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Representation of real numbers as sums of U,-numbers
by
K. ALNIACIK * (Istanbul)

In [2] P. Erdds proved that every real number can be represented as
a sum and product of two Liouville (U,) numbers. In this paper we prove the

THEOREM. Every real number—except Liouville numbers—can be repre-
sented as a sum of two U,-numbers.

First let us recall the

DEFINITION (). The complex number ¢ is called a U,-number if for every
w > 0 there are infinitely many algebraic numbers y of degree 2 with

€=yl <H@E)™™
and if there exist positive constants ¢, m depending only on £ such that
IE—p/ql > cq™"
holds for every rational number p/q.
Let « be a real number \;u'ith the continued fraction expansion
(1) 0= (g, Ayy vy Buyoss)s

In the sequel we shall write for simplicity « = {a,) instead of (1). In the proof
we shall use some lemmas:

LEMMA 1. Let o be an algebraic number of degree 2 and let a, b, c, d
(ad —bc # 0) be integers(®). Then we have

H(“””) < 6max(lal, b}, Icl, 1d)? H ().

co+d

LEMMA 2. Let r, = {a,», r, = {b,) be positive real numbers and let p,/q,
denote the n-th convergent of r,. Next assume that
(2) O <|ry—rl <727 g
holds for some integer s = 0. Then a;=b; for 0 <i<s

* Supported by the Scientific and Technical Research Council of Turkey.

(') We note that we have, in fact, defined a Koksma U3-number instead of a Mahler
U,-number. However, it is known that they are the same (sec [3], [4]).

(2) In this paper the word “integer” will be used as an abbreviation for “rational integer”.
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Proof. First we show that a,=b,. Assume that a, # by, then
lag—bol > 1 and this gives us a,+1 <r, or r, < a,. On the other hand, it is
clear that a,+(2¢,) "' <r, < a,+1—(2q,)"'. Combining these inequalities we
obtain |r,—r,| = min{(2q,)"", (247"} =24, ", which contradicts (2):
Hence we may assume that there is an integer k >0 such that g, = b; for
i=0,1,...,k and a4+, # by+;.

Thus it follows from the theory of continued fractions that

(3) |"1_r2|?|r'1_r'z|(9ﬂﬁ+|bk+qu)hl
where 7y = {Gxs 1y Qxv2s ---0> T2 = {biw1s by o).

Now if bysy > 4ay4,, then |ry—ry>27"bysy and by (3) we get
Iry—r,| > 187! g; 2. Next assume that by, y < 444, and |ry—r3| > 1. Then by
(3), |ry =7, > 367! gy ?y. Finally, let by, <4ai+y and |ri—r3) < 1. We note
that in this case |@y4;—bi+:/ =1 and so

4) @iy =1y OF 13204+

On the other hand, using the properties of continued fractions we see that
Gy +(2qi+2) ! < ¥y < aysy+1—(2g443)"". By combining this with (4) e
obtain

[Fy —r2] = min [lﬂu 1 —(an 1+ (254 2)” 1)|, lak-l—l +1 —(ﬂn 1+ 1—(2qk+3)" l)l]
Z(2qk+3)_l-

Using this and by, | < 4a+, in (3) we have |r, —r,| > 727! ¢, and so by (2
we have k = s, which completes the proof.

LemMMA 3. Let r, =<a,> = {aqg, @3, ..., ap, 1, 1,...> and r, = (b, be
positive real numbers and let p;/q; denote the i-th convergent of r,. Assume that
Iri—p/gl > 47" q™ (i =1, 2), where 4; (> 2) and m; (> 2) are constants not
depending on q. Furthermore, assume that

(A) 0<|ry—ry) <N~' where N >72qm+a-

Then we have:

(a) There is an integer k such that a;=b; (i=0,1,..., k), ax+y # b+ 1>
k=m+1 and 11g, > \/N.

(d) fry—p/al > (22;) g™

(©) Ir,—p/gl > (24,)" g™ if 9 < qx-1-

Proof. (a) Since N >72¢3.4, by Lemma 2 we have a =b; for
i=0,1,....m+1. Hence there is an integer k>m+1 with a,=b; for
0<i<kand ap,, # bes:. Thus

(5) N7' > |ry—ry) > [y =12l (9by+ q8)”

where rj = (1+./5)/2 and 1y = byyy, sz, o)
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It is clear that by, ; = 2. Now if 2 < b, ; < 4, then |ry —r5| > 37! and by
(5) we get 108g7 > N. Next assume that b,,, > 4. Since r} <2 we see that
|Fy—r5] > 27" by4 1, and so by (5) we obtain 18g; > N, which completes the
proof of (a).

(b) It is enough to show that (b) is true for p/q = p,/q,, where p,/q, is the
nth convergent of r;. For n <m—1 we have

[Py —=Pu/dal = @5 (€1 Gutdu-1)"" > Gn ' (283 Gu+n-1) "
> (297 €29t -1 =27 Iy pu/gal > (24) 7 a2
where &, = (Aus1s Gnazs -5 €3 = {bps1s bpsas...0. If n>m, then
Iry=py/a,l >37"q.% > @24) g™,

and this completes the proof.
(c) The proof is similar to the proof in case (b).

Lemma 4. Let r, = {a,>, r, = {b,> be positive real numbers with a; = b,
(i=0,1,...,k), qjax=1(=1,2,..) and by4, > 1 for some integer k > 0.
Then we have

@) |ry—ryl> 121g:2,  (b) |r1—-r2|4q;2,
where g, is the denominator of the k-th convergent of r,.

The proof of (a) is similar to the proof of Lemma 3(a) and the proof of (b)
follows from the well-known properties of continued fractions.

Proof of the Theorem. Let r be a real number with r¢ U, where U, is
the set of all Liouville numbers. It is clear that if re Q or r is a U,-number, then
there is nothing to prove. Next if r is a real algebraic number of degree 2, then
by Corollary 2 in [1] we have the Theorem. Hence we assume that r¢ U, v U,
and r is not an algebraic number of degree < 2. Furthermore, we may assume
that 3<r <4

For the proof, we shall construct algebraic numbers a,, f,(n =1, 2,...)in
the order e, B;, @5, B3,... with the following properties:

(a) lim o, and lim f§, exist. Set y, = lim o, y, = lim f,.

() r=y,+7,-

(c) There are constants C, M > 0, depending on y; (i = 1, 2) and r only,
such that |y,—p/q| > Cq™™ (i=1,2).

(d) lyy—ol S H()™ lr2—BJ<H@BY)™ (n=1,2,..).

We note that (c) and (d) show that y,e U, (i =1, 2) and we obtain the
assertion of the Theorem by (b).

Since r¢ U, u U,, there are constants ¢, = ¢o(r) > 1, t = t(r) > 0 such that

(6) lr—Bl>cs'HB™
holds for algebraic numbers f of degree 2. Put L = c,(96-384-121).

n—+ao n—+o
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In the sequel p/g®, RY/SY, r@/s®, PH/OY (n =0, 1, ...) will denote the
nth convergents of a,, r—a,, f;, r—pB; (i = 1, 2, ...) in their respective continued
fraction expansions, and we set r—a; = {a"), r—B,=<bP) (i=1,2,...)
Finally, let {¢;} (¢, =0, &4+, > ¢, ¢ < 1) be a sequence of real numbers.

Now we define algebraic numbers a,, B, as follows: o, = (l+ﬁ)/2,

al”, 0<i<gl!

1, i>1, v=1.2,..J

(7, B,=<dMy, where df ={

B 0<i<k

& i>k, oty 2

®), « =<y, where cs"’={

where [, (v=1,2,..) and k, (v=1, 2,...) are positive integers satisfying

©) S{Y > max {221}/, 22-21@ =) H(B)}, aflh, #1,
(10), S > max {72(Q£i’+4)3;2, 22 St QuplineL . HBP)
a’:}+1 ?"- l$

(1), O, = max {T2(S )23, 22 2Weveamsisa), Qoptieas, H(y . P*1),
kl = 0’ bi‘:}+1 "ré l.

It is clear that, since o, is given, the real numbers o, f, have been defined in the
following order: o,, B, o,, B,, #3,... We have by (7),,

(12) s=8" ¥=RP (i=0,1,...,[,n=1).
Proof of (a). It follows from (7), and (8), and Lemma 4(b) that
1B, —(r—a) < (Y72 v=12,..)
o, —(r—Bo-)l < @L)72  (v=2,3,..).
Let j > 2 be an integer. Then using (13) we get
lot;— 0t o] < lotj—(r— Bj- 1)l +1Bj—1 — (r—ej— 1)l < (@F )2 +(SEZ) 72
On the other hand, (11),-;-; gives us Qf " > SP_ Y. Therefore
(14) lo;—at;— 4| < 2(33_-,”]_2.

and using (14) for integers m, n (m > n > 0) we have

(13)

m=1 m=1
(%) let,, — 22| < jZ lor g —a) <2 3 (SP)72 < 4(SE)™
=n j=n

Since S{” — co as n — oo, (*) shows that {a,} is a Cauchy sequence and sO

lim o, exists. Similarly, one can show that {f,} is also a Cauchy sequence, and
n=+a

this completes the proof of (a).
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Proof of (b). Putting y, = lim o, and y, = lim «,, we see from (13) that
r=v;+7;. .
Proof of (c). First, by induction, we are going to show that

(135), lee,—p/gl > 67" g~ (v=1,2,..),
(16), 1B,—p/al >(2c) g™ (v=1,2,..),

where ¢, = 2¢,96".

Let p/qg (p,g>0) be a rational number with p>4q. Then since
o, =(I+\/§)/2 <2, we have |¢;—p/g| > 2. If v>1 is an integer then by
(m=vn=t We have la,—oy| <4(S{”)" <1, and so |u,—p/gl > |e,—p/al
~|oe, —«,| > 1. Similarly, we have |B, —p/q| > 1, since f; < 3. Next for v> 1
we have |8,—B,| < 4, and therefore |8, —p/q| > 1B, —p/d|—1B,— | > 3. Thus
(15), and (16), are true for p/q with p = 4g > 0. Therefore we may assume that
the rational numbers p/q in (15),, (16), satisfy p < 4q.

Proof of (15),. Since «, =(l+\/§)/2 ={1,1,1,...) we have
(17 oy —p/al >371q72>371q7%,
that is, (15),=4 is true. Now assume that «, satisfies (15), for v=1,...,n
Proof of (15),=n+1. By (13),=, we have |[(r—pB)—a,l =I|(r—a,)—B,|
< (S{™2. Next by (10),=, (for n = 1, we use (9)), we have (S{”)* > 72(Q{"+4)°

> 72(gf+4)>. Thus applying Lerama 3 to r; = a,, r, = r—f,, we see that there
is a positive integer ¢, such that

(18) b =" for 0<i<t, bW, #1,
(19) >kl gl =100 > .

Now we show that't, < k,.: It follows from the definition of B, that
d"=a"(i=0,1,...,1,)and d{’;; = 1. On the other hand, by (9) and (10),-,
we have af,, # 1. Therefore we can apply Lemma 4(a) with r, =8,
r, = r—a, to obtain |(r—a,)— B, > (118{")~2. Next applying Lemma 4(b) to

r, =ua, r, =r—p, (using (18)) we get |(r—B,)—0a,l < (Q)~% and combining
these we obtain

(20) LS > o).
On the other hand, by (13),=,+; we have
(21} l(r_ﬁn)_an+ ll o= (Qﬂh |)_2'

Now assume that t, >k, . Then we have ¢{"}’ = 1 by (8),-,+,. Combining
this with (18) we see that b{”, ; # ci"11’. Thus we can apply Lemma 4(a) with
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ry=y4y, ¥y =r—p, to find

(22) =B —tns 1] > (11QE) 72,

and so combining (20){22) we obtain Qf7,,
(11)y=p-
Now we have some remarks:

< 1218{”, which contradicts

1. Using the above argument we find a sequence of integers t,, {5, t3, .-
such that k; < t; < k;+; (i=1, 2, ...). Furthermore, by k; < ks, (i=1, 2, aan)
we see that

(23) [i<'[i+l (i= 1,2,...}.

2. 1t follows from b = ¢f® (0<i<t,), b ="V (0 <i< kyyy) and
t, < ko that ¢ = ¢f"*Y (0 < i < t,). Next using this and (23), one can show
that

(24) =" Osist),

where s, m are positive integers with s <m.

3. Let n, m be positive integers with n < m. Since t,+1 > k,, it follows
from the definition of &, that ¢, ; = 1. On the other hand, by (18) we have
b{m, , # 1. Next it follows from t,+1 < ky4, and the definition of a,,, that
¢ = b, , # 1. Finally, by (24) and t,+1 <t,;;, We have ¢y = ety
= b, | # 1. Thus ¢{’, # c{y},, which shows that if n#m then o, # o,

4. Tt is clear that in the proof of 3(b) we do not use the condition (A) of
Lemma 3, that is: if r, = {ag, @ys-.., Gy 1, 1,...) and r, = {b,> are real
numbers with a, = b, (0 <i<k) and k > m+1, then 3(b) and 3(c) are true.

Now we continue the proof. Applying Lemma 3(c) to ry, = a,, Iy = On+1
(using (15),-,) we obtain

(25) letas 1 —plal > 271 g~ 70
whenever
(26) O0<gs q}:)—l = f:’— 1+

We note that the equality in (26) follows from (18).

We consider two cases in (26):

Case 1. Let 0 <q<gqi!L,. It follows from (24) that c{V =cf"*" for
0<i<t,. Thus we can apply Lemma 3(c) with r; = a;, r; =44 (using
(15)v=l) to Obtain |an+l “P/‘” > 6_14_4"

Case 2. Let g~ 'L, < q <gi]-, for some integer j with 2 < j < n. By (24)
we have ¢ = ¢{"* ) for 0 < i < t;. Therefore applying Lemma 3(c) to ry = %
r, =ty (using (15),=;) we obtain

(27) ltns 1 —p/lgl > 1271 g~ 47",
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On the other hand, by (9), (10),-;-, and (19) we get
g>08-1, 52711, 5 2271 s-D > g1,

fj-1— 1i-1—

Thus (27) yields

(28) lotw 1 —P/q] > 671 g7
Secondly, contrary to (26), suppose that

(29) a> 0% ;.

It follows from (6) and Lemma 1 that

(30) lr—B)—plal > o' 96 "¢ > H(B,)™".

Now we give an upper bound for H (8,). It follows from the definition of B,
and (12) that
ra, +ri?-;  R{Pa +R{-,
sPay+sf-y Sy +SE-1
Using R, R{",, Si"_, <4S{ in Lemma ! we therefore get

(31) H(B,) < 96(S[)".

On the other hand, since b =c® =1 we have Q! = b{ Q" (+00_,

<20{™_,. Using this together with (20), (29) in (31) we obtain
H(B,) < 96(S{")? < 96- 121 (Q")? < 384+ 121(Q("- ,)? < 384-121¢>.
Hence by (30)
(32) lr—B)—plgl > L' q~*.
Next, combination of (10),-, (if n =1, we use (9)), (20) and (29) gives us
g>0QM  >271 QM > 2271 S > L,

Thus (32) yields |(r—B,)—p/ql > q~*~**'. Finally, applying Lemma 3(b) to
ry =041, Iy =r—p, (using the above inequality) we get

(33) *ltass—p/gl > 27 gmH T

Thus (28), (33) give us |,s1—p/gl > 67" q #7%*), that is, we have
(15),=p+1 in this case.

Proof of (16),. Using (6),
lr—a,)—p/al = Ir—(oy +p/g)l > ¢5 ' H(oy +p/g) ™"

By Lemma 1 we find H(x, +p/q) < 9642, and so [(r —a,)—p/q|l > co 196—1g= 2,
and applying Lemma 3(b) with r, = 8,, r, = r—a, we obtain

(34) B, —p/al > ci'q™¥,

ﬁll=
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that is, (16),-, is true. Now assume that (16), holdsforv=1,...,n—1(n > 2).

Proof of (16),-,. It follows from (13),-, that [r—a,)—f,-:l
=lr—Ba-1)—% < (@)% Next by (l1),-,-; we have (Qf"")
> 72(S{"~ 12 ,)°. Hence we can apply Lemma 3(a) withr, = f,_,,r, =r—a,10
find a positive integer m,_,; such that

(35) a"=dr" for 0<i<m,_y, a¥_,41#1,
(36) Myy > by +1, 1158 V=118 > o,

Furthermore, one can show that m,_, > [, so it follows from. (35) and
a"=d" 0<i<l) that "V =d" for i=0,..., m,_,. Therefore con-
sidering I, <m, <l, <m, <l3 < ... we see that

(37 d?=d" fori=0,1,....m

where s, ¢ are positive integers with s <.

Now we claim that B, # B, for s <t. It follows from m,_,+1 </, and
a?=dP(0<i<l)thatd® ., =a¥_ .,.Butby(35) we have a) ., #1
Thus d¥) .y # 1. On the other hand, it follows from (7),=, and m,_;+1 >
that d¥ ., = 1. Therefore d¥ ., #d% _ .y, that is, if s #t then B, # B,

Now since d\¥ = d""V fori=0,1,..., m,—,, we can apply Lemma 3(c)
with r, = B,—,, r, = B, (using (16),~,-,) to get

5

(38) |B,—p/gl > (4cy) =t g4t
if
(39 O<g<sio-i .

We consider two cases in (39):

Case 1. Let 0 < g < si)_,. Since diV’ =d” for i =0, 1,..., m;, we can
apply Lemma 3(c) with r,=f,, ry=p, (using (34)) to obtain
|B,—p/al > (2¢,)" g™ *.

Case 2. Suppose that s} , <g<si"~1_, . Then there is a positive
integer j (1 €j < n-2) such that
(40) s

mj- |

<g< Sg;;ll}— 1-

It follows from (37) that df* " =d{™ for i=0, 1, ..., m;,,. Hence applying
Lemma 3(c) to ry = fj4+1, ry = B, (using (16),=;4;) we see that

(41) |B,—p/al > (4c)) " q ¥

holds for g in (40). On the other hand, (35) gives us s _, = SY"!). Combining
this, the inequality S¥%' >27'S3"" and (40), (36), (I11),=; we get
q > 2Y¢s+27=+0 and by (41)

\B,—p/al > (2¢,) " g~ * 742,
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Now, contrary to (39), assume that

(42) g8 P
By (6), we have |(r—a,)—p/q| = |r—(o,—p/q)l > c5 ' H(a,—p/q)™" or
(43) lr—o,)—p/gl > ¢ 967 ¢ * H(a,) ™",

since H (2, —p/q) < 964> H (o,) because of Lemma 1. Next using Lemma 1 one
can show that H(a,) < 96(Qf" ")%. Combining this with (36), (42), si=~V
=S¥ . we obtain

H (o) < 96(Q"~ 1) < 96- 121(S%)_ )% = 96- 121 (st V)? < 384~ 121 (s 1)
< 384-121q?
and so by (43)
“4) [(r=a,)—p/gl > L"' q~*.
On the other hand, by (42), (36) and (11),-,-, we have
g>SW . >2718® 52071061 5 [l

Now (44) yields |(r—a,)—p/gl>q * ", and by Lemma 3(c) |B,—p/ql
>27'g™* " that is, we have (16),-,.

It follows from the definitions of y,, y,, @,, B, and the relations (9), (10),,
(11), that

(45) =l < (@5 <H@)™ (=1),
(46) ly,—Bl <SP <H@B)™" (n=1).
Finally, let p/g be a rational number. Then using (15),, (16), for sufficiently
large v (= n) and (45), (46) in the inequalities
1 —p/al 2 10, —p/gl =y, —a,l,  1v2—p/gl > |B,—p/al—Iy.—B.l,
we obtain b
lyy—plgl > 1271 q™#"1, |y, —p/gl > (4c,)" g™ ¥,

that is, we have (c). Furthermore, we have (d) by (45) and (46), and this
completes the proof of the Theorer_n.

‘We note that, since the measure of the S-numbers in the interval [0, 1]is 1,
every real number can be written as a sum of two S-numbers. So if r is
a Liouville number, then there are two S-numbers, say s,, s,, such that
r=35,+s,. On the other hand, by the above theorem we have s, =¥, +7,,
8, =y3+74 where y,eU, (i=1, 2, 3, 4), and so r = y, +y,+7;+7,. Therefore
we also obtain the

COROLLARY. Every real number can be written as a sum of four U ,-numbers.
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Liiroth-type alternating series representations
for real numbers

by

Soria KavLprazipou (Thessaloniki),
ARNOLD KNOPFMACHER (Johannesburg)
and JoHN KNOPFMACHER (Johannesburg)

Introduction. In this paper, we introduce an algorithm that leads to
a general alternating series expansion for real numbers in terms of rationals. In
particular, this algorithm is used to show the existence and uniqueness of two
alternating series expansions which are analogous to the positive series of
Liiroth, and to a modified Engel expansion, respectively. In addition, the
representation of rational numbers by means of these algorithms is inves-
tigated. Thereafter, stochastic properties of the sequence of digits in the
Liiroth-type alternating representation are studied. In particular, we solve the
Gauss-type measure problem for this expansion.

1. A general alternating - series algorithm. We first define a general
alternating series algorithm, analogous to a positive one of Oppenheim (7], as
follows:

Given any real number A, let a, = [A], A, = A—a,. Then recursively
define :

a,=[1/4,]=1 forn=1, 4,>0,
where A,., = (1/a,— A,)(c,/b,) for a, > 0. Here
bl-:bi(al,.--, al)’ Cl-=Ci(al,..., a‘)

are positive numbers (usually integers), chosen so that 4, < 1 for n > 1. Note
that A,4+, 20, since a, < 1/4, for 4, > 0.
Using this algorithm we now prove:

THEOREM 1. Every real number has unique representations in the forms

1 1 1 1 |
T P " it pug
@ lﬂ“a, (a,+1a, az+(a,+l)a,[al+1}a:12 a,

= ((@g, @ys ---» Gy, ...), say, where a,>1 (n>1), and
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