[X]] in case (a)

and se X9" "@" '+ D[ X]] in case (b). Since se X?o'[[X]] in both cases,

we have
A
T}:'m(( W )( o))

Let & be the o [[X]]-submodule of K[[X]] spanned by {X*/n}Z,. Then
'IIE % [17, Lemma 4]. Using this and the inequality (@—Wg—1)=iforieZ,

7 — Acta Arithmetica LV.3
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we estimate the other terms. Let 1 <j < m. In case (a), we see that

oo N
((’T“” "')w) > minv(§§" /) —v(y)

iz0
min( - i) ; > ( !

= == —_— — = H— — ],
izo\@ 'g—1) ¢ 'g-1) q—1

Similarly, we obtain the same estimate in case (b). Since the different of k., ik 1s
p/~ Va1 we obtain

A —m
nx.ﬂ((—f}?fww )(«;J,)) =0 mod 7"

in both cases and conclude the proof.

THEOREM 4. If (a) m > 2n, or (b) m > n+1 and aeF (pi% ') for some

1 (0<1<n-—1), then {a, t);m€0 and we have an explicit formula

(t!, ﬁ}f.ll = [(0’-, t>f.m]¢'"(f](mn)'

Proof. Write t' = tz with zeo’[[X]]*. Then, by Theorem 3, we only need
to show

o, 2D pm = Rx_mfn(ﬁ:i;(a)(afz)”-m(wm)) =0 mod n".

Since z " —1 can be divided by £ 'o...0of* "f* *0...0f " in o'[[X]]
we have v((5,2)° "(w,)) = m—1/(g—1). Then, using the inequalities
(¢—1)/(g—1)=i for i 20 and (¢'—1)/(g—1) = i/q for i <0, we obtain

1

V(A @8 ,2)° " (@pn® o) > ,,_(m_qu)

in both cases and conclude the proof.

Remark 3. Theorem 4 is a refinement of Wiles’ formulas [17, Theorems
1 and 23]. In particular, in the Hilbert symbol case (k=Q,, x= pd.
f(X)=1—(1—XpP, F(X,Y)=X+Y—XY and (1-{),eW)), we obtain an
explicit formula

([1 _a)lm")au.nm}—l =¥,
w = —T,(log(1 —a) L, (de/dX)*"" (1 = L)/ B)/P™

where {, denotes a primitive p'th root of unity satisfying (. = (, and
T,, = T, This formula is a refinement of the explicit formulas of Iwasawa
[9, Theorems 1 and 2] and Kudo [12, Theorems 1’ and 27}.
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