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An alternative approach to a theorem of Tom Meurman
by

R. BALASUBRAMANIAN and K. RAMACHANDRA (Bombay)

§ 1. Introduction. Tom Meurman proved the following theorem which is
Corollary 2 on page 352 of his paper [3].

THeOREM 1. For 3<H< T and any ¢ >0,

T+H

Y ILG+it, 0P dt < (gH+(@T)"?)(q(T+H)
xmodgq T

where g = 1 is any integer and y runs over all residue class characters mod q and
the constant implied by the Vinogradov symbol < depends only on e.

Remark. We have stated the condition 3 €< H < T which is not different
from his conditions.

The history of this theorem is as follows. By Balasubramanian’s result [1]
the special case g =1 of this ‘theorem follows as an immediate corollary.
A somewhat simpler proof in the case ¢ = 1 was given by P. N. Ramachandran
in his M. Phil. thesis [7]. The object of this paper is to give a simple proof of
this theorem in fact with (g (T+ H))* replaced by more precise functions on the
lines of [5] (see the appendix therein). Our proof resembles to some extent the
method of an earlier draft of [6]. The only serious estimate which we use is
Theorem 5.9 of [8] due to van der Corput. We also use the functional equation

for L(s, y) (x proper) to get an approximate functional equation. Accordingly
we prove the following theorem.

THEOREM 2. Let Z* denote the sum over all proper characters y modg,
ol@)=ql]1-1/p), d:(q) =[1(2—2/p), and T > T,, a large positive constant.

rla pla
Then the following statements hold.
(a) Let g = 108T Then if 0< |t| < T, we have

(1 S*ILG+it, Y1? < ¢(g)logg.
¥ 4

(b) Let 108 T > q. Then for Clog T < H < T where C is a large positive
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constant, we have
T+H

®) Z j ILG+it, Y)l*dt < p(g)H log T
+(aT)""* (loglog T)* +(T/H)"/? (log T)** d,, (4)-

COROLLARY 1. For all H> 1| and H < T, we have, for 10°T > g,

T+H
&) Y* | ILG+it, )P dt < ¢(g) H log T+ ¢(q)(logT)*
x T

+(@(q) T)' (log T)** (dq (9))**.
COROLLARY 2. For t, = |t|+2, g = 1, we have
) Z ILG+it, )* < o(g)logg+e(g)(logty)’
+(@ (@) 20)'"> (log o) (do (@)*"°.

Remark. By ignoring all but one character we get an upper bound for
LA +it, y)| uniformly in g and t. Some deep estimates for these have been
given by D. R. Heath-Brown in his paper [2] by using ideas of van der Corput.
However, our upper bound is comparable with Heath-Brown’s if g éﬁ.

§ 2. Proof of Theorem 2. We prove this theorem by a series of lemmas.
Without loss of generality we can assume that ¢t > 0 in proving part (a) of
Theorem 2.

LemMma 1. Let s =3+it, w=u+iv, T2 <t < 3T, T > q'/%, L=1og(qT),
7= I? h = 10L and X = 10000(qT)"/2. Let x be a proper character mod q and
let Y(s)=(s, x) be defined by L(s, x) = ¥(s)L(1—s, 7). Then we have

&) L(s, 0) = Z 1) Exp(—(/X)")n~*+y(s) 2 x(m)n*~"

nsX
+J (s, )+0((¢T)7)
where the O-constant is absolute and

d
J(s, 1) = —5% J W(s+w)(ﬂ§x;f(n)n”'"_')I‘(l:—+I)X"":w.

u=1/4,|lv|=c

Proof, We start with
Y, x(m)Exp(—(n/X)")n=*
n=1

l w wgf =1
:mﬁz.{um;uﬂw’x}r(iﬂ)x w+O((q’x‘“l b

and then move the line of integration to u = —S5SL. The pole at w=0
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contributes L(s, x) and the horizontal parts of the contour contribute O((qT)‘ h.
We then use the functional equation and the fact that for Re(z) < 3, we have

(6) W (z, Yl < (q (I + 1))1&-;{“,,.

2n

(See the last line of page 340 of [4]. The result stated there is slightly different;
but (6) can be proved without much difficulty.) We next break off the portion

Z 7(n)n**¥ =1 of the series Z fF(n)n** "1 and estimate this tail portion by
=1
O(X (1=h¥2) The total comrlbunon from this term is O((¢gT)™!), because there

is an extra factor X "2 coming from X*. (We have also used the fact that in
—h/2 < Re(w) < 3 we have uniformly
I (w/h+ 1)] < Exp(—|Im wl/h),

where the implied constant is absolute) In the integral containing

Y, Z(mr***~*, we move the line of integration to u = 4. There will be a pole
nsX

at w =0 which gives the residue contribution
=Y(s) Y x(mn* 1t
nsX
This proves the lemma.

Remark. The proof of Lemma 1 is due to M. Jutila who improved on an
earlier argument of the second of us. But we cannot give a reference.

LeMMA 2. Let ¢ = 108 T Then if T > q"* and T/2 <t < 3T, we have
(M Y*ILGH+it, Y = 0(p(g)logq)
X

where the implied constant is absolute.

Proof. Observe that X <q and so
Z Wi Y zmnf < <):|§ 12 < o(q) Y. 1/n=0(o(@)logy).

Consider the first term on the RHS of (5). The contribution from n > 2X 4s
in absolute value

< ), n7'2-2(X/n)'Exp(—3-2") =0(@N)").
n>2X
Hence

Z IZ AMExp(—(/X)n PP < Y| ¥

% n=2X

<o Y ln<e(glogg.
ns2X

2 (M Exp(—(m/X))n~"*+1
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Next we handle the sum

YHI G, 01
X

2 ]ut) dv ) o S
<| J Ex (—— (1 +]e+o]) 2 g R X2 SIM| - +1
(—jm P h)1+]v| u=1f4-[|u|€t I D 4 h

(where S=Y| Y #()n***"'|* < ¢(¢)X""?) and so the sum in question is

x nsX

dw

T _ v\ dv
1/2 1/2 - e
< ¢(q)(logh T _jm(l+|t+v|) Exp( h)l+1u|'

In the last integral the contribution of the portion —3t2<v< —tf2is

o(ee(-5) L (-5)r3m)-o((&))

and the contribution of the remaining portion is

o ()t -or-n

Hence the sum in question is

0(¢(g)(logg)'"*loglogg).

This proves the lemma.

In an earlier draft of the paper we had in Lemma 1 the condition
T > 1000 in place of T > g*/*. It was pointed out by the referee that the
argument does not work unless T > 2[2. So in order to prove part (a) of
Theorem 2 we split its proof into two parts according as T > g'* or
0 <t < g''*. We show that by a slight modification of the argument used for
T > q'* we can cover the case 0 <t < ¢'/* also. (Actually the proof of the
case 0 <t < g'* gives

max $¥ |L&+it, x)I* < D(C)¢(q)loga,
ltl<Cq x

where C > 0 is an arbitrary constant and D(C) depends only on C. But we
have retained the proof of the first part since it will be of use in the later
sections of the paper.) We give a brief sketch of the proof in this case. Notice
that our conditions on T and g imply that g exceeds a large absolute
constant. Lemma 1 will now be replaced by

LEMMA 1. Let s =3+it, w=u+in, 0 <t < ', ¢=10% 15 =t+2, and
X = 10000(qt,)'/>. Let x be a proper character mod q and let y (s) be defined
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as in Lemma 1. Then we have

(59 L(s, )= Y, x(mn~*Exp(—@/X)*)+¢(s) ) i(mn*~!
n=1 n<X
+Jy (s, )+ J 505, %)
where
' _ _ d
Jils. 1) = _ﬁ..ilMHM(.EX“")"HW l)r(l%)xw__f,

1
L6 0= =5 | beHw(E f{nw”-l)r(nf)xwdg.

u=1/a n<X 2

Proof The lemma follows as before, the only difference being that we
keep J, (s, y) without replacing it by the estimate O((gT)™').

Lemma 2 will now be replaced by

LEMMA 2. Let q exceed a large absolute constant and 0 <1t < q'/*. Then
we have

(7) Y*ILG+it, x)* = O(p(q)logg).
Proof We observe that
Y¥|Y x(m)n*Exp(—(n/X)?)? < @(g)logq

x n<q
and that
Y*IY et Y amnExp(—(n/X)*)
x r=1 rg<n<(r+1)g
(e =0,>0 to be chosen)
S(T)Le?el@ Y nlExp(—(n/X))
r=1 r=1 rg<n=(r+1)g
(accent denotes (n, g) =1)
S(T )T e 20l Y X*n7?
r=1 r=1 rg<ns(r+1i)g
< ¢(g)(X/q)* by choosing ¢ =r~"*(log(r+1))™"
<ol ¥ X<q.
Thus

|3 xmnExp(— (/XY < o(@)logq  if X <q.

x n=1
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By a similar reasoning

Z IS x> < p(g)logg if X <gq.

n<X

Let Re(w)= —1. Then by the above reasoning
Z Y et P < o@/X* if X <gq.

nzX
Also by a suitable application of Holder’s inequality

£ 0 < § 0o G (-9)%

<@t/ X)) <lg if /toq < X.
Let Re(w) = 1. Then (by the above reasoning)

z*\ z f(“)ns+w_1l2 «(P(q)xuz it X <q

X n<X

Also by a suitable application of Hoélder’s inequality
T*I,00 0P < [ g (1402 o (g) X2 Exp(—[ol/2) X/ dv
X — o0

< 9@ (X/ate)) < elq) if X </qt,.

(We have used [y (2)] <(q(1+m(@))"* " for all z for which —}
< Re(z) < 3)

Collecting these results we see that Lemma 2' is completely proved.
Lemma 2 and Lemma 2' complete the proof of part (a) of Theorem 2.

In the remainder of the proof of Theorem 2 we assume q < 10°T.
Y. #(myn*~* (observe that [/ (s) = 1). We

nsX

We now consider S, (f) = §, =
start with

LEMMA 3. Let 0 < u; < H/(4a) (i = 1, ..., o) where « is a natural number at
our choice. We put o= [100log T] and we have

T+H H —a H{4a) Hi(4a) T+H+V
® X IS.lzdrs(I) Y[ ... [ ([ IS(0°*d)du,...du,
r T L 0 T-v

r 0
where V = u, + ... +u, and the integration over u,, ..., U, is over the a-dimen-
sional cube defined just now.

Proof. This idea has been used extensively by R. Balasubramanian, sce
[1]. The proof is simple and is left as an exercise to the reader.

We state our result concerning S, in Lemma 7. Our treatment of S, needs
a lengthy but simple discussion based on Lemma 6 to follow. We now take
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all pairs of integers (m, n) with 1 <m < X, 1 <n< X and introduce certain
squares with sides parallel to the axes in the following way. First we take the
square A, = (0 < x < g, 0 <y < q). Next we take the squares A4, of side
length 2"*! g with the left-hand lower corner (with coordinates) (342", 2q2" for
n=0, 1, 2, ... These squares intersect in smaller squares. We stop at the first
big square which projects beyond B = (0 < x < X, 0 < y < X). We designate
the smaller squares by By, B,, ... It is easily seen that the total contribution to
(8) from terms of the type f(m, n) defined by

) £ (m, n) = z(m)x (n)(m/n)"
with (m, n) in B, but not in A’s and B’s is
H —a ; 2rx+1
1o <(8) PO gm0

if H > Clog T where C is a large positive constant (since [log(m/n)| is bounded
below for the pairs (m, n) in question). The accent denotes the sum restricted by
(m, q)=(n,q) =1, and m=n (mod q).

We next consider the contribution to (8) from terms of the type (9) with
(m, n) belonging to Ay, 4,, A,, ... and B, B,, B,, ... We denote a typical
square (one of A’s and B’s) by

(11) D=Usm<U,U<ngU)
where (m,q@)=(n,q)=1, U <*U and 3 <U < U <X except for the
square A, where this condition is (1<m<gq, 1<n<gq),(m g =(n,q =1
We thus obtain the following

LeMMA 4. The right-hand side of (8) is

H/(4a) Hj(4a) T+H+V

(12) s4( )“zzj [ 1Sy dedu, ... du+o(1)

(4] T-V

where S,(U,)=S,t)= Y x@nr 1.
Usasl'

LemMA 5. The contribution of the diagonal terms of D defined in (11) to (12)
is
(13) O(Ho(q)logT).

Proof We have simply to verify that

Ho(g) Y. 1/n=0(Ho(g)logT).
nsX

This proves the lemma.

The diagonal and the non-diagonal terms of A, are disposed of as in
m—n
m+n

Lemma 2. Consider non-diagonal terms coming from D. Since log% >
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the terms with |m—n| > 4 (a parameter) contribute to a typical summand
coming from U of (12) an amount

(14) < rp(q)(%%g)ai(mn)"”z <(g7)™!

provided we choose 4 = 100aUH ~*. As stated before we impose on H the
condition H > Clog T where C is a large positive constant. Hence the sum of

such terms over all U is O(1). Hence it suffices to consider those terms coming
from D with

(15) Im—n| < 100aU/H.

(Note that the condition H > Clog T ensures that the RHS of (15) is
< 10*C~1U and so < ¢U for all £ (0 < & < 1) if C is large depending on ¢.) Of
these we estimate the contributions from those (m, n) with m > n. (The terms
with m < n can be estimated in a similar way.) We have to estimate

b m\{T+H+V) m\{T=v) 1 m)—1
(16) 4ip(q) ﬁﬂ%w ) ((;) —(;) )(mn) (log;

m>n,(m.q)={n.q) =1

where the sum is subject to (15). We now write m = n+rq. Thus it suffices to
estimate

Exp (it log (1 +rq/n))
an 4¢(Q)zr:zn:’(n(n+rq))”zlog{1 +rg/n)

where the conditions of summation are (n,q)=1, UsnsU, 1<
< 100aU/(Hg), and t denotes a number lying between T/2 and 3T. Because of
the summation condition on r it is not hard to verify that for each fixed r,

(n(n+rq))?log(1 +rq/n) is monotonic in n and lies between two constant
multiples of rq. (We can assume that 100aU (Hg) ™' > 1, otherwise there is no

r.) The condition (n, g) = 1 on n can be replaced by its characteristic function
and (17) reads

(13) 4@y pnd ¥

r dig UsndsU’

To estimate the innermost sum in (18) we employ the following important
theorem due to van der Corput.

LeMMA 6. If f(x) is twice differentiable and
0<Ai; S f'(¥)<hid, (or A, < —f"(X) < hiy)
throughout the interval (a, b) and b > a+1, then

Y Exp(2nif (n)) = O (h(b—a) A¥/)+0 (A5 2.
a<ngh
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Remark. We have quoted Theorem 5.9 of [8] in the notation employed
there. The h of this lemma should not be confused with the symbol
h introduced earlier in this paper.

To estimate the innermost sum in (18) we take

t rq _E =£J:
f(x)=ﬁlog(l+g), a=— b 7

where U < U” < U’ and we employ partial summation since the quantities
multiplying Exp (2nif (n)) are monotonic in n. We easily see that f”(x) lies
between two positive constant multiples of Trq (x3d)™! and so the innermost
sum in (18) is (rg)”" times a quantity which is

U [ Trqd®\' U3 \12
(19) QE(——-U_,') +(——Trqd2) .

We note that if d > 44 U there is no integer n satisfying U < nd < I:?' and so in
(19) we have not written U/d+1. Hence the sum (18) is majorized by

- () (L))
< q Elﬂ( / rswoém,,,—: r\\ U Trg) d
oy () (2)")
< p %Iu(d)l ((H + 7a) 7

[T ”“?;(‘J_)zmmr(?i)”’
H qg . \Tq
where (g) = ¥ 1. Summation over U gives a factor log T for the first term and

Pla .
the total O((qT)"*) for the second. Collecting we have
LemMa 7. Let S, () =S, = Y x(mn*™', H>ClogT where C is a large

nsX
positive constant. Then

20 Y* T}H IS, ()% dt < ¢(q)Hlog T+(qT )"“+¥2‘”‘°‘ (log T)**(T/H)"2.
x T

We now turn to the first sum (say S, (#)) on the right of (5). As before we

.can break off the portion n > 2X with an error O ((gT)*). The treatment of the

portion n < 2X is similar to the proof of Lemma 7. We have only to observe

that the term
n\" n+r\"
meo () )eer (-(5))
(n(n+r)'/?log(1+r/n)
is a decreasing function of n (for each fixed r such that rn~! does not
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exceed a small constant), because the numerator is decreasing and the
denominator is

() (=050 - -)
~{ale)afe) )20 )
)

LemMMA 8. Let S,(t)= > x(n)Exp(—(m/X)")n~*. Then the estimates of
n=1
Lemma 7 hold with S,(t) replaced by S,(t).

Finally, we have to consider the term J (s, y) in (5). We now go back to the
proof of Lemma 2. We have

* 2 2 [v]
§|J(s.x)| <(_§ xp( )1+1»|)

x( [ (Q+le+o)~Y2g7 12 X128,

=1/4,lv] <

()

where S, = S,(t+v) =Y | 3. x(n)n***~!|2. Since q < T; we have in the inter-
X n<X

val |v| <t the inequality (1 +|t+v])""? < T~"2 Thus

T+H
{5+)

@) Y* § UG ord
T
Here the innermost integral on the RHS is

x

<(@T) **(ogh) |

u=1/4,|v|] <t

(1 sucrnan|™].

T+H+v

(22) [ S.(a.

T+v
This can be estimated from above (uniformly with respect to v) by a method
similar to the one adopted in proving Lemma 7. First of all we can integrate
with respect to t and restrict to the squares A’s and B's with an error
O0((gT)™"). In a typical square D, we can restrict to

(23) Im—n| < 100cUH™', m=n (modg), (m, q)=(n,q) =1.
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The diagonal terms contribute to (21) an amount which is

w
r(§+1)
< ¢(q) H (logh)* < ¢(q) H (loglog T)?.

In the non-diagonal terms it is enough to consider m > n. (The portion of the
sum with m < n can be treated similarly.) Thus it suffices to estimate as before
the sum (we assume H = Clog T as before)

Exp (it log (1 +rg/n))
(n+rq))"*log(1+rg/n)

d
pl@H 3 n =

nsX

(24) <(qT)""*(logh) |

u=1j/4\v|=t

(25) Wiy

where the conditions of summation are (n,q)=1, U<n<U’, and 1<r
< 100U (Hg)~! and t denotes a real number lying between T/2 and 3T (We
get an estimate independent of v and multiply it by (¢T)~*/* (log h)>. This when
summed up over U and added to (24) gives an estimate for the quantity (21).)
Now we can drop the condition (n, g) = 1 by introducing the characteristic
function and consider

(26) do@Yyu@ Y

r dlg UspdsU’

For each fixed » and d the quantity

-1
(nd (nd +rq))~*"* (log (1 +;:—%))

is monotonic as n varies and lies between two positive constant multiples of
(nd)**(rg)"!. Thus the quantity is

() - w2 Tra\"* (Ua)‘”l)
Q_q_ril{.'itlgtﬂql 1 d%l‘u(d)lUf (( U) + Trq d

<@ TalU\!2 (E‘)“’ 1)

q dz'.ql (d)l(( ) i Tq) d

l(q) w(q) 1/2 Ty (U_‘t)uz
<€ — 7 —=2%@(log T) H + T ;

Summing over U we get a quantity which is

1/2
@‘%zm’(logn”zmn‘“(%) +gD'™.

Hence for the non-diagonal terms arising from (21) we have the total
contribution

1/2
<29 500 (10g T)1/2 (loglog T)? (;—) +(qT)""* (loglog T)*.
q
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Collecting we state

LEMMA 9. We have with H = Clog T, where C is a certain positive constant,
T+H

T* | |J(s. 0t < @(@)Hlog T
X T

1/2
+@ 2°@ (log T)'/?(log log T)? (;) +(qT)""* (loglog T)”.

Combining Lemmas 7, 8 and 9, we state

LEMMA 10. We have, with H = ClogT and T = T,

T+H

S* [ ILG+it, ) dt
x T

1/4 2 ¢(q) wlq) a2 T M
< ¢(q)Hlog T+(qT)"*(loglog T) +T2 Pog T\ ) -
Theorem 2 follows from Lemmas 2 and 10 on observing that

@ 290 = dy (q).

§ 3. Deduction of the corollaries. Let H >0 and H, = H,+H+ClogT
where H, is a positive parameter at our choice. Then an upper bound for the
sum

T+H

So(H)=Ss=Y" | ILG+it, i dt
x T
is
Ss(H,) < ¢(q)Hlog T+ ¢(q)(log T)*+(¢T)""* (log log T)?

+(T/H,)'? (log T)**d, (9)+ ¢ (q) Holog T.

Choose H, such that the last two terms on the right become equal. This gives
Corollary 1.

To prove Corollary 2 we note (1) and the fact that Corollary 1 holds
uniformly in |0 —3| < (log T) ! instead of ¢ = 3, by an imitation of the proof of
part (b) of Theorem 2. Now [L(}+it, x)|* is majorized by the average value of
|L(z, x)|? over the disc [ +it—z| < (log T)~!. We then replace integration over
the disc by the square (|{—Re(z)] < (logT)"}, |t—Im(z)| < (log T)~*). This
gives Corollary 2 on applying Corollary 1.
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Postscript. One of the results of D. R. Heath-Brown (see [2]) is

ILG +it, 1) < (g (logg)"'>+(d(9)) (gto)"'®) log qto).

Y. Motohashi has informed the second author that he has proved recently the
result

b
[ILG+it, pI*?dt < (@T)***+¢**
(4]
and also an asymptotic formula for
T
JILG+it, y)I*dt
0

with an error term O((qT)"***+4¢'**%).

We can obtain (by the methods of the present paper, without seriously
changing its contents) the following result. Let (k, [) be an exponent pair in the
sense of A. Ivi¢’s book The Riemann Zeta-Function (A Wiley-Interscience
Publication, 1985, see pages 72 to 78 for an excellent treatment of exponent
pairs(')). Then

T+H
Y § IL@+it, 0P dt < (gH+(@T))@T)
xmodg T
. (k+D) . .
where 4 =§(k——1—), 3< H<T and ¢>0 is an arbitrary constant and the
+ .
constant implied by the Vinogradov symbol < depends only on & The
7 1 " s s
exponent pair 9—, b given on page 77 of A. IviC’s book gives
2517 251
= %% =0.32902... It is also possible to refine (¢T)* as done in Theorem 2.

In Corollary 2 to Theorem 2, the RHS can accordingly be replaced by

(a"* +(qto)"*)(qto)"
For this purpose in place of Lemma 6 (from Titchmarsh’s book [8]) we
have only to use the definition of the exponent pairs. Accordingly the estimate

for (17) will be
trgd\* (U
«<Dypa@ ¥ (——E’z) (g)

q aq r<100aU(Hg) ™!
Similar treatment for S, (t) on the right of (5). The estimate for (25) will be

¢(q) b ; U_IE (trqd)" (E)!
< 4 glﬂ (@ rs m(a;wq;— s T U? d)’

The rest of the proof runs without any serious modification.

(*) See, however, the review by Heath-Brown, Zbl. 5564 10026.
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Added in proof. We are indebted to the following mathematicians for their friendly help in
computing upper bounds for the minimum value of 4 as (k, [) runs over all exponent pairs:
Professor D. R. Heath-Brown (for his letter deted 25.2.1989), Professor A. Ivi¢ (for his letter dated
8.3.1989), Professor H. L. Montgomery (for his letter dated 17.3.1989, communicating the result of
his student Professor S. Graham), Professor M. Jutila (for his letter dated 31.3.1989), Professor M.
N. Huxley (for his letters dated 11.4.1989 and 11.5.1989).

681
The best known upper bound for min i is < 3074 0.328365101.. computed by Professor
M. N. Huxley (letter dated 11.5.1989).
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Sur la suite des nombres premiers jumeaux
par

Jie Wu (Paris)

I. Introduction et résultats

La conjecture des nombres premiers jumeaux consiste & montrer que la
fonction 7, (x) définie par

n,(x)=|{p < x; p+2=7p}

(p désigne toujours un nombre premier) tend vers + oo lorsque x tend vers + co.

Plus précisément, Hardy et Littlewood ([12]) ont conjecturé I'équivalence
(1.1) m,(x) ~ Cxlog ™ ?x (x— +o0)

ou C désigne le produit infini

1
c=211(1-255)
5 pl;li!( (p_l)z
1. Majoration asymptotique de 7,(x). L’équivalence (1.1) semble extré-

mement difficile 2 démontrer, il est donc déja trés intéressant de rechercher les
constantes b telles qu'on ait I'inégalité

(1.2) 7, (x) < (b+e)Cxlog™2x

pour tout &> 0 et tout x > xq(g)-

On doit a Brun d’avoir démontré I’existence de telles constantes ([3]), les
étapes les plus significatives furent ensuite b =8 (Selberg [16]) et b=4
(Bombieri et Davenport [1]). Ce dernier résultat dépend du crible de Selbergen
dimension 1 et du théoréme de Bombieri-Vinogradov sur la répartition en
moyenne des nombres premiers dans les progressions arithmétiques (se
reporter 4 [11] pour une présentation compléte).

On sait que, dans les formules générales du crible linéaire (Lemme 2), les
fonctions F et f sont optimales; mais Chen ([6]) a remarqué que, dans ce
probleme, les suites criblées sont trés particuliéres: elles satisfont le principe
d'inversion du rdle des variables (switching principle) — Chen avait déja profité
de cette propriété pour démontrer que tout entier pair assez grand est somme
d'un nombre premier et d'un entier ayant au plus deux facteurs premiers
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