-
12

G. Diaz

[D2] G. Diaz, Grands degrés de transcendance pour des familles d’exponentielles, J. Number
Theory 31 (1) (1989), 1-23.

[G-F] A. O. Gel'fond and N. . Fel’dman, On the measure of relative transcendence of
certain numbers (en russe), Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 493-500.

] E. M. Jabbouri, Sur un critére d'indépendance algébrique de P. Philippon, Séminaire
d’Arithmétique de Saint-Etienne 1986-1987.

[M-W] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider’s
method, Math. Ann. 231 (1978), 241-267.

[N] Yu. V. Nesterenk o, Estimates for the orders of zeros of functions of a certain class and
their applications in the theory of transcendental numbers, Math. USSR-Izv. 11 (1977),
239-270.

[P1] P. Philippon, Sur les mesures dindépendance algébrique, Séminaire de Théorie des
Mombres, Paris 1983-84 (C. Goldstein éd.), Birkhduser, 1985, 219-233.

[P2] — Critéres pour Tindépendance ulgébrique, Publ. Math. IHES 64 (1986), 5-52.
W] M. Waldschmidt, Nombres transcendants, Lecture Notes in Math. 402, Springer,
1974.

DEPARTEMENT DE MATHEMATIQUES
UNIVERSITE DE SAINT-ETIENNE
23, rue du docteur Paul Michelon

F-42023 Saint-Etienne Cedex 1, France

Regu le 2.5.1988
et revisé le 18.4.1989 (1820)

ACTA ARITHMETICA
LVI (1590)

The set of rational cycles for the 3x+1 problem
by

JErFRey C. LAGARIAS (Murray Hill, N.J.)

1. Introduction. The notorious 3x+1 problem concerns the behavior
under iteration of the 3x+1 function

Gn+1)2, n=1 (mod2),

(ll) T(") = {N/Z, n=20 {mod 2)

The 3x+1 Conjecture is the claim that, starting from any positive integer n the
iterates (n, T(n), T(T(n)), .. ) eventually reach the value 1, and subsequently

run through the cycle {1, 2} of period 2. The 3x+1 Conjecture is often
attributed to L. Collatz who studied similar iteration problems (but not
necessarily this one); it was certainly made by B. Thwaites [15]. The 3x+1
Conjecture remains unproved; it has however been verified for all n < 10'2,
The Finite Cycles Conjecture asserts that the function T has only finitely many
cycles on Z; it too remains unproved. The 3x+1 Conjecture would be
disproved by exhibiting a cycle on the positive integers other than {1, 2}. It is
known that T has no cycles in Z of length < 250,000, except those beginning
with 1,0, —1, —5 and —17 (see [6], [7]). These results together with much of
the previous work on the 3x+1 problem are surveyed in [10].

This paper studies properties of rational cycles of the 3x+1 problem,
which are cycles of the function T considered on the domain Q[(2)] of all
rational numbers having an odd denominator(!). The 3x 4 1 function T is well
defined on Q[(2)] and, more generally, is well defined on the set of 2-adic
integers Z,, into which Q[(2)] is canonically embedded (see [10]). Unlike the
set of integer cycles of T, which is presumed to be finite, the set & of all elements
of @Q[(2)] in cycles of T is large and well-behaved. Cycles of period n can be
indexed by the n residue classes (mod 2) of their iterates. In Section 2 we show
that every possible such sequence (mod2) gives rise to an element in a unique
rational cycle and conversely. Theorem 2.1 shows that for each v = (v,, ...
eevs Uy—1)€{0, 1}" there is a unique x (v)e Q [(2)] with the property that x (v) is

(') The ring Q[(2)] is the (local) ring of fractions of Z at the prime ideal (2), so would be
denoted Z;, in the notation of [2], p. 38. To avoid confusion with the 2-adic integers Z, we adopt

the notation Q[(2)].

3 — Acta Arithmetica LVLI



34 J.C. Lagarias

in a rational cycle of T of period n with T%(x(v)) = v; (mod2) for 1 <i<n
and in fact

¥

n—1
Z 81213"-'“ +o.top-y
(1.2) x(v) =2

2n_3ug+...+v,,-|

Such rationals are exactly those of the form

k

Y. Hoen
(1.3) 2
with n > a(0) > a(1) > ... > a(k) = 0. Theorem 2.1 is essentially due to B6hm
and Sontacchi [4] (who however only study integer cycles), and is also proved
in Gurwood [8]. (See Seifert [12] for a related result.)

The set € has another interpretation, in terms of the set of all elements in

integer cycles of the ensemble of 3x+k functions

(Bn+k)y2 i n=1 (mod2),
n/2 if n=0 (mod?2),

with k> 1 and k = +1 (mod 6). Each rational cycle of T is associated to an
integer cycle of a unique such T, by clearing denominators; all the rationals in
a given rational cycle of T have this denominator k when written in lowest
terms. An integer cycle of T, obtained in this way has all integers relatively
prime to k; a cycle with this property is called a primitive cycle of T,.
Conversely, each primitive cycle of T arises from a rational cycle of T, so that
the elements of € are in one-to-one correspondence with the set of elements
€ in all primitive cycles of the set of 3x+k functions T, as k varies over all
positive integers with k = 1 (mod 6).

The main results of this paper concern how the elements of € are
distributed among the various k. The complexity of this problem arises from
the fact that the representation (1.2) for an element in a cycle of period n may
not be in lowest terms, and large cancellations of common factors between the
numerator and denominator of fractions (1.3) sometimes occur. Let Cpyp (k)
count the number of primitive cycles of T, and let Cp;5 (k, y) count the number
of such primitive cycles of period at most y. In Section 3 we give heuristic
arguments for the two conjectures that for all k= +1 (mod6) one has:

(1) Cpuim(k) = 1,

(2) Corim(k) is finite.
These conjectures both seem difficult. We study the more tractable function
Corim (k, y). We show that Cym(k, $k'°) =0 for infinitely many k (The-

orem 3.1). This implies that if Cp,(k) = 1 for such k then huge cancellations
between numerator and denominator in (1.2) must occur for the numbers

T, (n) =‘{
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in the associated rational cycle of T (see Theorem 3.2). We show that there is
a constant ¢, such that for any ¢ >0 one has

(1.4) Corim (k» (14+)log k) > k! ~colloslos k.

for infinitely many k (Theorem 3.3). We also show that any positive n, that
occurs in a primitive cycle for one T, with k > 0 also occurs in a primitive cycle
for infinitely many T, (Theorem 3.4). This holds for n, =1 and 5 and is
conjectured to hold for all positive n, = + 1 (mod 6). Then we show that each
negative n, is in a primitive cycle only for finitely many T, with k>0
(Theorem 3.5).

Section 4 studies certain average values for the number of primitive cycles.
We consider the sums

P(x,y)= )

1sks€x
k=11 (mod6)

Cprlm (k » y))

with y = Blogx for a fixed §>0. To estimate these sums we study the
divisibility properties (mod M) of the 2" numerators of the rationals (1.2)
associated to all ve {0, 1}", ie. of the set

n=1
Z,={) p2/3unttemma; ye{0, 137.
j=0
Let F(n, M) denote the maximum number of elements of Z, in any residue
class (mod M). We prove that
n+1, M > 3"
F(n, <
(n, M) {2n2"/M“, ISM<,

where ¢ = (log,3)™! = 0.63093 (Theorem 4.1). We also prove a stronger
estimate valid for M = 2™ with a < a, = 0.04766:

(1.5) F(n, M) < 2n*2YM

(Theorem 4.2). This is quite close to the expected value 2"/M which would
occur if the elements of Z, were uniformly distributed in all residue classes
(mod M). Using these bounds we show that, for any fixed § > 1,

D (x, flogx) < 4(Blog x)® x/ P +eoblloglosx  where

1 if 1<pB< B, = 1050005,

(1-9)B+o if B> 8,

and ¢, is an absolute constant (Theorem 4.3). The same proof shows that
Cprim (k, Blogk) < 4(Blog k)*k/®.

f{ﬁ)={

For § < B, this upper bound is quite close to the lower bound (1.4) attained for
infinitely many K, e.g. Cpn(k, 1.01logk) < Sk(log k)*. Finally, we conjecture
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that there is a constant ¢ such that for all n one has

n’, M = 2"

<
pa {n‘Z"/M, ISM<2.

It seems likely that further progress can be made on this conjecture.
I am indebted to Ralph Tamlyn for the computation of Table 3.1.

2. Rational 3x+1 cycles. The 3x+1 function T defined by (1.1) makes
sense on the ring Q[(2)] of all rationals p/q such that g is odd, where one
considers such rationals even or odd, according to the parity of their

numerator p. Associate to any such rational x its parity sequence
b(x) = (by(x), by (), ..., bj(x), ...) where

b(x) = TV (x) (mod2),

and each b)(x) = 0 or 1. Call b,(x) the n-th bit in the parity sequence of x.
The following result shows that every periodic parity sequence corres-
ponds to a unique x€Q [(2)] in some rational cycle and vice versa; the proof

follows that of Bohm and Sontacchi [4], Thm. 5.

THEOREM 2.1. Given any 0-1 vector v = (v, vy, ..., V,—,) there is a unique
x in Q [(2)] which is periodic of period n under iteration by the 3x+ 1 function T,
and whose parity sequence starts with v. It is given by
n—1
(2.1) X =x(V) = (2"=3vrton-1)"1 § p,3osrteton-id,
i=0
Proof. Let Uy(x) = x/2 and U, (x) =(3x+1)/2. A necessary condition
for x to be periodic of period n with parity sequence starting with v is that

2.2) x=U,_ (Us_. (- (U ®)...)-
Substituting the definition of the U,(x) yields

n—1
x = _!;(300 +oetOn-1 x4+ Z v 21 Uit tun- |)_
2 =0
The solution x(v) to this linear equation is (2.1), and x(v) clearly is in Q[(2)].
This shows that x(v) is unique if it exists.

The main assertion of the theorem is that the solution (2.1) actually is never
extraneous, i.e. when the function T is applied to x(v) defined by (2.1) the parity
sequence of x(v) starts out with v. To see this, note that for ye Q [(2)] exactly one
of Uy(y) and U, (y) is in Q[(2)]: if y is even then U, (y)e Q[(2)] and if y is odd
then U, (y)e Q[(2)]. Also if a rational y¢ Q[(2)] then both Uos(»)¢€Q[(2)] and
U,(»)¢Q[(2)]. Consequently, given any yeQ[(2)] there is exactly one of
the 2" possible sequences w of 0-1 vectors with U,, _,(...(U,,(y)..)€ Q).
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Now x(v)e Q[(2)] so T™(x(v))e Q[(2)], while

Usoos (Uspos (- (Une (x ) e @ [2)]
by (2.2), hence

TOxW) = U,,_, (U, . (.. (Us(x®)))...) = x),
as required. m
This result has two interesting corollaries.

COROLLARY 2.1a. For fixed k, the integers given by
k

(2.3). Y 243, ay>a;>...>a,20,
i=0

are all distinct.

Proof. Suppose not, and that E:_n 243 = Z“=02°‘ 3! Take n = max (a,,
by)+ 1. Define the parity vectors v = (vy, ..., Un—y), W= (Wgs -.., Wy—y) With
v, =1 and all other v;=0, w,, =1 and all other w,=0. Then

k k
x(V)=@2"=3971 Y 293, x(w)=(2"-3%""' ) 243}
i=0 i=0
hence x(v) = x(w)=x, say. The parity sequences of x must start with
both v and w by Theorem 2.1, so that v=w, contradicting (a,, ..., a,)
#(bgs oer by). m

Corollary 2.1a has a simple direct proof due to Don Coppersmith. If
B=Y. 23 satisfies (2.3) for a fixed k, then 2 is the highest power of
2 dividing B. This determines a,, so one obtains

k=1
B =B-2%3k= ¥} 2u3i
i=0
Now a,_; is determined similarly as the largest power of 2 dividing B, and
proceeding recursively one can recover all of the a;, thus proving uniqueness of
the representation (2.3).

The assertion of Corollary 2.1a is no longer true if one allows integers (2.3)

with different k, e.g.

243 =2242-3432=19,

A parity sequence is said to be aperiodic if it is not eventually periodic.
A trajectory (x, T'(x), ..., T®¥(x),...) for the 3x+1 function on Q[(2)] is
divergent if lim,_. ., |T®(x)] = co. It is easily checked that any trajectory is
either eventually periodic or divergent. Several authors have conjectured that
no divergent trajectories exist (see [10]).
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COROLLARY 2.1b. Any divergent trajectory must have an aperiodic parity
sequence.

Proof. We use the fact proved in [10] that the mapping from Q [(2)] that
sends x to its parity sequence b(x) is one-to-one. (This was proved more
generally for all x in the 2-adic integers Z,.) Suppose the corollary were false,
and that y gives a counterexample. By iterating y if necessary we may assume
that it has a divergent trajectory with a purely periodic bit sequence. Suppose
that this bit sequence has period v. Then x(v) given by Theorem 2.1 has the
same bit sequence, and x(v) has a purely periodic trajectory under T so
x(v) # y. This contradicts the map b(-) being one-to-one.

It is an easy matter to count the number of cycles of a given length. Call
a 0-1 vector v=(v,, ..., v,—,) reducible if v=w for some j> 2, where w
denotes the concatenation of j copies of w; otherwise call it irreducible. A vector
v is irreducible if and only if its n cyclic permutations G (V) = (v, k41, .-
“v03 Up—1, Vg, ...y Ug—y) are all distinct. An irreducible cycle of length n corre-
sponds to a set of n cyclic permutations of an irreducible vector v of length n.
Let I (n) denote the number of irreducible cycles of length n. Using the action of
the group of cyclic permutations on the set {0, 1}" one has
(2.4) ' Y dI(d) =2".
d|n

Mabius inversion gives

1
2.5) I1(n) =Y u(d)2",

"d’]n
where yu(d) is the Mobius function. From this formula one easily deduces that

1
(2.6) 1) =-2"+0(2").

Small values of I(n) are given in Table 2.1.

Table 2.1

Number of irreducible cycles I(n).

n I(n) n I(n)
1 2 11 186
2 1 12 335
3 2 13 630
4 3 14 1161
) 6 15 2182
6 9 16 4080
7 18 17 7710
8 30 18 14532
9 56 19 27594
10 99 20 52377
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Table 2.2 gives the lexicographically largest member v of each irreducible
cycle of length n < 6, and the corresponding values x(v).

Table 2.2
Members of irreducible cycles (n < 6)
v x(¥) v x(v)
n=1: 1 -1 n=6: 111110 -3
0 0 111100 —
111010 -B
n=2: 10 1 111000 3
110100 4
n=3 110 -5 110010 3
100 3 110000 r
101000 i
n=4 1110 - 100000 &
1100
1000
n=23 11110 -_

8
Bttt 8B B b

10000

Since the 3x+1 function T does not change the denominator of any
rational x e Q [(2)] to which it is applied, it is clear that all rationals in a 3x+ 1
cycle of period n written in lowest terms have the same denominator, which we
call the denominator é(v) of a cycle including x(v). Clearly

D(v)

W) = jors,
R TONTO)
where
(2.73.) D(\!’) i 2n_3tm+...+u.—|,
n—1
(27‘3) N(\') = Z D1213u;+1+...+v..—1
=0

are the denominator and numerator of the fraction (2.1) before it is reduced to
lowest terms. Table 2.2 includes one example v = 110000 having D (v) # d(v),
with D(v) = 55, d(v) = 11.
3. Primitive 3x+k cycles. The 3x+k function T, is defined for k=1
(mod 2) by
(3n+k)y2, n=1 (mod2),
) Bl {nﬂ, n=0 (mod2).
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A rational cycle for the 3x+1 problem with denominator k gives rise to an
integral cycle for the 3x +k function obtained by clearing the denominator k.
Since the denominator D (v) of a rational cycle x(v) of T, has (D(v), 6) = 1, we
always have k = +1 (mod 6) in this correspondence. Conversely, all integral
cycles of all 3x+k functions with k = +1 (mod 6) arise in this fashion from
rational 3x+1 cycles.

Note that T_, and T, are essentially the same function because
T,(n) = T_,(—n), so we suppose k > 1 in what follows.

The map T, sends Z to Z; more generally define for d|k the set Z(d, k)
= {n: (n, k) = d} and observe that T, maps Z(d, k) into Z (d, k). The action of
T, on Z(d, k) is the same as the action of T, on Z(1, k/d) up to a multi-
plicative scale factor. For this reason we study the action of T, on the domain
Z(1, k), which we call the set of primitive integers (mod k). A cycle of T, on
Z(1, k) is called a primitive cycle (mod k). (Minimal invariant sets of residue
classes (mod N) for a class of functions generalizing T, are studied by Matthews
and Watts [11] and Buttsworth and Matthews [5].)

The discussion so far describes a bijection between the set € of elements of
Q[(2)] in some cycle of the 3x+ 1 function T, and the set € of all members of
primitive cycles of some T, with k > 0 and k = +1 (mod 6). In the remainder of
this section we shall therefore suppose that k >0 and k= +1 (mod 6).

3.1. Two conjectures about primitive cycles. Let C,,;, (k) count the number
of primitive cycles of T,, and et C,,;.(k, y) be the somewhat more tractable
function that counts the number of primitive cycles of T, of period < y. One
expects that the behavior of iterates of T, on Z (1, k) will be qualitatively
similar to that of the 3x+1 function T, on Z. A heuristic argument similar to
that in [10], Sec. 2.1, suggests that (averaged over a long series of iterates) T, (n)
is about (3)/?n. One then expects that no trajectory can diverge to infinity,
hence every trajectory becomes eventually periodic. This leads to the following
conjecture.

PRIMITIVE CYCLES EXISTENCE CONJECTURE. For each k = +1 (mod 6) the
3x+k function T, has a primitive cycle, i.e. Cpym(k) = 1.
This conjecture seems difficult, if not intractable, for reasons indicated in

Section 3.2
How many primitive cycles are there for a fixed k? The following

conjecture is an extension of one made for the 3x+1 problem.

FmniTe PrRiMITIVE CycLEs CONIECTURE. For each k = +1 (mod 6), one has

Cpfim (k) < @.

Some evidence for this conjecture, in the case k = 1, is that T, has 5 small
cycles and no other cycles of length < 250,000 (see [6], [7], [10]). A heuristic
argument supporting this conjecture is described in Section 3.6. At present it
also seems an intractably hard problem.
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3.2. Existence of primitive cycles. To gain insight into the Primitive Cycles
Existence Conjecture, we examine numerical evidence. Table 3.1 gives for
k < 150 the smallest positive n, such that n, is in a primitive cycle of T;, and
gives the period length of that cycle. (This need not be the shortest primitive
cycle of T;.) Table 3.1 includes a number of examples of cycles v of T, of
minimal period approximately k, e.g. k = 85, 107, 139. The rational x(v) given
by (3.1) for such a cycle has a denominator D (v) = 2"—3! for some | before
being reduced to lowest terms, while in lowest terms the denominator o(v) =k.
It is apparent that the unreduced denominator D (v) must be of size at least the
minimum of [2"—3'| for 0 < I < n, and for n = 85, 107, 139 this is at [east 42,
Consequently, there must be a cancellation of a huge common factor from the
denominator D(v) and numerator N(v) of x(v) in these examples.

Table 3.1

Minimal positive cycles for the 3x+k
problem (k < 150)

cycle cycle

k' M icngth K M lengh

1 1 2 77 1 38

5 1 3 19 1 44

T 5 4 83 65 24
11 1 6 85 7 100
13 1 4 89 17 17
17 1 7 91 1 48
19 5 11 95 1 72
23 5 5 97 1 18
25 1 16 101 7 14
29 1 5 103 5 21
31 13 23 107 1 106
35 7 3 109 19 52
37 19 6 113 1 29
41 1 20 115 13 27
43 1 11 119 1 75
47 5 18 121 5 44
49 25 38 125 1 7
53 103 29 127 1 37
55 1 12 131 13 26
59 1 28 133 11 36
61 1 6 137 | 14
65 19 24 139 11 136
67 17 30 143 7 140
7 29 10 145 1 10
3 19 60 149 19 59

We show below that in order for the Primitive Cycles Existence Conjec-
ture to be true, the cancellation of huge common factors (N (v), D(v)) must
occur for infinitely many k. It is this property that makes the Primitive Cycles
Existence Conjecture appear difficult.
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We first show there exist infinitely many k for which T, has no short
primitive cycle.

THeOREM 3.1. There exist infinitely many k = +1 (mod 6) such that T, has
no primitive cycle of period < 3k', ie. Cpim(k, 2k'?) =0.

Proof. If v is a primitive cycle of period n of T then the rational number
x(v) expressed in - lowest terms has denominator k. Hence k divides
D(v) =2"—3! where 1 <! < n Consider

[ 4 n

SO =]

n=1l=

|27 3.
1

It is easy to see that S(f) < 3¢V *16 Now if all T, for k, << k have
a primitive cycle of length <t then the least common multiple [k,, k] of k,
through k must divide S{t). It is well known (and equivalent to the prime
number theorem) that

log[1, k] = k+o(k),

as k — oo ([9], Theorem 434). Also [k,, k] = [1, k]/[1, ko], for any k,. On
choosing t = k" one has, using the upper bound for S(¢), that for sufficiently
large kg,
log [k, k] > 0.99 (k —k,) = log S (3 k'/3)

for k > Skg. This contradicts [kq, k]|S(34"/%), and thus proves that there is at
least one such k in the interval [k,, 5k,] having no primitive cycle of length
<2k'P. m

One can improve the constant § in Theorem 3.1 slightly with a more
careful argument.

Now we can show that huge cancellations must sometimes occur, if the
Primitive Cycles Existence Conjecture is true.

THEOREM 3.2, There exist infinitely many k = + 1 (mod 6) such that either
T, has no primitive cycle or else every primitive cycle v of T, has

D(v)
= ————— < (log D(v))*.
o, bw) < loeD )

Proof. We first show D(v) is large for all v. A result of A. Baker and
N.IL Fel'dman ([3], Theorem 3.1) on linear forms in logarithms of algebraic
numbers implies that there exists an effectively computable constant ¢, > 0
such that for all n>2

(3.2) k

[nlog2—Illog3| = n~‘,

From this it is easily shown that there exists an effectively computable constant
¢, such that for n > 2 one has

(3.3) [2"—34 > 4n~e1 2",
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Now take a T, having no primitive cycle of period < 3k'/?, which exists by
Theorem 3.1. Let v be a primitive cycle of T;, necessarily of period n > §k'/3,
Now

log, D(v) = log,|2"—3| = n—c, log,n—1
> $k12—0 (logk) = k',
for all k > c, for some constant c¢,. m

33. Large values for Cin (k). We show that Cppy (k) takes occasional
large values.

Tueorem 3.3. There is a positive constant c,, such that for any fixed & > 0
one has

(3.4) Corim (k, (1+¢) log k) > k! ~eofleslosk
Jor infinitely many k.

Proof. Consider the set §, of 0-1 vectors v of length 2n containing exactly
n ones. There are at least n~! (2:) distinct primitive cycles associated to such

v (with period dividing n), and each such cycle has a denominator
é(v)|B, = 2?"—3". Now B, has d(B,) divisors k, and at least one of them has
many primitive cycles. There exists a constant ¢, such that d(B) < B/l°s!o85 for
all B > 1 ([9], Theorem 317). Now let C;.. (k, n) count the number of primitive
cycles of T, with period dividing n. Clearly C,pn(k, n) > Cin(k, n). The

argument just given shows that there is some k|B, such that
335 Corim (k, 2n) > 1(ZW)d(Bm)_ L 25 2% collogions,
nwn

Let k, denote the smallest k such that (3.5) holds. We claim that, for any
fixed ¢ > 0, k, = 2 792" for all » 2> n,(¢). Assuming that this claim is proved,
the bound (3.4) holds with 1+& = (1—¢)~! for all k, with n > n,(g') since
2n < (1+¢)logk,. Also since 22" > k, > 2(1-92" there are infinitely many
different k, for which (3.4) holds.

It remains to prove the claim. To do this, we use an estimate to be proved
later (Theorem 4.1), which shows that the number of ve {0, 1}" with M|N (v) is
at most 2n? 2"/M?, where ¢ = (log, 3)~!. Now suppose K < 21792 50 that for
any B =2?"—-3! with K|B one has M = B/K > n~% 22" ysing (3.3). Con-
sequently, the number of ve {0, 1}" having M|N (v) is at most 2n2*¢1 201 a2,
Now there are n+1 choices of I, hence at most n+1 choices of M, so that

Clim(K, 2n) < 2n3+e12(1-002n

This contradicts (3.5) for all large enough n, so k, ¥ K and thus k, > 21 =927
proving the claim.
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3.4. Primitive cycles containing a fixed integer. For fixed k = +1 (mod 6)
we may index primitive cycles by their smallest member n,,. This will always be
aninteger ny = +1 (mod 6). For how many k is n, a member of some primitive
cycle? The simplest case is n, = 1. Table 3.1 suggests the possibility that | is in
a cycle for a positive proportion of all T, with k > 1. This seems hard to prove.
However, it is easy to show that 1 is in a cycle for infinitely many k. The vector
v=10™ has x(v) = 1/2™—3), hence T, for k =2™—3 has a primitive cycle
containing 1. More generally we have the following result.

THEOREM 3.4. If a positive n is in a primitive cycle for some T, with k > 0,
then it is in a primitive cycle for infinitely many T, with k > 0. If in addition
no = t1 (mod6) then it is the smallest element in such a primitive cycle for
infinitely many k.

Proof. By hypothesis there is a 0-1 vector v = (v, ...

N (v) _o

D( ) k

with (ny, k) =1 and x(v)> 0. If [ =vy+ ... +0v,-,, then D(v) =2"—3' > 0.
The vectors w,, = vO™ have N(w,)= N(v), D(w,) >0 and

Nw, N

D(W_} == ntm_ 3l

The rational (3.7) reduces in lowest terms to a rational with numerator n,
whenever

, Up—1) such that

x(v) =

3.7 x(w,) =

G, =(NWw,), D(w,)) =(N(v), 2"*"—3)

has G, =G,, in which case x(w,)=ny/k, with k,=(2"-3%)/G, and
(ny, k,) = 1. The function G,, is periodic with period p = ordy,(2), ie. the
smallest p > 2 with 2" = 1 (mod N (v)). In particular G,, = G, whenever m = 0
(mod p). This shows that infinitely many k,, exist with n, in a primitive cycle of
T.... Finally, we show that ifn, = +1 (mod 6) then n, is the smallest element in
the corresponding cycle of T, _ for all sufficiently large m = 0 (mod p). Since n,
is odd, the first entry of v is 1, hence for m > 4n,

3ng+k, k. 25°-2"
Tng) = === 2 2 5w > 2o,

since ny, < N(v) < 3"—2". Consequently
TP (o) >ny, 1<j<n
Since the last m entries of w, = v0™ are zero,
TP (ng) > T ™ (ng) = ny, n+l1<j<n+m.

Thus n, is the smallest element in the cycle. m
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As an example, v = 120™ has x(v) = 5/2"—9) so n, =
cycle of T; for k =2™—9 provided m # 2 (mod 4).

5 is in a primitive
CoNJECTURE P. Every positive ny = +1 (mod 6) is in u primitive cycle of

infinitely many T, with k>0 and k= +1 (mod6).

Theorem 3.4 shows that to prove this conjecture it suffices to prove that
each such n, is contained in a primitive cycle for one T,.
The situation for negative n, is entirely different.

THEOREM 3.5. Any negative n, is not in a primitive cycle of T, for all
k > |ngl. In particular, no = —1 is in a primitive cycle for T, and for no T, with
k> 1.

Proof. Let v be a 0-1 vector with x(v) <0. We show
(3.8) x(v< —

with equality if and only if v = 1", Indeed, if x(v) < O then D(v) =
Now

-3 <.

n—1

-1
N(v) = E yj2]3l-';n+...+l’n-l = Z 3 9ali)
j=0 i=0
with a(0) > a(1) > ... > a(l) > 0. Hence

-1
(3.9) Nw= Y 3iai-i-1=31_2l> = |D(v).

i=0
Clearly equality occurs only if / = n and v = 1". Consequently if x (v) = no/k in
lowest terms, with n, <0, then (3.8) implies that 1 <k < |n,|. =

In particular, Theorem 3.5 shows that the cycles starting with —1, —5 and
—17 of the 3x+ 1 function are in some sense “exceptional”, when viewed over
the set of all T, with k > 0, while the cycle starting from 1 is “non-exceptional”.
The remaining known cycle {0} of T, is common to all T,.

3.5. Finite Primitive Cycles Conjecture. We describe a simple heuristic
argument suggesting that C,;,.(k) < oo for all k. It is easiest to consider the

case k= 1.
Let Z,, = {v: ve{0, 1} andz

same denominator D, , = 2"—3',

= I}. All members of Z,, have the

HeurisTic HypoTHEs'S. The numerators {N(v): veZ,,} considered

(modD,,) behave as if they were random variables drawn uniformly and
independently from the interval [0, D,,—1].

Now one obtains a v with k = §(v) = 1 if and only if N (v) = 0 (mod D,)),
and the heuristic hypothesm asserts that the probability of this is |Z,,|/D,..
A key point is that in order to obtain a primitive cycle of length n, one must
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find n distinct v with é(v) =1, and using the heuristic hypothesis the
probability of this is (|Z,,|/D, )" We divide the set of all pairs (n, ]) into two
classes:

Case 1: 1 <1< %n. In this case D,; >2"—335 > 2"~ while

1Z. < ( " ) < Lo,

Gn] \/;

Hence
(IEN.IVD..J)" < n-n,lz on
Case 2: 3n<I<n. In this case D,, > n 2" by (3.3) while

2ol <
120l < (g

) < (1.98)".

Hence
(1Z/D, )" < (0.99)7.

Now, summing over all pairs (n, [) we see that

(3.10) Y Y (1Z.d/Dyy)

n=1I=1
converges extremely rapidly. It is this fact that suggests C,,;(1) < co. Similar
heuristic arguments suggest that C,,, (k) < co for all k.

How convincing is this heuristic argument? In its precise details, not
very. The heuristic hypothesis is certainly false because the denominators 4 (v)
of elements in a cycle are correlated. However, the extreme rapidity of
convergence of (3.10) suggests that C,;. (1) < oo would follow from a much
weaker heuristic hypothesis concerning the distribution of {N(v): veZ,,}
(mod D, ). The next section gives general results on the distribution of
{N): ve{0, 1}"} (mod M) for artibrary moduli M, which show that the
distribution is nearly uniform for M <20047" and cannot be too
non-uniform for all M.

4. Upper bounds for the number of primitive 3x+k cycles. We obtain
upper bounds for the sums

@1 Sx, = ¥

1sk=sx
k=1 (mod6)

Cprim (ks y),

where y = Blogx for some constant f.

The general approach to obtaining such upper bounds is to show that
for most v the quantity (N (v), D(v)) cannot be very large. To do this we
study the distribution of Z, = {N(v): ve {0, 1}"} (mod M) for an arbitrary
modulus M.
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4.1. Distribution -of numerators (mod M). We study the sets

n—1 n—1
Za={Y¥ p; 2 Uy et 118, X gy 1},
=0 i=0
and their union
n Cn-1
Z=UzZu={Y vjzj3l‘1+|+...+u..-:: ve{0, 1)7).
=0 j=0

Let F(n, M) count the maximum number of elements of Z, that occur in any
congruence class (mod M). Note that the elements in each £, , are all distinct by
Corollary 2.1a, but those in X, need not always be distinct, and in the definition
of F(n, M) they are to be counted with multiplicity.

How big ought F(n, M) to be? If the elements of Z, were uniformly
distributed (mod M) then about 2"/M elements of Z, would fall in each residue
class (mod M). We propose the following conjecture.

EQUIDISTRIBUTION CONJECTURE. There exists an absolute constant ¢ such
that if (M, 6) =1 then

(4.2a) n, M > 2,
(4.2b) FMJQQLTWL M<o.

We will show the conjecture is true for “large” M > 3", which is rather
trivial, and also for all “small” M < 2°94"" (Theorem 4.2 below).

We begin with an upper bound for F(n, M) valid for all M.
THEOREM 4.1. Given M with (M, 3) = 1. Define « by M = 2*". Then

(4.3a) n+1, - a>log,3,
(4.3b) m28-ee O<u<log,3,

where ¢ = (log, 3)™" = 0.63093.

Proof. We first consider the easy case where « > log, 3, i.e. M > 3". The
maximum element of Z, is

Fn, M) < {

n=1
4.4) Y 213 =300,

j=0
8o any two elements of Z, in a congruence class (mod M) necessarily are equal.
Now for any M e[0, 3"—1] there can be at most one element of value M in
%, for 0 < M < n by Corollary 2.1a, hence the value M is taken at most n+ 1
times.

Now consider the more interesting case 0 < « < log, 3. Given ve {0, 1}"

write v=ww where w is of length m and W is of length n—m. Set
(w,w)=Y" wi=Y" w and let |w denote the length m of w.
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Then
m=—1 n-m-1
(45] N{\"}=(z Uj2j3v"”+"'+"""I):’l(ij)-i-( E Um+j2j3v.,.q..+,,,*v,.—|)2m
i=0 i=0
= N (W) 3% + N (W) 2™.

Consider the set of 2™ vectors ve {0, 1}" having a fixed vector W, and choose
m= | @an | . We claim that for any fixed residue class r (mod M) at most
m choices of we Z,, will yield v = ww with N(v) =r (mod M). To prove the
claim, we prove that there is at most one choice of w having (w, w) = | with
0 <!< mand N(ww) = r. Suppose not. If there were two different choices w'"!
and w3, giving the residue class r (mod M), then (4.5) would give

3 (N (W) — N (W) = 0 (mod M).
Since (M, 3) =1 this gives
(4.6) N(w')—N (w?) =0 (mod M).

However, the choice of m = | @an | guarantees that 0 < N (w”) < 3" < M, so
(4.6) forces N (w¥) = N(w'®). Now since (w'", w'’) = (w? w?) =1 by
Corollary 2.1a one has w!!) = w!?), a contradiction proving the claim. The claim
shows that

F(n, M) S m2"™™ < 2n20-%0n

We are able to give a much sharper estimate for F(n, M) valid for
“small” M.

THEOREM 4.2. Let M be given satisfying (M, 6)= 1. If M = 2™, with

1—H(p)
<a = = 0.04766,
¥S% T2 H )
then
4.7) F(n, M) < 2n* 20720,

Here H(x) = —xlog, x—(1—x)log,(1—x) and ¢ = (log,3)™".

Proof. We start with the decomposition ve {0, 1}" as v = wwW, where
W is an arbitrarily placed “window” of m bits, which gives

4.8) N (v) = 3™+ R N (w) 4 2I% 355 N (7) 4 2!+ I N ().

We will choose m = | an—2log,n—1 |, so that M = 2*" > 2n?2",

Now we divide the vectors we {0, 1}™ into two sets, the normal set are
those with N (W) < M and the oversizg sef are those with N (W) > M. We claim
that for any residue class » (mod M) and any fixed choice of vectors w, % there
are at most m vectors w in the normal set such that v = www. This claim is
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proved the same way as in Theorem 4.1. Hence for a fixed window location, say
with |w| = and 0 < | < n—m, at most (n—m+1)2"~™ vectors v = wWwW with
w normal have N (v) = r (mod M). Now we let the window location vary, by
varying I, and conclude that at most (n—m)(m)2"~™ vectors v occur such that

(i) N(v)=r (mod M),
(ii) v contains some window vector w of length m that is normal.

It remains to count the number E of exceptional vectors v such that
N (v) = r (mod M) and all window vectors w of size m inside v are oversize. We
bound these by the size || of the set Q consisting of those vectors v in {0, 1}"
all of whose window vectors w of length m are oversize. Suppose ve Q. Let
{#": 0 <1< n—m—1} denote the n—m possible window vectors of v of length
m. If B(j)=v;41+ ... +v,-, then (4.8) gives

49) N (¥) > 2V 35+m N (),
Now ve implies N(#w") > M for all I. Summing (4.9) over I yields
n—m-—1 n=m=-1
@410) (i—mN¥) > Y 23BCmN@Y) > 2 mM( Y 2'm3seem)
=0 =0

n—m-—1
;2,!2( IHZO 2!+m3ﬂ(l+m))‘

n—=1

Now N(v) =) .,

v,2'3%", so this inequality yields
m-—1 n—m-—1
n Y p2'3F0>@r-n( )y 2> (n>—n)2".

1=0 =0
In particular, there exists some [ with 0 << m and 2/3%? > 2". This shows
that B() > ¢ (n—I), which says that the vector ve Q has at least ¢ (n—1) ones in
its last n—I positions, where ! < m < an. This restriction on ve {2 yields the

bound
asg2( 2 (7))

To simplify this inequality, we use a bound ([1], Lemma 4.7.2) for the tail of the
binomial distribution:

5 () <2

j>ak
valid for « >34, where H(x) = —xlog,x—(1-x)log,(1—x) is the binary
entropy function. This yields

m
1@ < T 21 2H@Nn=D < ppom QHeNn=m) < pen QH@N1~ahn

I=0
where H (¢) = 0.949955.

4 — Acta Arithmetica LVL1
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Thus for (M, 6) =1 we obtain the bound
F(n, M) < (n—m)(m)2" ™ +|Q| < n(n—1)4n? 201 ~9n 4 poen+HieX1-am

This yields
F(n, M) < 4n*20 ~om

whenever (1—a)n > an+H(¢)(1—a)n, and this condition simplifies to

1—H(p)
<a,
S %= " H)

[f

2 0.0476598. =

The upper bounds for n~* log F (n, 2*") obtained in Theorems 4.1 and 4.2
are graphed in Fig. 4.1 by the heavy line. The flat segment between , and 1 is
proved by a modification of the proof of Theorem 4.2 that we omit: one
chooses m = | a,.n—2log,n—1| for « < o < (log, 3)a,. The dotted line in
Fig. 4.1 indicates the upper bound for n~'logF(n, 2°") asserted by the
Equidistribution Conjecture.

1
{log; 3le, 1 ¢'=log; 3=158

,=0,04766

Fig. 4.1‘5 Upper bounds for n™' log, F (n, 2*) (dotted line indicates Equidistribution Conjecture)

It is a peculiar fact that the argument of Theorem 4.2 completely loses its
strength at the critical value a,. To obtain improved bounds for « > a_ by this
approach apparently requires improved bounds either for the number of
elements in the exceptional set E or for ||

4.2. Upper bounds for ®(x, y) and C,um(k, Blogk). We study

(4.11) Px, )= Y  Coumlk, )

1<k<x
k=11 (mod6)

for y = Blog x as x — co with B held constant. The count of all primitive cycles
of length < Blogx is the “trivial” upper bound for this sum:

[Blogx]

(4.12) ®(x, Blogx) = Y. I(n),
n=

and this yields
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[ﬂ'lﬂi-ﬂl
®(x, flogx) < Y ~2"+0 (21b108x12)

(4.13)

2xP
<

= log, x

+0(xP1?),

The bound (4.12) is exact for 0 < B < ¢, and it is still quite sharpfor ¢ < f < 1,
because essentially all denominators D (v) of cycles of length < flog x are less
than x for B in this range. For example, for f =1 one can show that
[logx]
®(x,logx) = Y I(m)—2x"?,
n=1
where H(p) = 0.949955. (To prove this, one excludes all v with D(v)
= |2"—3% > 2l*s*) arpuing as in [10], Theorem D.)
The results of the previous section enable one to show that for § > 1 the
“trivial” upper bound (4.13) can be improved.

(4.14)

THEOREM 4.3. For B> 1 one has
(4.15) @ (x, Blogx) < 4(Blogx)® x/ P *cobllosiosx  ywhere
1 if 1<p<p.=1/(1-a)= 1050005,
(1-e)B+e if B> B,
with ¢ = (log,3)”! = 0.63093, and c, is an absolute constant.

Proof. Let n =logx, and consider all 0-1 vectors v of length | fn .
For simplicity in what follows we treat fn as an integer; the proof works
with | pn| replacing fn throughout. How many of these v can produce an
x(v) which in lowest terms has a denominator &(v) < x? To begin with, the
unreduced denominator

4.16) f(B)= {

D(v)=2"-3

takes fn+1 possible values. For each one of these values it has at most
2conjloglogn nnssible divisors M, for an absolute constant ¢,. Using (3.3) one has

[DW)| = (Bn)~* 2" > xF((Blog x)**,
and this implies that in order to have |D(v)/M| < x one must have
4.17) M = (Blogx) ™ x?~! = (Bn)~* 2~ 1,

Now for any fixed divisor M let Fy(n, M) = # {ve{0, 1}": M|NW)}.
Since Fy(n, M) < F(n, M) Theorems 4.1 and 4.2 can be vsed to bound the
number of such M. They give

Fo(Bn, M) € 2pn2°"/M°® if M &3,
Fo(Bn, M) < (Bn)*2%"/M  if M < 2%P",
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Now (4.17) gives M > 2" with

1 log fin

B'—C l—'—ﬁn .

Hence the number G (n, fn) of v of length fn yielding a cycle with d(v)<2"is
bounded by

o, =1—

G, pn< Yy Y

I1=0 M|2fn—31
Mz 2%fn
< (Blog x+ 1) x“P/o8198% (2 (Blog x)* x/P)
where f(B) is given by (4.16). Since the right side of (4.18) is a monotone
increasing function of f, we have

(4.18) Fy(fn, M)

®(x, flogx) < % G(n, j) < PnG(n, pn) < 4(Blogx)° xJ(B)+cof/loglogx o
i=1

Remarks. (1) The proof gave away a few powers of logarithms more
than necessary for g > ..

(2) It is known that for any &£ >0 one has d(B) < B‘.“‘"""l"‘” for_ all
sufficiently large B > B, (¢). Hence any ¢, > 1 can be used in (4.15) provided
that a suitable multiplicative constant is addt?d.

(3) Thé Equidistribution Conjecture implies that

@ (x, flogx) < C(B, e)x'**
holds for all x, where C(B, ¢) is a constant depcnding on f and &
(4) A similar proof gives the upper bound

flogk m l 2;“_31
Cpﬂm(k, ﬁlogk} < 2 z EFO(M, —jc—

m=11[=0

(4.19)

< 4(Blogh)* k'@,

valid for B > 1, where f(f) is given by (4.16). This upper bound is close to the
occasional large values of Cpym(k) given by Theorem 3.3, for B < j..
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