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A generalization of a theorem of Euler
for regular chains of complex quadratic irrationalities

by

NORMAN RICHERT (Houston, Tex.)

The classical theory of continued fractions for real numbers contains
many beautiful results and serves as & powerful tool in the study of
diophantine approximation. There have been several extensions of this
theory to the complex field, in particular to :he approximation of com-
plex irrationalities by elements of Q(i). Noiable are Hurwitz [4], Auric
[1], Ford [3], LeVeque [6] and Poitou [8]. The work of Cassels, Leder-
mann and Mahler [2] should also be mentioned, although their work
did not directly treat the development of a continued fraction. While
these papers contain many good results—for example, periodicity of quad-
ratics and expansions for equivalent numbers in [1], and metric theorems
for partial quotients in [6]—none of these extensions carry through
a substantial part of the real theory.

The regular chains developed by A. Schmidt in [13], [14] offer
a more substantial carry-over from the real theory to the complex case.
This expansion builds on work in [12] and is discussed in [9]-[11]. In
the current paper, results analogous to those of Euler (cf. Perron (7]) on
the continued fraction expansion of \/2 are discussed. These results serve
as another illustration of the power of Schmidt’s method.

To a complex bilinear map m: z+—(az+b)/(cz+d) associate a matrix

M= [a 3], and let detm mean det M. Then m is called unimodular if a,
c

b, ¢, deZ[i] and |detm| = 1. Hereafter, the term map refers to a unimodu-
lar map. Two numbers ¢ and n are called equivalent if there exists
a map m with n = m(&).

Regular chains depend on seven special maps: v,, v,, v,, €, ey, €3,
and ¢. Their matrix forms are

Rescarch supported in part by a Marquette University Summer Faculty Fellowship.



4 N. Richert

the selection made for Farey sets. Hence if F(m) is circuigr then F*(m) ci F {ﬂ:l}
is triangular; if F (m) is triangular, then F* (m) > F (m) is circular, and (?F .(m) is
the circumscribed circle of F (m). The fundamental dual Farey sets are indicated

in Fig. 2.

Fig. 2

Then if #* = {F*(m) c {z|0 < Rz < 1}}, and F} is‘deﬁned analogously
to #,, then F* =| )2, Z¥, where the union is a disjoint one [13, Ler!ama
1.6]. "Corresponding to each dually regular chain is a dually regular chain pf
dual Farey sets and a unique point of intersection. Conversely, every number in
(C\Q@())n{z]0 < Rz < 1} has one (two) dually regular chain(s), denoted
by ch*¢&.

Ifché=T, T, T, ..., let £ be defined by

ch¢,  if a regular product,
TeTirr oo = ops & if a dually regular product.

Then [13, (2.5)]
& =¢p=m—y(&) =tgot,0... otx—1(5Y)>
which generalizes the real case. ‘
Th%: result of Euler for real quadratics (cf. Perron [7, Satz 3.19]) is as
follows.
THEOREM 2. Let &, be given by the regular continued fraction

&o = [ao; a1, a5, ..., 8,, a4, 25),
with period k. Let A,/B, and A,/B, be the convergents of order k—3 and k.— 2,
respectively, of &, = [a,; a,, ..., @y, 24y, a,]. Then a necessary and sufficient
condition that &, = /d, with deZ*, is that

mAz_{_ l)iAl Bl
ao = 2 ]
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where meZ. In that case

Eo=+/d = \J/ai+mA, —(—1) B
The generalization of this theorem to regular chains is the primary goal of
this paper.
Attention will be restricted to nonsquare D in the first quadrant. Then,
except for De{i, t+i, 1+2i, 2+i, 3i, 4i},

(4) Ch\/ﬁ‘: V,""Esz...n.g.l,

where b, = [J \/5] and the arrow denotes periodicity [13, 3.4]. The period
T, ... T,+, is the shortest repeated product such that det L. Thyy = =+1.
The next two lemmas are the analogues for chains of the form

\/& -_— [ﬂo; al, az, veey Q-4 2“0]

for the real continued fraction expansion [7, Satz 3.9]. This form is derived by
showing that \/d +a, is reduced (¢ is reduced if ¢ > 1 and —(&)€(0, 1)). In the
complex case, a quadratic ¢ is reduced, and has a purely periodic regular chain,
if (e.# and &e.#* where the prime denotes algebraic conjugation. The
lemmas will employ the fact [13, Theorem 3.5] that the purely periodic regular
chain for a reduced ¢ is inverse to the purely periodic dually regular chain for
&' What is needed for regular chains is a Pe Z[i] such that \/D + P is reduced.
The value of P, a kind of “integer part”, is determined by the portion of the
lattice square in which ﬁ lies. Divide each square into two regions, .o/ and 4,
as in Figure 3. No ﬁ lies on the boundary between .o and 4%, or on the
boundaries of the lattice square, since it would then be equivalent to a real
number [13, p. 6]. If D is real, then the boundary points are rational integers.

s+ilt+1) {s+1+r’ll’+'|!

LemMA 3. (a) Suppose & = \/B= X+iy is in region of. Let P = [x]+1
+ilyl. Then {+P is reduced. If ché= VME,(ch &,), then ch(¢+P)
= VPYIE, V" (ch¢&,). Hence

ché, =T, T, ... VAVIE, VPI*T,

(b) Suppose ¢& is in region .
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(@) If y>1 let P=[x]+1+i([y]l—1). Then C+P is reduced. If
ch& = VPVE,(ch&,), then ch(¢+P) = VIV E, Vit (ch &,). Hence

ché, =T, T, ... VAU TE, Vit ,
(ii) If y < 1, then there is no P Z [i] such that {+P is reduced. However,

if P=[x]+1 and n=2¢+P, then n,=¢,+iP s dually reduced, chn
= V}1*1(ché,), and hence

ChE=E,T,T,... V, VFI*1",

Proof Let P=a+bi, so &+P=(x+a)+i(y+b) and (S+P)
=(—x+a)+i(y—>b). Then {+Pes iff b> —y and (€+P?'E.f* onlyl if
a = [x]+1and b < y. If P satisfies these restrictions, then if £ is in an & region
then the map z+ —z+ P leaves the collection of &/ regions and the collection
of # regions fixed, so ({+Pyef*. If {isin a Q'region, then b<[y]—11is
forced, but then if y <1, b > —y cannot be satisfied. .

The form for ch ¢, in (a) follows from the fact that ¢, is dually reduced,

and hence purely periodic, which is true for every D. For let & =¢&, = x+iy.
Then

& =01 &) = x+i(y—LyDs
&= (E) =i +1-i= ([y]-y+D+i(x—1)es*, and
& =((yl+y+1)+i(x+1)es.

Part (b)(i) is proved similarly. If y <1 and ¢ is in® letn= 6+[x]+_1, s0
chn = E, V"1 (ch &,). Then 7, is dually reduced, so it has a purely periodic

dually regular chain. Since 3 = (1+y)+i(x—[x))e? 3,
71
Ch??z = UZ U3 —_— V3 ¥
But chn, = V7" (ch{,), so
ché, =T, T,... VVPI*! .

One may view the first quadrant as being (partially) tiled by translations of
the 4-sided region in Fig. 4.

4

Fig. 4 Fig. 5
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Then P is the lower right vertex of the tile in which & falls. The numbers of
part (b)(ii) are in that portion of the first quadrant which is not tiled. The
numbers in the tiled portion —those covered by Lemma 3(a) and (b)(i) — will be
called type (1). The numbers in the untiled portion of the first quadrant will be
called type (2). Note that all real quadratics in the first quadrant are type (2).

For further information on the form of ch./D, divide each lattice square
into two regions, A and B, as in Fig 5. As in the case of regions .o/ and 4,

\/5 cannot lie on the boundaries.

LemMa 4. Let ch /D = VP'E, T, ... TV ' and let

po (X)-1=9P-2 if ¢ea,
“Ux]1-2=RP-3 if eB.
Then

UT, ..., h=0,

T, .. =
LI T {V,"UT,.,..., h>0,

where U is of the form:

. {e{C}u(VF\{;jI Videed)  If Eed,
=C if £eB.
Proof. If ﬁ=x+iy, then
&= (R1oe;) " (&) = (/D—i[y1—1—i)/(—i)
=({1+[yl—y)+i(x—1).
From 0 < 1+[y]—y <1 it follows that if ¢ B, then

of M1¥2(&) = (1 +[y]—y) +i(x+1—[x])e€*
and if (€A, then viPI* (e *UPYEuY s u

]

Fig. 6
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While attention has been restricted to D in the first quadrant, Lemmas 3
and 4 and the results that follow apply to all D for which chﬁ has the form
of (4). These are all D such that J/D is in the region of Fig. 6.

Using the powers of V; given by Lemmas 3 and 4, (4) can be rewritten as

ch /D = {Vf°Ez VHM . VIE, V[ . for type (1) numbers;
E,Vf(M. V"), for type (2) numbers,

where M, denotes the “central” portion of the period. Note that it follows from
Lemma 4 that M, does not begin with ¥, and from the proof of Lemma 3 that
it does not end with V,. Although the periodicity in ch \/1_) begins with £,, it
will be useful in the results that follow to consider the period commencing with
M.,. In what follows, chains will be indexed slightly differently than in (2). To
highlight the similarity to the continued fraction expansions of real quadratics,
these chains will be indexed as

ch/D=T,M.T,,

where for type (1) numbers Ty = V{°E, V{' and T; = V; E, V", and for type (2)
numbers Ty = E, V{ and T, = V{". In both cases M =T, ... T,-,.

Summarizing Lemmas 3 and 4, for ¢ of type (1), P = a+ib = [x]+1 +ib,
there are 4 possible forms for ch¢{, corresponding to 4 regions:

VPE, Ve * (M VB E, VE* 3, b=[)l, cedA,
VPE, Vi M VP E, V&), b=, e /B,
RE=1 ppes E, Vi M VBT E, V%), b=[yl—1, Eec#4,
VEHE, Ve M VP E, V& %), b=[y)-1, (e&B.
Since .
L= [[1) —(l+1)-:-(m+l)rl,

this can be written as

) ché = [(1} iPi—ﬁ]Mr[(l) 2:'Pi-—6' ,

where d is given by

14i," (tedA,

142i, £&eoB,
(6) o= ;
. 2+i, tedA,
242i, &¢edBB.
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For & of type (2), P =a = [x]+]1, there are two cases:

Chf:{EZ VIG_Z(M.C V}2a‘-_2)., 66-@/‘,
E, anj(xm. ceAB,

where M, ends in a power of V,. This can be written as

- chC=E,[:} EPI—-é]Mr[:) 2;Pl—o]’_

where J is given by

5 = 2i, C&eA,
3i, ¢&eB.

The form of (7) and role of é is slightly different than in (5) because of the
different role played by P.

The symmetry of the central part of the period of the expansion of \/E [7,
Satz 3.9, for example] does not generalize to regular chains. This central
symmetry for the continued fraction expansion follows from the form for
inverse periods and the nature of reduced numbers. The conjugation, ‘n the
complex case, rules out the kind of simple connection holding between

l!f;l\/E —a,) and \/E +a, in the real case, from which the central symmetry
ollows.

The task now is to find the relationship between M, and D, generalizing
Theorem 2. This is contained in the following two results.

THEOREM 5. Suppose that & = \/5 is of type (1). let P = a+ib be as in
Lemma 3(a), (b)(1). Then a necessary and sufficient condition that

1 iP-§ 1 2iP-§
ch¢=
¢ [0 i ]M‘ [0 i ]
be the regular chain for ¢ is that P have the form

(8) | P=14[id"' A,(A,—6B,)+mB,],
where meZ[i], d = detM,, Pe{z|Rz>0, 3z > 0} and

A, A A, —iB
M - 1 2 il 1 " s . . .
A [31 Bz]' é __B.l e{l+i, 142i, 2+i, 2+2i}.

In that case,

©) D =P?+id~' A,(A,—3B,)+mB,.
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Proof From Lemmas 3 and 4 it follows that &, = &,+ P. Then from (5) it

follows that THEOREM 6. Suppose & =./D is of type (2). Let P=[x]+1. Then

a necessary and sufficient condition that

B pk=b pg-1) [ iP—o N T
(10) My _l:t?‘x"_” a0 |=lo i M, ché = Ez[(l] :Pl 5]Mc|:{l) Z:PI—B]
_ [Al Hi'f;; —6) B, Az"'("’; ‘5)52]. be the regular chain for & is that P have the form
1 1
. : 2 P=—}i[—d ' 4,(4d,—0B,)+mB,]eZ*,
e identity R e s where me Z[i], d = det M., and '
¥ V(o +P)+py" -
L RV i 4, A A, =B, :
éo Mg -1 (‘:k] q‘;l_”(ég'FP}‘*‘qg‘ 1) M‘, = [Bl BZ]’ 0= #—2(1-1)5{21, 31}
- 1 2 B.l .
yields : .

. In that case,
(11) gtV 3+ (PgtV+q8 )& = PV o+ PP TV +pE Y.

Since &2 = D, it follows that the linear term in (11) is 0, hence

D =P +2i+d "[(1—i) A, + A,](A,—6B,)—m[(1—i) B, +B,].
Proof. Return, for this proof, to the chain indexing of Lemma 3. In this

(12) Pgt—V4gf 0 =pf D, case, {, = ¢, +iP. Then &, =&,
and (11) reduces to ¢ =e3' (&) =(£j1*1—i)/{—i)=(\/1_)_1_,~}/(_.,-),
(13) q¥ VD = Ppf~V+p8 Y. s0 £, &, =D—2i, {;+&5 =2(1—i), and ¢, satisfies
However, g%, p*~" and p§ " depend on P, so (13) is rewritten using (10): (17) &-2(1-)¢&,+D~2i=0.
D(iB,) = P(A,+(iP—0) B,)+ A, +(iP—3) B,, From (7) it follows that
and thus ) (18) M = [Pl Pz] _ [{1) lPl—é:l M.
- 9 492
14 iB, (D—P?)—(A,—0B,+iB,)P = A,—0B,.
(14) i 1( )—(4, I 2) 2 2 _ Al +(iP—5)BI A2+(IP—5)BZ
Similarly, it follows from (12) and (10) that P(iB)+iB; = A, +(iP-0)B,, = B, B :
and thus & 2
rom
15 iB, = A, — 0B, _
( ) ' 1 2 1 1 =m‘,(§)=m,(€ +fP)=p1(62+iP)+p2
which together with (14) yields 2 = MG, 2 0, E+iP)¥q,
(16) B,(D—P?—B,(2P) = —i(A,—3B,). follows
The solution of this diophantine equation in D—P? and 2P will yield values of q, &3 +(iPg, +q,—p,) &, = iPp, +p,,
D and P for given M. The necessary condiliqn on M, namely, from which it follows, using (17), that
6=i‘;—m§e{l+i,1+2i,2+i,2+2i}, (19) —q,(D-2i) = iPp, +p,,
1 ' (20) iPg,+q,—p, = —2(1-i)q,.

follows from (5), (6) and (15). A particular solution of (16) is Substituting in (19) and (20) using (18) yields
D—P?=id™' 4;(4,~0B;), 2P =id"!4,(4,~B)), @1) —B, (D—2i—P?)—iP(4,—0B, +B,) = A,—3B,,
from which the general solution in (8) and (9) follows. m (22) A,—5B, = 2(1—i) B, +B,,
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respectively. Substituting (22) in (21) yields a diophantine equation in
D—2i—P? and 2iP:

(23) B, (D—2i—P*)+[(1—i)B,+B,](2iP) = —(4,—90B,).

The form for & follows from (20). The equation (23) is solved as in Theorem 5. =

Theorems 5 and 6 are the analogue for regular chains of Theorem 2.
Whereas examples of Theorem 2 can be organized fairly naturaily by the size of
k, things are a bit more complicated here. Symmetry of M, is not available in
general, and the choice of a partial quotient corresponds to the choice among
7 maps, followed, in the case of the Vj, by a choice of exponent.

For both type (1) and type (2) numbers, M, is a dually regular product. In
the type (1) case, det M, = +i, whereas in the type (2) case, det M, = + 1. The
case of len(M,) = 0 is ruled out for type (1), since detI = 1, and for type (2),
since M, must end in a power of V;, so len(M,) > 1.

Consider now the case of len(M,) = 1. Let & be of type (1). Then M, = C,
since the form of 7, rules out E;. Thus d = —i, 4 = 1+1i, so all these numbers
are in /A4, and

m o (Y L
P=%m(l—f)—]—+l.‘ D=P +mf*(l+!-) +mi.

Let m=m(1+i), m=a+hieZ[i]. Then
P=rti=a+bi, D=nm2+(—1+i)m,
_“'__."‘—_"
chy/D=VPE, Vi 2CV{* E, Vi %5
for example,
————}
P=2, ch./242i=E,CE, V¢,
_—
P=3+i, ch./4+8i=V,E,V,CVZE,V}.
Now consider the type (2) case with len(M) = 1. The only length
I possibility is M, = V4, since M, must end in V. Consider first & = 1. Then
d=1, 6§ =2i, and
P=—%ti(—143i—mi), D=P*—1.
Since P is real in the type (Z}I case, m = n+i, for ne Z, so P = (3 —n). Choose
n so that P is positive to get
—_
ch/P2—1=E,VE 2V, V¥~

This is to be compared with the continued fraction expansion /P*—1
=[P—1;1,2(P—1)] and (3). More generally, let M_= V3. Then

1=hi hi
G [ —hi 1+m]’

A generalization of a theorem of Euler 13

0=2i,d=1and P= —4i[—h*+i(2h*—h+2)—mhi]. Since P must be real,
let m = n+hi, so 2P =2h*—(n+1)h+2. Let m' = 2(P—1)/h = 2h—(n+1)e Z,
so D = (P—1)>+m’. Hence

ch /(P—I)2+ '=EZ VIP—Z V;VlllP—n‘

where h = 2(P—1)/m'’. This is exactly the case of period length k = 2 in Perron
[7, p. 891, which, in fact, includes case k =1 as a degenerate case.

Although Theorems 5 and 6 treat all numbers of the form \/5 some of
these chains have additional structure, which simplifies their analysis. A regular
chain T, T,... is said to be of type (a) if there exists an /> 1 such that
T4y Ti45... is obtained from T, T,... by a cyclic permutation of subscripts on
the V;, E;. If | is the smallest such index, then T, T,... is periodic with period
length k = 31. Hence all such numbers are quadratic. The portion of the period
T, T, ... T, will be called the generating product of the period.

_ Let
0 —1
S_l:l —1]‘

then §* = I, SV, §% = V,,, SE;S* = E;., and SCS? = C, where the subscripts

are considered (mod 3). Then T, T, ... T, is of type (a) if there exist I, k and
Jj€{1, 2} such that

SYT.S7=T, n=12,...,
and hence
SJTI TZ e T;S_j= 'rl"‘l-l e Tz{, Sj'.nq.] e Tzfs_'f= 'ru.p]_ e T;.

For j=1, the permutation is (123); call these type (al); for j=2 the
permutation is (1 32); call these type (a2). All other quadratics will be called
type (b).

For type (a2) numbers, if & = &,+ P is as in Theorem 5, and [ is the
length of the generating product, then s(¢) =&, so s(§)=¢&+P and
s*(é,+P) = &,. In vector form this is

=[5 o]

so the analogue of (10) is
So| _[p47" P =1 1[&+P
11" g~V g¢-vll -1 0 1 ]
_[1 iP—&][—(A1+A2) A [ ¢o+P
Lo i —(B,+B,;) B, 1|
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Thus Theorem 5 can be redone with the replacements
A —(A +A4,), A, A,
B, —(B,+B,), B,—B,,
where now

vsz! 2P=%]g
“lo 4

is the generating product, and the full period is
- s . — - l . _-5
ms2|! 2P=%]g s p 55|t 2F Msrsms2|t 2P0
10 i 0 i 10 i
The situation is similar for type (al) numbers. These results can be summarized
in the following. :

THEOREM 7. Let & P and M, be as in Theorem 5. Then necessary and
sufficient conditions that M be the central portion of the generating product for
the period of & are as follows.

For type (a2) numbers:

P %[_id_l(Al +Az}(A1‘_5Bl]_m(Bl+Bz}]:
D=P*+id ' A,(A,—6B,)+mB,, meZli],
5 At Az +iB,
B,+B,
For type (al) numbers:
P=4[—id™' Ay,(A,+A,—08(B,+B,))+mB,],
D=P? +_id‘“1(Al+A2}(A, +A2f6(Bl+Bg))—m(B,+Bz), meZ[il,

e{1+i, 142i, 241, 2+42i}.

5= BatiBitBa) o\ 1o 240, 2420)
B, o - .

ExXAMPLE. As in the case for type (b) numbers, the only length 1 possibility
for either type (al) or type (a2) numbers is M, = C. In the type (1)(a2) case,
d= —i, 6 =1+2i. Then

P=3%(1-2i-m), D=P*+2+i+m(1-i).

A simple special case is when m = —2m—1, for meZ[i]. Then if 1 =(a—1)
+(b+1)i, we have P =m+1—i=a+bi D=m*+1, so

—_———
ch/m*+1=VPE, V¢ 3CV#E, Vi* ™3 (a2).

The arrow of periodicity followed by (an) will denote the generating product for
a type (a) number, with ne{l,2} indicating the subscript permutation.

A generalization of a theorem of Euler 15

- ExaMpLE. Let M, = C, for\/l_)a type (1)(al) number,sod = —i,d = 2 +i.
en

P=1-—i+imi, D=P*+2i—m.
A. special case is when m= —2i(m—1). Let m=a+(b+1)i, so
P=m—i=a+bi, D=m?—1, and thus '
ch /=1 = V}* E, V{"2CVP*TE, V2 (al).

’ T!'lc _form for the generating block of type (2) quadratic numbers is derived
in a similar manner.

THEOREM 8. Let £ and P be as in Theorem 6. Then necessary and sufficient

conditions that M, be the central portion of the generating product for the period
of & are as follows.

For type (a2) numbers:
P= —%i[d*(A,+A,)(A,—5B,)+m(B, +B,)],
D=P242i+d" ' [—(1—i)(A,+A,)+ A,]1(4,—6B,)
+m[B,—(1—-i)(B,+B,)],
_(4,+4,)+B,
B, +B,
For type (al) numbers:
P = —ii[d'l Az({A1+A1}—5(B1+Bz))+m82],
D=P242i+d ' [—(1—i) A, +(4,+4,)]
x [(4y+A2)—0(By +By)]—m[(1—i) B,—(B, +B,)],
= ﬂ;iﬂ—zu—ne{zi, 3i}. '

ExampLE. For type (2) numbers, there are no type (al) or type

: ‘ , ype (a2)
numbers with len (M) = 1, since 6 ¢ {2i, 3i} for any of the possible M,. There
are no type (2) numbers of types (b), (al) or (a2) for which len(M_) = 2. Let

M,=CElvz=[3‘. "“"],

P ~2(1-i)e{2i, 3i}.

é

24i -1
s0 6 = 3i, d = 1. Then for type (2)(a2) numbers, -
= —%i(3+9i+m(1+i), D=P*—3+i+mi.
If m=n(1+i)-3, for neZ, then
P=n+3, D=m+2n+3+0),
80

ch/(n+2)(n+3+i) = E, V* 3CE, V; V#*3 (a2).
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For example, for n =0, P=3, D =6+2i,

ch /6+2i = E, CE, V, V3 (a2).

The possibalities for type (1) numbers with len (M) = 2 are: (b): CV3, V2’ C;
(a2): CVA, CV;y; (al): V,C, VEC.

A variety of special cases of greater length can be derived, for numbers of
special form. Consider, for example, the type (1)(al) numbers with

M,=CV$ 2E, V¥ !C.
Among these values are those that correspond to ée /B and
P=d+(1—-i), D=d*+(1-i), deZl[il.
For example, if d = 3+2i, then P =4+,
ch /6+11i=V,E,V,CV E,CVZE, V5 (al).
The type (1)(b) numbers with
M, =CVI'E Vi 1cC

correspond to numbers satisfying
2P = =2[(1 +i)m*+m—1+i}+mm,
D =P 4+am?+4(1—iym+m[(—1+D)m+i],

where m = h+ki. A variety of special forms of D follow from considering
m = 2(1+4i)mm+(3+ni), where neZ. Then P and D simplify to

. N2
2P = (14+ni)ym+2(1—i), D= (“;’"na) +(=n+i).

In the following table for this case, Dy =r+si.

n h k P D
1 r+s r—s D, +(1—i) D}+(—1+i)
0o 2 2s D, +(1—i) Di+i

-1 r—s r+s D, +(1—i) D} +(1+1i)

—2 $(2r—4s) 1(3r+s) D, +(1-i) D+ (2+i)
~3 3(r=3s) 303r+s) D, +(1-) Di+(3+))

It is also possible that the periodic part of ch/D has a generating product
of half the length of the period. These correspond to nine other possible
transformations of chain elements discussed in [11, Lemma 2]. They only apply
to numbers equivalent to real numbers. One possibility is that the generating
product contains only elements of V; and no powers of ¥,. Any number ﬁ
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with de Z™ and non-square, for which the number of terms in the periodic part
of the continued fraction expansion of /d is odd, will have such a chain. For
example, /41 = [6; 2, 2, 12] and

ch /41 = E, Vi VIVZVIZVE V2 Vllz”

where in this case the central portion of the generating product is M, = V# V2
and there is a (13) subscript permutation.
These examples illustrate that just as the continued fraction expansion of

\/H’ tends to be simplest for d close to a square, particularly for d = m?+ 1, the
chains for numbers close to Gaussian squares also tend to be simple.
Analogous to m*+1 is the box around c?, namely c?+e+di, with e,
6e{—1,0,1} and & 0 not both 0.

In summary, the chains of Schmidt provide expansions of quadratic
complex irrationalities that bear a striking resemblance in their simplicity of
form to the continued fraction expansions of real quadratic irrationalities. This
provides new evidence for the analogy between regular chains and the
continued fraction expansion and suggests the appropriateness of pursuing the
properties of chains.

References

[1] M. Auric, Essai sur la théorie des fractions continues, J. Math. Pures Appl. (5) 8 (1902),
387-431.

[2] ). W.S.Cassels, W. Ledermann and K. Mahler, Farey section in k(i) and k(g), Philos.
Trans. Roy. Soc. London Ser. A 243 (1951), 585-626.

[3]1 L. R. Ford, Rational approximations to irrational complex numbers, Trans. Amer. Math.
Soc. 19 (1918), 142.

[4] A. Hurwitz, Uber die Entwicklung complexer Gréssen in Kettenbriiche, Acta Math. 11
(1887), 187-200.

[51 A. Ya. Khinchin, Continued Fractions, Phoenix Books, Chicago 1964.

[6] W.J. LeVeque, Continued fractions and approximations in k(i). I, 11, Indag. Math. 14
(1952), 415-426.

[7]1 O. Perron, Kettenbriiche, Chelsea, New York 1950.

[8] G.Poitou, Sur lapproximation des nombres complexes par les nombres des corps imaginaires
quadratiques dénués didéaux non principaux particuliérement lorsque vaut [lalgorithme
dEuclide, Ann. Sci. Ecole Norm. Sup. (3) 70 (1953), 199-265.

[91 N.Richert, Diophantine approximation of complex numbers, Ph. D. dissertation, Claremont
Graduate School, 1981,

[10] — A canonical form for planar Farey sets, Proc. Amer. Math. Soc. 83 (1981), 259-263.

[11] = Regular chains for equivalent complex irrationals, . Number Theory 25 (1987), 162-168.

[12] A.Schmidt, Farey triangles and Farey quadrangles in the complex plane, Math. Scand. 21
(1967), 241-295. .

2 — Acta Arithmetica LVL1



18 N. Richert

[13] A.Schmidt, Diophantine approximation of complex numbers, Acta Math. 134 (1975), 1-85.
[14] — Diophantine approximation of complex numbers, in Classical Quantum Models and
Applications, Lecture Notes in Pure and Appl. Math. 92, Dekker, New York 1984, 353-377.

DIVISION OF MATHEMATICS AND SYSTEMS DESIGN
UNIVERSITY OF HOUSTON, CLEAR LAKE
Houston, Texas 77058-1057, USA

Received on 22.1.1988
and in revised form on 3.3.1989 (1778)

ACTA ARITHMETICA
LVI (1990)

Bounds for the degrees
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for a polynomial ideal

by

FRANCESCO AMOROSO (Pisa)

0. Introduction. Let Q =(Q,, ..., @,) be an m-tuple of polynomials in
C[x,, ..., x,] and let r be a positive integer. We define D(Q, r) as the first
integer such that for any polynomial P of degree < r which belongs to the ideal
generated by Q,, ..., Q,, there exist polynomials A4,, ..., 4, such that

P=A,0,+ ... +4,0, and maxdegd, <D.
i

Let d = max;degQ;; a well-known result of G. Hermann [H] shows that
D(Q, 1) <2(Qd)* " +r.

Moreover, E. Mayr and A. Meyer [M-M] prove that this doubly exponential
growth is in general unavoidable. In spite of this, a recent result of
W.D. Brownawell [B] suggests the possibility that, under suitable “smooth-
ness” hypotheses, a polynomial bound for the growth of D (Q, ) is available. In
fact, W. D. Brownawell shows that in the Nullstellensatz case (i.e. r = 0) we
have the upper bound

D(Q, 0) < maxdeg A; < min {n, m} (nd™"™™ +4).

Let I be the ideal of C[x,, ..., x,] generated by the polynomials Q,; let
T be the homogeneous ideal of C[x,, ..., x,] generated by the homo-
genizations *Q, of the polynomials Q,. We denote by V the affine variety
{0, = ... =0, =0} and by V the projective variety {*0, = ... ="Q, =0}.

In the present paper, using some ideas of W. D. Brownawell and
a powerful result from several complex variables developed by H. Skoda, we
prove the following result: '

THEOREM 1. If Vis a smooth affine variety of dimension n—m and I is the
ideal of V, then

D@, <(m—-Dd+m—-1)m" " (@d—1y""d"+r.
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