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A matrix paraphrase of Kloosterman sums
by
D. H. LenMeRr (Berkeley, Calif.)

1. Introduction. In 1967 Lehmer and Lehmer [3] showed that there was

a strong connection between the cyclotomic periods and the ordinary
Kloosterman sums

p—1

1 Sy= 3 eXCEp (b0, 1,...,p—1)
x=1
where X = 1/x (mod p) and the Gaussian periods
I-
Zl emig™ *Mp
¥=0

where p = e¢f+1 and g is a primitive root of the odd prime p. In this paper we

exploit this connection to give a matrix paraphrase of the Kloosterman sum
and its periods.

2. Notation. Throughout the paper capital letters are reserved for ma-

trices. The matrices will be of special kind known as circulants. A circulant is an
n by n matrix of the form

ag a, ay ... Quy-3

a’_l 0‘0 al “an aﬂ-z
M=la,—, a,-, ay Qy-3

ag a, ay . ay

The matrix M depends only on its first row. To save space we will write
M as follows:

@ M = cir(ay, ay, ..., ay-1).

We number the rows and columns of M from 0 to n—1 to allow the use of

residue classes modulo n. If we denote the element in the ith row and jth
column by «;; we have

(3) Oy =aj—;
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where the subscript j—i is taken modulo n. It is well known that

n—=1n—1

® detM =[] ¥ al” €=

v=0s5=0

The characteristic polynomial of M is therefore
n—1

) (=1 [] {A—@o+as 0+ a0+ ...+ {717}
v=0

and the eigenvalues of M are

m—1

(©) x,= Y a"
5=0
THEOREM 1. Let &(x,, ..., x,) be a pol ynomial of degree m in its r variables.
IfM,, ..., M, are any of the n by n circulant matrices, then ®(M,, ..., M,)is an
n by n circulant matrix.

Proof. It is sufficient to show that the set of n by n circulant matrices is
closed under addition, subtraction and multiplication. This is obvious for the
first two operations. For multiplication we can write

A = Cir(ﬂ'og alg ey au'—l) = {a&'j}"
B = cir(bo, bl; . '_s bl!— l} = {IBU}'
Then by (3) we have C = AB = {y,} where

=1

n—1 n
Y= Z ay P = z ak_—ibj—k-
k=0 . k=0

If we replace i by i+m and j by j+m we find ¥i4mj+m =7y Hence C is
a circulant. '

We now suppose that n is an odd prime p and that the elements of our
matrices are integers.

3. Cyclotomy. Let e be any positive divisor of p—1 = ef Let{ = ¢?™/? and
let g be a primitive root mod p. Classic cyclotomy is based on the following
exponential sums, called Gaussian periods of p with respect to g:

f-1 ’
@ =Y ™' (@=0,1,...,e=1).
k=0

The cyclotomic class c(k) (k=0,1,...,e—1) is that set (xg, Xy, ..., Xy—) for
which the index of each x with respect to g is congruent to k (mod ). We can
then write (7) as

®) =Y ¢ @(=0,1,...,e—1).

sec(i)
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4. The matrices Z,. These are p circulant matrices Zy, Z, ..., Zp-, (Z is
capital zeta) defined by

Z, =cir(ay, a4, ..., @y-1) Where
a;, =48] (Kronecker symbol (mod p)).
They constitute a paraphrase of the pth roots of unity. In fact
Z,-2y=2 s,

where the subscripts are taken (modp) and Z, = Z}, Z, = Z, = I, the unit
matrix.

5. The matrices H,. Following Whiteman [4] we introduced in [2] the
matrix H, defined by

H, = cir(ag, a4, ..., @p-1) (H is capital eta)
where !
o 1 if jec(r),
7710  otherwise.

These matrices constitute a paraphrase of the Gaussian periods. We can also
write a counterpart of (8), namely

©) H =Y Z.
kec(r)

6. The Kloosterman sum and its paraphrase. The ordinary Kloosterman
sum is defined by

r—1

sp= o, ¥**  (xx=1 (modp)).
x=1

It has its matrix paraphrase

p—1

(10) S, = Z Zite  (h=0,1,...,p—1).
x=1

We have the trivial case h =0 in which
p—1

(11) So = ZZ,=cir(0,1,l,...,l)=J—I,
x=1

where J is the matrix all of whose elements are equal to 1.
TueoreM 2. If h# 0 (mod p),
S, =cir(ag, 8y, ..., 8p-1),
where
(12) a, = (r*—4h)+1
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and where x(a) = (E) is the Legendre symbol.

Proof. Since h #0 (modp) we have in view of (10)
p-1
Sp= Z nZy,
k=0
where n, is the number of solutions of the congruence
x+hx = k (mod p).
But n, = x(k*—4h)+ 1.
COROLLARY 3. If h #0, the matrix S, is a (0, 1, 2) matrix.
Proof. Obvious.

Theorem 2 paraphrases the well-known fact that (see for example [3], p.
386)

(13) 5, = Pf (1+x(s*—4h) L.
s=0

ExAMPLE. Let p=5, e=f=g =2. We have
Sy =cir(0,1,1,1,1), §;=cir(0,2,0,0,2),
S, =cir(2,0,1,1,0), §,=cir(2,1,0,0,1).
S, =¢ir(0,0,2,2,0),
THeoOREM 4. The matrix S, is symmetric .
Proof. We write S, = {a;;} (i,j=0, 1, ..., p—1). Then, since S, is a cir-
culant matrix,
ay = a;_; = x((i—)?—4h)+1
by Theorem 2. This is symmetric in i and j.
7. The Kloosterman periods 0,. In 1967 [3] we introduced the notion of

a Kloosterman period as a sum of Kloosterman sums over the members of
a cyclotomic class. That is, 0; was defined as

0,=Y s, (i=0,1,..,e=1)
hecli) .

and we showed that

(14) 0= 2 M-
j=0
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8. The paraphrase of the Kloosterman periods. This paraphrase is defined
as the matrix

(15) ©,=% S8, (i=0,1,...,e—1) (@ is capital theta).
hec(i)
The counterpart of (14) is

e—1
THEOREM 5. ©;= ) H H;_;.

i=0

Proof..By (15) and (10) we have

p—1 e—1
0= z Z Leviwr = E Z Z Zyshi
hec(i) r=1 hecti) j=0 kec(j)
e—1 - e—1
=2 2Z E_zq= ). H;H;.;.
J=0 rec(j) gee(j—i) ji=0

9. The eigenvalues of S,. During the next two sections we shall use the
following lemma of Jacobsthal [1].

LEMMA. Let 8% be the Kronecker symbol modulo p. Then
p—1
Y, As—a)x(s—b) = —1+pé;.
=0 .

Proof. The Lemma is true for a = b (mod p). Suppose that 4 = b—a # 0
(mod p). Then the sum

p—1 p—1
T(a,b)= ) x(s—a)x(s—b) = Y xWxu—4)

=0 u=0

on substituting u for s—a. Therefore T(a, b) depends only on the difference
A between b and a. Setting u = v4 we see that

p-1 p—1
T(4)= ;1 x@Wyu—4a) = ; x@xw—1),

so that T'(4) does not depend on 4. To determine the constant T we compute
the sum

p—1p-—1

p—1 p—1 p—1
le TA= Y Y x@yx—4)=Y x(u le(u—d)
= 4=

4=1u=1 u=1
i 3 3 () = 1):
u=1

Thus the average value of T'(4) is — 1. Hence T = — 1. This proves the lemma.

Now we consider the eigenvalues of S,. First we take up the trivial case
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h=0. By (5) we can write the characteristic polynomial of S, as
F(2) = det(cir(—4,1,1,1,..., 1))

p—1

= [T (=240 ++ ... +{77)

= —(A—(—-1) ] @+1).
v=1

Thus the eigenvalues of S, consist of p—1 with multiplicity one and —1 with
multiplicity p—1.

We now consider the case in which h # 0 (mod p).

THEOREM 6. Let h # 0 (mod p). The set of eigenvalues of S, depends only on
the quadratic character of h with respect to p. The set consists of p—1 with

multiplicity one and of the (p—1)/2 ordinary Kloosterman sums s, where k has
the same quadratic character as h, each with multiplicity two.

Proof. Since h#0 we have
S, = cir(1+x (02 —4h), 1 +x(12—4h), ..., 1+x((p—1)*—4h)).
By (5) the characteristic polynomial of S, is

p-1 r—1
(16) -1 (A= X (1 +x(>—4n)™).
v=0 =0
The factor corresponding to v =20 is
p—1 p—1
A=Y (1 +x(s*—4h) = A—p— > x(s*—4h).

=0 =0

As for the character sum

z x(s*—4h) = Z (l+x(r))x(r —4h)

= 2(—h+ E y(r—4h)+ ): x(r)x(r —4h) =

r=1
by Jacobsthal’s lemma. So when v=0 we get the elgenvalue p—1 with
multiplicity one.
The_factors of (16) for v # 0 are

A=Y (1+x(s2—4R) ™.

=0

This leads to the eigenvalues

E (14+x(s—am) ™ = Z (14 x (W2 = 4hVA)) " = Sppa.

=0
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As v runs over the set 1, ..., p—1, hv? runs twice over the set of numbers of the
same quadratic character as h. Hence the theorem.

10. The eigenvalues of ©,. By (6) the eigenvalues of @, are

Z Y (L+x(s? —4k))c”

=0 kec{h)
Ifv=0

r—1
Xo= Y Y (1+x(s*~4k)

kec(h) s=0

=3 pt+ 3 'i % (s> —4k)

kec(h) kec(k) s=0

=+ T T 2~ (1+10)

kec(h) =0
p—1
=pf+ Y Y x(Ox(c—4k).
kec(h) t=0
By Jacobsthal’s lemma the inner sum is —1. Hence

Xo=p—f=[fp-1).

Next suppose that v # 0. Let v belong to c(j) and let sv = w (mod p) in (16). This
gives ’

r—1
(1?) X, = Z Z (l +z(wz—4v2k))C“’ = z Sy = z s = 9*4.3}.
w =0 kec(h) kec(k) recih + 2j)

) As v runs from 1 to p—1, j runs from O to e—1, f times over. The
e:gen_values of ©, consist of (p—1)f with multiplicity one and the set of
e ordinary l.(loosterman periods 8,, O+ 3, ..., Oy4 3(¢-1) €ach with multiplicity f.
The subscripts are taken modulo e.

11. The sum and the sum of squares of the S,. We begin with

THEOREM 7. The sum of all the matrices S, is (p—1)J.

Proof.
=1 p=1p—1 p—1
LS=2 Yzitv= Z zi ): zy
h=0 h=0x=1 x=1 k=0

p—-1  p-1
=Y Z;Y Zi=(J-DJ=J*~J =pi=J = (p—1)J.

x=1 r=0

TheoreM 8. Y. 52 = (p—1)((p=2)J +pl).

h=0



90 D. H. Lehmer

Proof. If h=0 we have from (11)
(18) SE=(J-D?=pJ-2+1=(p-2)J+I
=cir(p—1,p—2,p—2,...,p—2).
Let h#0 and let S, = {«{}. Then S} = B with
B = Z of o) = Z aP a®,.
k=0
Since S2 is a circulant we need only to compute the top row elements of

SZ. First consider
=1

P p—1
B =Y aPadl, = Z (1+ x (k*—4h))? .

k=0
=542y PR z 2 (2 —4h).
k=0
Hence
r—1
(19) B =p+2 Y x(k*—4h)+p—(1+x(h).
k=0

Summing both sides over h we have
p—lp—1

E B = 2p(p— 1’”,,; .): x (k> —4h)—(p—1)— E x(h)
=2p*—3p+1-2 ): x(k?)
=2p2—-3p+l~—22;il) =(p—1)(2p—3).
Using (18) |
F)_Zl BEh = ﬁﬁ’J+P§ B = p—1+(—12p—3)=2(p— 1)
We ;;;:f evaluate ﬂ‘.;; ;'or a fixed h# 0 (modp) and j # 0. By (19)

Y = Pi:l aa;-; = PZr:l(l +x(k1—4h}](l +x{(j—-k}2—4h))

t=o k=0
Zl 1+ Z x (k2 —4h)+ Z x((— — k)2 —4h)+ Z x (k? —4h) x((j—k)* —4h).
k=0 k=0 _

Next we sum over h:

Z BS} =pl@p—1)— Z x (k%) — Z 2=k
p—-1p-1 j—k 2
5T xh- (k/z}=)x(h (Z5)

k=0h=
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We use the Jacobsthal lemma in the form

p—1 _
hZI x(h—a)x(h—b) = —1+ pds—x(ab)

and get
Z, B} = p*—p— 20— 1)+p z Ok — z ) 2 (i~ k)2,
h= k=0

The congruence k* = (j—k)*> (modp) has the single solution k = j/2
(mod p). Hence

p=1
Y. BS) =p*—4p+4=(p—2>
r=0

Since B§) = p—2 by (18), we can write

Z =(p-224+p-2=(p-1)(p-2)

and

p~1
2 Si=@-DE-2J+2(-1’-@-1)E-211

h=0
=(p-1)(p—2)J+pI).
This proves Theorem 8.

12. The sum and the sum of squares of the @ matrices. The following
theorem follows easily from Theorem 7.

THEOREM 9. The sum of all the matrices © is (p—2)J +1.

Proof. zat_): ZS,,—ZS,,—ES -5,

k=0 h=1
=(p- I}J (J-D=(p-2)J+1.
THEOREM 10. If e = 2 the sum of the squares of the @’s is
(PP —4p*+5Sp—4) I +(* + 1) 1.
Proof. Since e = 2 there are only two of the matrices €. One of them is

p—3, p—1
2J+2I

and the other is

p—1 _p—l
= J &= I.
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Summing their squares and replacing J* by pJ we get
[~ 4p> +5p—9J +(+ 1.
The period polynomial of the @, is defined by

e—1
[1x-6,)= X°+B, X'+ ... +B,.
h=0

From Theorem 9 and Theorem 10 we easily deduce the next theorem.

THEOREM 11. If e = 2 the matrix coefficients are

B, =(p-2J+1, B,=%{p>—4p*+7p—4}J-1(p*-1I.
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