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Continued fractions of period five
and real quadratic fields of class number one

by
R. A. MoLLN (Calgary) and H. C. WiLLiAMS (Manitoba)

1. Introduction, Although several results in the literature give necessary
and sufficient conditions for a real quadratic field to have class number one (see
[31, [5], and [6]), we find that none of these gives specific enough information,
not only to be useful as a tool for testing class number one in general, but also
to qualify as a true “Rabinowitsch-like” result for real quadratic fields (see
[14]-[15]). Hence in [7]-[12] we found necessary and sufficient conditions for
a real quadratic field to have class number one in terms of exactly specifying
the prime factorization (over the integers) of certain quadratic polynomials.
The aforementioned criteria in [3], [5], and [6] do not explicitly do this in

general. We looked at Q(\/c_i) for a positive square-free integer d, and examined
the continued fraction expansion of w = (1 +JE)/2 if d = 1 (mod 4) (respect-

ively w = ﬁ if d = 2, 3 (mod 4)). We were able to find exact criteria which we
were seeking, when the period k of the continued fraction expansion of

w=(a, a, ..., 4 satisfies kK < 4. As an offshoot we were actually able to list
all real quadratic fields of class number one (with possibly only one more value
remaining) for k < 4. A subset of such d are the so-called Richaud-Degert (R-D)
type real quadratic fields (see [2] and [16]); ie., those of the form d = [* +r
with 4/ = 0 (mod r) and —[ < r < [. Since we found the condition —I <r <l to
be somewhat artificial we removed it and we call such fields extended R-D
types. The virtual solution of the class number one problem for extended R-D
types in [13] shows that five of the six conjectures in the literature involving
such types are true with the remaining one failing for at most one value. The
conjectures are by S. Chowla [1], R. A. Mollin [8], R. A. Mollin and H. C.
Williams [11] and H. Yokoi [17].

It is the purpose of this paper to solve the problem when k = 5. For k = 5
we find that if d # 5 (mod 8) then h(d) = 1 if and only if d = 41. Whend =5
(mod 8) we pose a conjecture which we claim lists all such d with h(d) = 1.

The main result is to give a specific Rabinowitsch condition for k = § in
terms of the polynomial f;(x) = —x?>—x+(d—1)/4 when d = 5 (mod 8).

In §2 the above notation will be in foroe.
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2. Results. It is well known that if h(d) = 1 then d = p, 2p’ or p'q where
p is prime and p’' = g = 3 (mod 4) are primes. Moreover, it is well known that
an odd period k for w necessarily implies that d is a sum of two squares. Thus:

Remark 1. If the period k > 1 of w is odd, then h(d) =1 implies that
d=1 (mod4) is prime.

TueoREM. If k=5 for Q(\/d) with d=1 (mod4) then w=<a,b,c,
¢, b,2a —-1) {vhere 2a—1=b(+1)*+c(c®+1)—f((bc+ l)sz’)., and
d = (2a—1)*+4r where r = (c*+1)*—(bc* +-c+Db) f, for some positive integers
b and c, and a non-zero integer f. Set s = c(c*+1)—f(bc+1). Thus:

(1) d=1 (mod8)=>h(d)=1 if and only if d = 41. _ N

(1) d =5 (mod8)=>h(d) = 1 if and only if all of the following conditions
are satisfied:

(1) r is prime or r = (bs+1)%.

(2) bs+1 is prime.

(3) If r=(bs+1)* then fy(x)/(bs+1) is prime whenever 0 szs a—1,
x=2"1(+s—1) (modbs+1), and x#27'(+s-1) (mod{bs+_ll ). Also
fy(x)/(bs+1)* is 1 or prime whenever 0 <x<a—1 and x=2 (£s—1)
(mod (bs+1)?). . ,

(@) If r # (bs+1)* then f;(x)/(bs+1) is prime or r* or (bs+1) whenever
0<x<a-—1and x=2""(+(br—5)—1)"" (modbs+1).

(5) If r # (bs+1)* then fy(x)/r is 1 or prime or r? or r(bs+1) whenever
0<x<a—1 and x=2""'(+s—1) (modr). .

(6) f,(x) is prime whenever 0 < x < a—1 and x does not satisfy any of the
congruences in (3)5).

Proof. The first statement of the theorem is a straighforward verification
using the methods of Kraitchik [3]. Throughout the proof we will be using the
fact that 2a— 1 = br +s where 0 < s < r, which follows from examination of the
continued fraction of w. Observe that s # 0 since s =0 implies that d is of
extended R-D type, and extended R-D types have k < 4. ‘ '

Now, by a result of Lu [6] (see also [12]), h(d) =1 if and only if

@) 2a+2b+2c = A, (d)+1

where 1, (d) denotes the number of solutions of u?+4vy = d in non-negative
integers u, v and y. Since u must be odd we set u= 2x _+1 and so
f,(x) = —x2—x+(d—1)/4 = vy with 0 < x € a—1. Now we examine the num-
ber of divisors of f;(x); i.e., 4,(d). . -
Case (I): d = 1 (mod 8), in which case r is even. Also r > 2 since a t:adnous
check shows that d = (2a— 1)+ 8 does not yield k = 5. Now we determine the
number of values of x for which f,(x) =0 (modr/2). If 2x+1= +(2a—1)
(mod 2r) then we do have f;(x) = 0 (modr/2). If 2x+1 = 2a—1+2Ir for some

integer | then, since 0 < x <a—1, we have (1—a)/r <I<0.
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CLAM 1. b is odd.

If b is even and c is odd then by the first statement of the theorem f must
be even. Thus 2a—1 is forced to be even, a contradiction. If b is even and c is
even then r is odd, again a contradiction, which secures the claim.

Now let [x7] denote the least integer greater than or equal to x.

CLamm 2. [(1—a)r] =(1-b)/2.

Recall from the statement at the outset of the proof that 2a—1 = br+s,

with 0 <s <r. Therefore, [(1—a)/r] = [(1—br—s)/2r] and
—b2> (1—br—s)2r > —b/2—1.

Since b is odd by Claim 1, Claim 2 is now secured. Hence ! takes on (b+1)/2
such values.

If 2x4+1= —2a+1+2Ir then, as above, a/r <I< (2a—1)/r. Clearly,

[(2a—1)/r] =b, where | x| denotes the greatest integer less than or equal
to x; whence I <b. Also

[a/r] = [(br+s+1)2r] =(b+1)/2.

Thus (b+1)/2 < I < b; whence [ takes on (b+ 1)/2 such values. Consequently
there are at least b+ 1 values of x for which f; (x) = 0 (mod r/2). If /2 is divisible
by 4 or an odd prime, then for all but possibly the two values of x yielding
f4(x) = pr where p=2 or p> 2 and p|r (in which case these two values of
x yield at least 9 distinct divisors of f;(x)), f;(x) must be divisible by at least
6 distinct divisors. Hence there are at least 6 (b— 1)+ 9 = 6b+ 3 distinct divisors
of f,(x) for the above b+ 1 values of x. For the remaining a—(b+ 1) values of
x where 0 < x < a—1 we must have at least four distinct divisors since f}(x) is
even. (Note that we have excluded the possibility that f;(x) = 4 by insisting that
4 divides r/2) Thus, for these remaining values of x there are at least
4(a—b—1) = 4a—4b—4 distinct divisors of f,(x). In total then we have
A, (d) = da+2b—1.

We now invoke (2.1) to get 2a+2b+2c > 4+ 2b; whence ¢ > a. This is
a contradiction since it is a general fact from the theory of continued fractions
that, for example, if

w= <a, Ay @y veny Gg—1, 2a—l)

when d = 1 (mod4) then a; < a for each i. This contradiction forces r = 4.
A straightforward check using the first statement of the theorem shows that
r=4 implies b=1, ¢c=2 and f = 3; ie, d = 41.

Case (I1a): d = 5 (mod 8); whence r is odd. 2x+1 = +(br—s) (mod bs+1).

CrLamm 3. fi(x) =0 (mod bs+1).
From the first statement of the theorem we get 2a—1 = br+s. Thus,

4,() = —(2x+1)2+d = —(2x+1)2 +(br+s)* +4r.
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Therefore,
4Af,(x) = —(br—s)* +(br+s)* +4r (mod bs+1).

Hence 4f;(x) = 4brs+4r =0 (mod bs+1). This proves Claim 3.
Hence

2x+1=br—s+I(bs+1) when 2x+1 = br—s (modbs+1),
2x+1=s—br+I(bs+1) when 2x+1= —br+s (modbs+1),

for some integer I, where [ is even (and possibly /| =0 when 2x+1 = br—s
(mod bs+ 1)). Since 0 < x <a—1, if 2x+1 = br—s (mod bs+1) then

(L=br+s)/(bs+1) < I < 2s/(bs+1).

Since | must be 0 or even and 2s/(bs+ 1) is clearly less than 2, we have [ <0.
To simplify the writing, set

u= [(1=br+s)(bs+1)7 .
Since it is straightforward to check that

—c—1<(l=br+s)/(bs+1)<1—c¢

we have u = —c or 1—c. If u= —c then, when c is odd, [ takes on (c+1)/2

values. When c is even then [ takes on ¢/2+ 1 values. If u = 1 —c then, when c is

odd, I takes on (c+1)/2 values. If ¢ is even then [ takes on c¢/2 values.
As above, if 2x+1 = s—br (mod bs+ 1), then

(1—s+br)/(bs+1) <1 < (2br)/(bs+1).
Since | is even we easily get | < 2c. Moreover, it is straightforward to check that
c+1>(br+1—s)(bs+1)=c—1.
Set
v=[(br+1—s)/(bs+1)] .

Therefore, v = ¢ or ¢+ 1. If v = ¢ and c is odd then [ takes on (c+1)/2 values. If
¢ is even then [ takes on ¢/2+ 1 values. If v = ¢+ 1 and c is odd then [ takes on
(c+ 1)/2 values. When c is even [ takes on ¢/2 values. Hence in total we have
¢+1 values taken on by I To see this we observe that when c is even then
u= —cifand only if v = c+1 (and so u = 1—c if and only if v = ¢). The case
where ¢ is odd is obvious.

Case (IIb): 2x+1 =2a—1 (modr); whence f;(x)=0 (modr). Thus,
2x+1 = 2a—1+Ir. (Note that by a substitution of the latter into f,(x) and
using the parameterization given in the first statement of the theorem one may
check that f,(x)#r?(bs+1)) Since 0 < x<a—1 we have 1<2a—1+Ir
< 2a—1; whence (2—2a)/r <1< 0. Since

[(2—2a)r] = [((1=s)/r)—b] = —b
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we have —b < I < 0 with [ = 0 or | even. Therefore, if b is odd then there are
(b+1)/2 such values of | and if b is even then there are b/2+ 1 such values of .

Case (Ilc): 2x+1 = —2a+1 (modr); whence f;(x) =0 (modr). Thus,
2x+1= —2a+1+Ir, and so, as above, 1 < —2a+14Ir < 2a—1. Therefore,
2afr < | < 2(2a—1)/r; whence

b+(s+1)/r <1< 2b+2s/r.

Since [ b+(s+1)/r] =b+1 and | 2b+2s/r| =2b+1 we get b+1<I
< 2b+1 with [ even. If b is odd then there are (b+ 1)/2 values and if b is even
there are b/2 values.

Now we analyze cases (Ila—c) for the number of divisors of f,(x). First we
assume g = 1 where g = g.c.d.(r, bs+1). We handle the case g > 1 at the end of
the proof.

In case (I1a) when 2x+ 1 = br—s (mod bs+ 1) there are two possibilities.
Either £, (x) equals r? (bs+ 1) or it does not. If f,(x,) = r* (bs+ 1) then there are
at least 6 divisors of f,(x) for x = x,. If ¢ is odd then there are at least
4(c—1)/2 = 2¢—2 divisors for the remaining values of x. If ¢ is even then there
are at least 4(c/2—1) = 2c—4 divisors for the remaining values of x when
u=1—c; and 4(c/2) = 2c values when u = —c. This yields a total of at least
2c+4 distinct divisors of f;(x) when ¢ is odd, and at least 2c¢ +2 divisors when
u = 1—c, ¢ even. Finally there are at least 2c+ 6 divisors when c is even and
u= —c. '

If f,(x) # r*(bs+ 1) for any x with 0 < x < a—1 then, when c is odd, there
are at least 4(c+1)/2 = 2c+2 divisors; and when ¢ is even there are at least
4(c/2) = 2c divisors if u = 1 —¢, ¢ even. There are at least 4(c/2+1) = 2c+4
divisors if ¢ is even and u = —c.

In case (I1a), when 2x+1 = —br+s (mod bs+1), a tedious check shows
that

fal(es—br+2¢(bs +1)- 1)/2) = (bs+1)

and f;(x) # bs+ 1 for any x with 0 < x < a— 1. If f;(x) = r*(bs+ 1) and c is odd
then for the remaining values of x there are at least 4((c+1)/2—2)=2c—6
divisors. If ¢ is even and v = ¢ then there are at least 4(c/2—1) = 2c—4
divisors, and if v = c+1 there are at least 4(c/2—2) = 2¢—8 divisors. In total
then there are at least 2¢ + 3 distinct divisors when c is odd. When ¢ is even and
v =c there are at least 2c+5 divisors, and at least 2c+1 divisors when
v =c+1. Finally we observe that f,(x) = r*(bs+ 1) cannot happen in both of
the cases 2x+1 = —br+s (modbs+1) and 2x+1 = br—s (mod bs+ 1). (The
reason for this is that bs+ 1 does not divide br —s.) We will need to keep this
observation in mind when analyzing the minimum of 4, (d) later.

If f,(x) # r*(bs+1) then there are at least 2c+1 divisors when ¢ is odd.
When c is even and v = c there are at least 2c+ 3 divisors; and when v = c+1
there are at least 2c—1 of them. In case (1Ib), f,(a—1) = r yielding 2 divisors.
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Also f;((br—s—1)/2) = r(bs+1) which we already counted in case (Ila)
Therefore we revise down by one the number of values found in case (IIb).
Hence in total we have the following for case (1Ib). If b is odd then there are at
least 4((b—3)/2)+2 = 2b—4 divisors, and if b is even there are at least
4(b/2—1)+2 = 2b—2 divisors.

In case (IIc), if £, (x) = r? (bs+ 1) then we already counted this in case (I1a)
so we revise down the number of values found in case (IIc) by one. Thus in total
for this instance of case (Ic) we have the following. If b is odd then there are at
least 4((b—1)/2) =2b—2 divisors, and if b is even there are at least
4(b/2—1) = 2b—4 divisors. On the other hand, if f,(x) # r?(bs+1) then the
case (Ilc) count remains as is and we have the following. If b is odd then there
are at least 4(b+1)/2 = 2b+2 divisors and if b even there are at least
4(b/2) = 2b divisors.

Case (11d): For the remaining values of x not counted in cases (Ila—) we
have the following. If f,(x) = r? (bs+ 1) then there are a—(c+1+b—1) values of
x remaining which yield at least 2(a—(c+1+b—1)) = 2a—2c—2b divisors of
£,(x). If f,(x) # r?(bs+1) then there are a—(c+b+1) values of x remaining,
which yield at least 2a—2b—2c—2 divisors of f;(x).

Now we total all the divisors. If f;(x)=r*(bs+1) for some x with
0< x <a—1 then A,(d) >2a+2b+2c—1. Hence from (2.1) we get

2a+2b+2c = A, (d)+1 = 2a+2b+2c;

i.e., the minimum is achieved and conditions (II)(1)~(6) of the theorem hold. On
the other hand, if f;(x) # r*(bs+1) then

A (d) > 28—2b—2c—2+4c+3+4b—2 =2a+2b+2c—1.

Again invoking (2.1) we see that the mmimum is achieved. This completes the
proof when g = 1. Now we assume that g > 1.

If both (bs+1)/g > 1 and r/g > 1 then a tedious check of the above cases
shows that too many divisors of f,(x) occur, whence (2.1) is violated. Thus
bs+1 =g or r = g. However, r > bs+1 so bs+1 = g. To complete the proof
we show that bs+1 is prime and r = (bs+1)%

Case (IIe): 2x+1 = s (mod (bs+1)?); whence f;(x) =0 (mod (bs+ 1)?). If
2x+1 =s+I(bs+1)> then 0 < I < b. If s is odd then [ and b are even, and there
are b/2+1 values. If s is even then | and b are odd, and there are (b+1)2
values.

Case (IIf): 2x+1 = —s (mod (bs+1)?); whence f;(x) = 0 (mod (bs+1)*). If
2x+1 = —st+1(bs+1)? then 1 <[ < b.If sis odd then / and b are even, so there
are b/2 values. If 5 is even then [ and b are odd, and there are (b+ 1)/2 values.

Hence from cases (Ile—f) a total of b+ 1 values emerge. Therefore with the
exception of those values of x where f;(x) = (bs+1)* or (bs+1)* (yielding
a total of at least 7 divisors), each value of x yields at least 6 divisors. Hence
cases (Ile-f) yield a total of at least 6(b—1)+7 = 6b+1 divisors.
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Now we count those values of x for which bs+1 properly divides
fa(x). From case (IIa) above we get c+1 values. However, we already
counted b+1 of them as values where bs+1 does not properly divide
Ja(x). Thus, there are ¢—b values for which bs+1 does properly divide
f4(x). For these values there are at least 4 divisors each yielding at least
4(c—b) divisors. In total then we have at least 4c+2b+1 divisors. How-
ever, we have not yet counted those remaining x between 0 and a—1.
There are a—(b+1+c—b) of them yielding at least 2a—2c—2 divisors.
Thus the g>1 case yields a minimum number of divisors of:
2a+2b+2c—1. Invoking (2.1) shows that the minimum is achieved. This
completes the proof of the Theorem. m

The table below illustrates the Theorem.

Table
d=5 (mod8), h(d)=1 and k=5
d a b ¢ f r  bs+1

Silx) for 0 < x<a—1

149 6 1 | -1 7 5 37, 35, 31, 25, 17, 7

157 6 1 3 7 9 3 39,37 33,27, 19, 9

181 7 4 2 1 3 5 45, 43, 39, 33, 25, 15, 3

269 8 1 2 2 1 5 67, 6.5, 61, 55, 47, 37, 25, 11

397 10 2 6 17 9 3 99, 97, 93, 87, 79, 69, 57, 43, 27, 9

941 15 1 5 21 25 5 235, 233, 229, 223, 215, 205, 193, 179, 163, 145,
125, 103, 79, 53, 25

1013 16 2 2 1 13 11 253, 251, 247, 241, 233, 223, 211, 197, 181, 163,
143, 121, 97, 71, 43, 13

2477 25 2 1 -3 19 23 619, 617, 613, 607, 599, 589, 577, 563, 547, 529,
509, 487, 463, 437, 409, 379, 347, 313, 277, 239,
199, 157, 113, 67, 19

2693 26 2 4 7 023 11 673, 671, 667, 661, 653, 643, 631, 617, 601, 583,
503, 541, 517, 491, 463, 433, 401, 367, 331, 293,
253, 211, 167, 121, 69, 23

3533 30 4 1 1 13 29 883, 881, 877, 871, 863, 853, 841, 827, 811, 793,

773,751, 727, 701, 673, 643, 611, 577, 541, 503,
463, 421, 377, 331, 283, 233, 181, 127, 71, 13

4253 33 9 3 17 19 1063, 1061, 1057, 1051, 1043, 1033, 1021, 1007,
991, 973, 953, 931, 907, 881, 853, 823, 791,
757, 721, 683, 643, 601, 557, 511, 463, 413,
361, 307, 251, 193, 133, 71, 7
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We have checked up to 2-10* on a computer and the values in the table
(together with 41) are all those of period 5 with class number one under that
bound. We pose the following:

CONJECTURE 1. If k = 5 then h(d) = 1 if and only if d e {41, 149, 157, 181,
269, 397, 941, 1013, 2477, 2693, 3533, 4253}.

Our computational evidence also gives us the confidence to pose the
following:

ConJECTURE 2. If k = 7 then h(d) = 1 if and only if de {89, 109, 113, 137,
373, 389, 509, 653, 797, 853, 997, 1493, 1997, 2309, 2621, 3797, 4973}.

CoNJECTURE 3. If k = 9 then h(d) = 1 if and only if de {73, 97, 233, 277,
349, 353, 613, 821, 877, 1181, 1277, 1613, 1637, 1693, 2357, 3557, 3989, 4157,
~ 4517, 7213}

Remark 2. The k = 5 case appears, from our data, to be the last period
where at most 2 primes (r and bs+ 1) come into play. Given this fact and the
intricacies of the proof of the Theorem it seems clear that this approach is
exhausted as a general technique for finding the exact prescription for the
factorization of f,(x) tantamount to h(d) = 1.

We hope to be able to prove these conjectures in the near future and
advance what is known for larger periods. There is much work yet to be done.
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