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On some famous examples in dimension theory
by

Z. Karno (Biatystok) and J. Krasinkiewicz (Warszawa)

Abstract. It was proved in [M-R] that for each 3= 2 there exists an n-dimensional compac-
tum X such that & (X, R)™ is dense in ¥ (X, B*). In this note we prove that the classical examples
of V. G. Boltyanskii [B] and Y. Kodama {K 2], and their natural higher dimensional counterparts,
have the same property.

In [M-R], D. McCullough and L.R. Rubin proved the following result:

For each n > 2 there exists an n-dimensjonal compactum X such that the space
&(X, R*) of imbeddings from X into R*”is dense in the space % (X, R*") of mappings
to R,

The aim of this note is to show that some famous examples first studied by
V. G. Boltyanskii [B] (see also [K1], [K2], [Wi]) and their straightforward n-dimen-
sional counterparts, n > 2, also have this property (see Th. 5.2 and Th. 5.3).

It was shown in [Kr] that this property implies dim X x X < 2n. This gives
an elementary proof of the fundamental property of the examples in which only
elementary algebraic topology is needed (all previous used the Kiinneth formula).

Lately S. Spiez [S] has proved that the latter property implies the property
from the McCullough-Rubin theorem for n > 3. (")

All spaces in. this note are assumed to be metric with a metric denoted by 4,

1. A lemma on imbeddings. Let % be a cover of a space X. A mapping f: ¥= Y
is said to be a %-mapping provided for every y € f (X) there is a Ue % such that
fY») e U If ¥ is a collection of subsets of Y then we denote

FHY = {fY(V): Vey ).

The following lemma is 2 slight generalization of Proposition 1.7 from [M~R].

132 Q23
1.1. Let X = {X, « X, ...} be an inverse sequence of compacta satisfying

the condition

(#) for each i\, for every mapping f: X~ R", for every open cover % of X, and
every positive number >0 there exist an index j= i and a g{,‘(@/)-mapping
g: X;— R such that d(fo,.9)<?é.

Then &(Lm X, R") is a dense G; in €(lim X, R").

(*) Added in proof. Extended to n= 2 as well.
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Proof. The idea is to show that for every open cover ¥ of im X and every
e>0 the set of ¥ -mappings %y(limX, R") is s-dense in #(limX, R"). But the
proof of this fact presents no difficulty and is left to the reader (comp. [M-R]).

2. Double mapping cylinders. By a mapping cylinder of two mappings
I ¢
Xe Y= 2Z
we mean the identification space
M(f.g) = (XL¥x[0,1]uZ)~

with identifications () = (¥.1) and g(¥) = (»,0) for ye Y.

As special cases we obtain two well-known objects. Namely, if X = Yand fis
the identity mapping then M(f, g) is the mapping cylinder M(g) of g. If Z is a one-
point space then M(f,g) is the mapping cone C(f) of f.

The spaces X and Z are naturally imbedded in M(/, g) as closed subsets and
we identify them with the subsets. The mapping ¥ — [y, 4] is a natural imbedding
of Yin M(f.g). Note that M(f, g) is a union of M{f) and M(g) identified along Y.
By the boundary of M(f,g) we mean the set dM(f,g) = X. ‘

“If X, ¥ and Z are polyhedra and £, g are p.1. mappings then M ([, g) is a poly-
hedron containing X and ¥ as subpolyhedra. Moreover, if fis simplicial with respect
to triangulations |K| = X and |L| = Y then there is a trianguldtion T of M(f,g)
such that KuL < T (see [Wh], p. 244). ‘

Consider the following diagram

! ] ‘
X < Y z -
O] l"x th lhz
£ k 7
X'« Y’ A

The following proposition is a simple but important property of double mapping
cylinders. The proof is left to the reader.

2.1, If the diagram (x) commutes up to homotopy then there is a mapping

fo M(f,9)~ M(f',g") such that

6] h(x) = hy(x) for xe X * and h(z) = hy(2) for z€Z,
@ h(ly, 1) = [Ay(»). %] for ye Y.

If (%) strictly commutes then (2) can be strengthened to

@ h(ly, D = [hy(3), #] for every (y,t)e Yx[0,1].

In particular k agrees with-hy on the boundary of M (f, g). We call h an exten-
sion of hy. ‘

Now we limit the general situation to a special case of mappings between
spheres. Fix an integer n>2. For each integer a # 0 let p,5 S"7*~—8"" be
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a mapping of degree a; u, is assumed to be the identity mapping (S" ! is regarded
as oriented with a fixed orientation). By an n-dimensional Mobius band M(a, b)
we mean either the mapping cylinder M(y,, ju) if b # 0, or the mapping cone
C(n,) if b = 0 (comp. [K1]). Changing the mappings up to homotopy we obtain -
other mapping cylinders (cones); we distinguish them by subscripts. Below we list
some mapping properties of such spaces which simply follow from 2.1.

2.2. (1) Every homeomorphism 8My(a, b)— M ,(a, b) extends to a mapping
M(a, b)— is(a, b), a # 0.

(2) Let a, b # 0. Then every homeomorphism 0M(ab, a*b)—0M(1, a) extends
to a mapping M(ab, a®b)—~M(1,a), and every homeomorphism 6M (ab, @*b) ~
—8M(a, 0) extends to a mapping M(ab, a*b)— M(a, 0).

Q) Let a, b % 0. If b is divisible by a® then every homeomorphism oM @®fa, b)—
—8M(l, a) extends to a mapping M(bja,b)— M(l, a), and every homeomorphism
dM(bja, b)— dM (a, 0) extends to a mapping M(b/a, b)—M(a,0).

2.3. Let f: 0M(a, by— S""1. Then f can be extended to M(a,b) if and only
if degf = k(bja) for some integer k. ]

Proof. =. Let f: M(a, b)—S""* be an extension of f. Let i;: S"~* - M(a, b),
j = 0,1, be the natural imbeddings such that imi, = @M (a, b). Choose an integral
cycle y determining the orientation of S"~1, Note that there is an n-chain ¢ on
M(a, b) such that dc = a(i;y)—b(i,y). Applying 7 to this equality it follows that
a(deg )y is homologous to bky for some ke Z. The implication follows.

<. Apply 2.1.

3. Cylinders and cones in cubes. Fix an integer n>2 and let u: gr-1o, gn-t
be any mapping. Denote by D" the closed unit ball in R” so that S*"! = 9D"

3.1 (comp. [M-R]). There exist imbeddings
0: M()»D"xD" and W: C(u)y—~>D"xD"

such that

() impnimy = &,

(ii) ¢ carries @M(y) homeomorphically onto S™"1x (0),

(iii) W carries 9C(u) homeomorphically onto (0)x S™!,

(iv) o(M@ENOM )y (C (WN\OC () = int (D" x D").

The imbeddings are defined as follows.

Recall that M(y) = ("~ x IL1S"™ 1)/~ with (x, 0) = p(x)for xe S™ 1. Define
@ to be the mapping induced by the following

S 1xIs(z, )= (tz, 1@ Dp(@))e D"x D",
S"13z-(0, —%z)e D"x D".
To define  we need a mapping «: I-»1 given by

s 0<s<},
a(s) = {l—s

¥<s<l.
3 — Fundaménra Mathematicae 134/3
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Note that C(x) = (S"" 1 x Iy S"" ")/~ with (x,0) = (»,0) and (x, 1) = u(x) for
%,y€S""L, Define y to be the mapping induced by the following

5"t x I3 (y, )= (@(s)y, su(y)) e D"x D"
$""1ay-(0,y) e D"x D"

One easily verifies that ¢ and  have the required properties.

3.2. Remark. Analogous imbeddings were constructed in [M-R], Lemma 2.2,
generalizing the imbedding from Ex. 4.3 in [K-L]. In the same spirit we gencralize
the imbedding from Ex. 4.4 in [K-L]; we hope the new formulas are a little simpler.

Recall that a mapping /: X~ D" is said to be essential provided there is no
mapping g: X —8D" such that g(x) = /(%) for x ef (8D").

3.3. COROLLARY. For n22 let M = M(ab, a*b) be an n-dimensional Mobius
band, with the integers a and b satisfying |al > 1 and b # 0. Then for any two mappings

frg: M(ab, a*b)—~ D", each carrying the boundary 0M homeomorphically onto dD"
and MN\OM into int D", their product

fxg: M(ab, a*b)x M(ab, a*b)— D" x D"

is inessential though both f and g are essential.

Proof. Since degh = +1 for a homeomorphism A: §""* - §""1, both f
and g are essential by 2.3.

Let p: §""*—S""1 be a mapping with degp = a. Let ¢ = (0, ¢5): M)~
= D"x D" and ¥ = (¥, yr;): C()— D"x D" be the mappings from 3.1. By 2.2 of
[K-L] and 3.1 (i) we infer that
) QXY M(p)x C(u)— D" D" is not essential.

Note thgt @1 ' f maps dM homeomorphically onto @M (u). Since M(u) = M(l, a)
by 2.2(2) this homeomorphism extends to a mapping J: M-» M(y). Thus
S1OM = ¢, « f|0M. Since aM = f~}a.D") it follows that

2 S J  relfYaD").

Since C(1) = M(a, 0) a similar argument shows that there is 2 mapping §: M - C(u)
such that

gy, rel.g ' @D" .
Put B = D"x D" By (2) and (3) it follows that
Ixal(fxa) (@B =(py x Y, )(FxG)(f xg)""10B) in 3B.

This, by (1), implies that fxg is inessential (comp. 2.3 in [K-LJ).
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4. Modification of polyhedra. Let ¥ be an n-dimensional polyhedron, n>2,
with a given triangulation K. Let a and b be two integers with a s 0. By an
(a, b)-modification of X we mean a mapping

0: Y-X

constructed as follows (comp. [K1], [K2] and [Wi]).

For each n-simplex s € K choose a copy M, of the n-dimensional Mbius band
M(a, b) such that 8M, is a subpolyhedron of M, simplicially isomorphic to as for
some triangulation T, of M,. Let A,;: 8M,— s be a simplicial isomorphism. Now
attach M, to |[K” V)] using k, to obtain the space Y, where s runs over the set of
n-simplices of K. We may identify M, with a subset of Y so that M, = ds. Then
Y = [K® YU M, and the interiors M\ds are pairwise disjoint. Note that

K® Dy T, is a triangulation of Y. We define g to be any mapping such that
o(MN3s) = s\ds for each s and g(x) = x for every x e KO,

5. The Boltyanskii-Kodama examples. Fix an integer n>2. We are going to
define n-dimensional counterparts of the Boltyanskii-Kodama examples (see [B]
and [K2]) and to show that they have the property from the McCullough-Rubin
theorem. The generalization is straightforward and we follow the description given
by Y. Kodama in [K1] and [K2], p. 229, for the case n = 2 (comp. also [Wi)).

Let a = (a,, a,, ...) be a sequence of integers such that a;, # 0 and a;;q is
divisible by a; for each i > 1. We associate with such a sequence an inverse sequence
of polyhedra

Q12 Q23

X={X‘(—X1<——}

in the following way. Let X, be an n-simplex and let K be the standard triangulation
of X,. Having defined X;,/ > 1, and a triangulation K; of X; we define gn1: X1e1 X
to be an (a4 ,/a;, a4 )-modification of K;. Define K., to be any triangulation
of X;,, such that |K;"~ V] is a subpolyhedron of |K§' | . This completes an inductive
description of X. Note a homogeneity of the construction with respect to every
n-simplex of every complex K.

Let se K;;, i1, be an n-simplex. Consider the inverse image s() = 0i'(®)
j =i Note that s() = s. Also note that the (n—1)-sphere s is a subset of s(j),
denote ds(j) = @s. For a special case (i = 1, s = X, — then s(j) = X)) this defines
a subset 0X;c Xj.

5.1. If a mapping f: 0s(j) »S""* extends to s(j) then deg f is divisible by a,.
In particular, if f: 6X,~+S""1 extends to X; then aj|degf.

Proof (by induction on m = j—i). If m = 0 then s(j) = 5. Hence ajjdegf
since degf = 0 in this case.

Suppose m >0, i.e. j>i+1. Let f: s(j)—S""* be an extension of f. Let K be
the restriction of K., to s(i+1). Give each n-simplex s, of X an orientation oy
3'
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such that
(*) z 00, = (@i 1A Y1—Tiv1725

where y,, 7, are cycles in [K®™"| and y; represents a generator of H,_(ds(})) (see
proof of 2.3). Since |[K"™ Y} c s(j) (by construction) we may apply J to both sides
of (¥) and we get

Zf(aak) = (@ 1/a) F ()= arsn T2

By an inductive assumption applied to j~ (i-+1) <m and J|8s,(/) (since () = 5(j)
this mapping has an extension to s,(f), e.g. J | s,(/)) we have f(da;) ~ a,.., [y, where
l,e Z and y represents the orientation of $"~!. Passing to homology classes, with
identification H,_(S""") = Z, we get

dipi] = £(apqfa)degf~air, lreZ.
Thus a;|deg/ and the proof is completed.

The spaces of interest are defined to be the inverse limits
X@ = limX.
5.2, TeeoreM. If |a,| > 1 then dimX(a) = n.

Proof. It is clear that dim X (a) < n. In order to prove the other inequality note
that the mapping g;: X;— Xy is essential for each j> I. Indeed, the restriction
9X;— 08X, of g,;is 2 homeomorphism, hence its degree is equal to & 1. Thus g,; is
essential by 5.1. It follows that the projection X(a)— X, is essential and therefore
dim X (a) = n.

5.3. THEOREM. If the following conditions are satisfied:

() a;41 is divisible by a; for each i1,

(i) for cach i =1 and every open cover ¥ of X; there exists an index 12 i such
that stK; refines o (+),
then &(X(d), R*") is dense in %(X(a), R*™). In particular dim(X(a)x X(a)) < 2n,

5.4. Remark. The conclusion of 5.3 still holds if condition (i) is relaxed as
follows:

(i)' for each i there exists j>/ such that a; is divisible by a?.

Proof of 5.3. In order to prove the first assertion fix an index i 3 |, a mapping
S X- R*", an open cover % of X, and a real number & > 0. According to 1.1 it
suffices to find an index j> i and a mapping g: X, ~ R* such that

ey o d(fe;;.9)<d  and

~ There exist a subdivision L of K, and a mapping v: X;—~ R* linear on each
simplex of L such that : :

g is a gi;'(%)-mapping .,

@ , . d(f,v)<8/3,

@ o - .diamv(s) <8/3 for each seL,
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4) ¥ = {st(x, L): xeL®} is a star-refinement of %,
) S XNL®Y, o(S@) = {z1, ., 2}

(S(v) is the singular set of v; if S(v) = @ then j = i and g = v satisfy (1) and the
proof is completed)

(6) v_l(zr) = {xr: yr}

For x e X,, let s(x) denote the simplex of L that contains x in its interior. Then
s(x) and s(y,) are n-dimensional. If L is sufficiently fine then there exist (linear)
imbeddings

for each r =1, ..,1.

W s xs(y)—=R®, r=1,..,t.
with disjoint images such that
) diam (imw,) < 6/3 ,
® wi(x, 3 = 0(x),  wix, 1) = v(x),
(€) o™ imw,) = s(x) Us(y,) -

By (ii), there is an index /> such that stK; refines o *(#"). Hence there is
a simplicial approximation ¢: K;—L to ¢. Since st(¥") refines # (by (4)) it follows
that

10 o~ Y (L) refines o7 *(%) .
From (3) we infer that
(099) d(vay, ve) <9/3.

By 3.1, for each r = 1, ..., t, there exist disjoint sets M,, C, cimw, such that M,
is a copy of the n-dimensional space M(1, @), C, is a copy of the n-dimensional
space M(a;, 0), 8M, = v(3s(x,)) and 8C, = v(ds(3,))-

Let u = poyrq. Since oniy: Xjg1— X, is an (@u/a, a4 y)-modification
of K,, by applying 2.2 it is easy to construct a mapping g: Xi+; -~ R*" satisfying the
conditions

(12) g(x) = vu(x) if u(x) ¢ U (ints(x,) vints(y,)),
(13) g(uYs(x)) = M,,
(14 IO AER) I8

for each r = 1, ..., &. Now we shall show that j = /41 and g satisfy (1). It is clear
that d( fa;. g) <96. By (12), (13) and (14) it follows that for every z eimg there
exists a simplex s € L such that g ~*(z) = u~(s). Hence by (10) g is a ¢y; (@)-mapping.
This proves (1) and completes the proof of the first assertion. The second one follows
now from [Kr].
We would like to thank K. Lorentz for his help in preparation of this note.
We are also grateful to the referee for his critical remarks.
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Sur le prolongement des fonctions continues dans les complexes
simpliciaux infinis

par

Robert Cauty (Pafis)

Abstract. Let X be a simplicial complex which does not contain a strictly increasing infinite
sequence of simplexes. It is known that, if its geometric realization | X is provided with the metric
topology, it becomes an absolute neighborhood extensor for collectionwise normal spaces. This is
definitely false if | X| is provided with the weak topology. We study here this phenomenon in detail,
and show that its only origin is the non-preservation of extension propertics under formation of
infinite wedges of cones.

1. Introduction ot notations. Soit Q une classe d’espaces topologiques. Nous
dirons qu'un espace Y a la propriété d’extension (locale) par rapport & Q si, pour
tout espace X appartenant & Q et tout fermé 4 de X, toute fonction continue de 4
dans Y peut se prolonger & X (resp. & un voisinage de 4 dans X). Lorsque Q se
réduit & un espace X, nous parlerons de propriété d’extension (locale) par rapporta X.
Nous dirons que Y est un rétracte absolu de voisinage pour la classe Q (ou RAV(Q))
si Y appartiont & Q et si, pour tout espace X appartenant 4 Q, tout fermé de X
homéomorphe & Y est un rétracte de voisinage de X.

Si K est un complexe simplicial, nous noterons |K| sa réalisation géométrique
raunic de la topologie faible, et |K},, cette méme réalisation géométrique munie de la
topologic métrique. Par un simplexe infini, nous entendrons un complexe simplicial
infini dont tout ensemble fini de sommets détermine un simplexe.

1f est connu que, si K est un complexe simplicial, |K|,, & la propriété d’extension
locale par rapport aux espaces collectivement normaux si, et seulement si, K ne
contient aucun simplexe infini, Ceci découle des trois résultats suivants:

(a) |K|, est un RAV(métrique) (voir [11], p. 106).

(b) un RAV(métrique) a la propriété d’extension locale par rapport aux espaces
collectivement normaux si, et seulement si, c’est un G; absolu [7],

(c) K], est un Gy absolu si, et soulement si, K ne contient aucun silmplexe
infini ([11}, p. 107).

Avec la topologie faible, la situation change complétement. Un exemple de
van Douwen et Pol ([6], exemple 2; voir 1a note finale) montre l'existence d’un
complexe K de dimension un, d’un espace régulier dénombrable I, d’un fermé A
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