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On the Pexider difference
by

K. Baron (Katowice) and PL. Kannappan (Waterloo)

Abstract. Several authors have studied the Cauchy difference f (x+ ) —f ()~ f (39, in particular
in connection with stability problems. Here we are mainly interested in studying the Pexider difference
fx+y)—g(x)—h(y) belonging to a certain subgroup and obtaining its representation. We also
obtain a representation of the function satisfying the Cauchy difference taking values in a given
subgroup under some regularity conditions.

For f: R— R (reals),
M S+ =FX)—f(»

is called a Cauchy difference. From an example of G. Godini [7, Example 2] it can
be seen that it is not generally true that a function f such that (1) belongs to Z (the
set of all integers) for all x, y € R must be of the form 4 +k, where 4 is an additive
function and k takes integer values only. However such a representation is possible
under some regularity condition imposed on f. It seems that J. G. van der Corput
was the first author who gave such a condition [3, on p. 64]. Making use of a theorem
of M. Laczkovich [9, Theorem 5] it was possible in [1] to consider this problem.
assuming Lebesgue measurability of (1) as a function of two variables. Later such
a representation was obtained in [2], when the domain is a real topological vector
space. For more details and consideration from algebraic point of view refer to [5]
and [10].
In this paper our goal is to consider the Pexider difference

@ f&+P)-gx)—h(y) 5

where f,g,h: G- H, G is a groupoid with jdentity 0 and H is a group and obtain
representation of f; g, # when (2) takes values in. a fixed subgroup of H. Also regarding
the Cauchy difference (1), we will consider it for a function f° E-+F continuous at
zero, where E is a topological vector space and F is a topological Abelian group,
assuming that (1) takes values in a fixed discrete subgroup of F and obtain its re-
presentation. The case when the function is measurable, instead of being continuous
at zero will also be considered. We will consider Baire and Christensen measurable
functions. For details on Christensen measurability refer to [4].
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We start with the following lemma which is used in the sequel (cf. [12, Theo-
rem 3.4]).

Lemma L. Suppose E is a topological vector space (real or complex), U is a ba-
lanced neighbourhood of the origin, and H iy an Abelian group. If f: U H is addi-
tive, i.e.

©)) FCety) = f(x)+f(y)
Jor all x, y e U with x4y e U, then there exists a unique additive function g: - H
such that g is an extension of f.
Proof. Using induction it is casy io prove that
4 Snx) = nf(x)

for every xe U with nxe U. (Recall that U is balunced implies aUc U for
laf <1 [11]) For x, y in U and integers m, n with my = ny we have, using (4),

) mf (&) = nuy"(-’-‘j = mnj‘(-']:) = nf(p).
n m

Now we introduce a function g: £ H by

g(x) = nf (;) . XeE,

Where n is any integer such that x/n e U. This Munction ¢ is well defined because of (5).

It is easy to verify that y indeed is additive on £, is equal to fon U and is unique.

This completes the proof of the lemma. ] ‘
Now we prove the followjng theorem regurding the Pexider difference (2),
THEOREM 2. Suppose G is a groupoid with identity O and H is a group. Let K be

a subgroup of H. A triple (f, g, h) of functions mapping G into H fulfills the condition

() , S+ -g0~hir)e K

Jor all x,ye G if, and only If, there are functions k, I G- K, ¢: G- H and con-

stants a, be H such that ‘

)] P4 - e(x) () e X

Jor all x,ye @, and

JO) = k(@ +0()+a,
Jor every xe G.

Proof. Assume that (6) holds for all x, y e G. Then setting in (6) first y = 0
‘and then x = 0 we have ‘

90 = batp(x)+a, h(x) = I1()+e()+a-b,

®) p(x) mf(x)~g(x) —h({©) ek for every xe G‘
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and

® v =f(-90)~h(») ek
From (8) and (9) we get )
10 g(x) = —h@—pX)+f(x), h(x)= —-v(X)+f(x)—g0), for xeG.
Putting (10) into (6) and using (9) we obtain :

(1 SOG4 =) +ux)+10)+9 (O~ (1) e K forall x,yeG.

for every ye G.

Let x = 0 = y in (6) to get f(0)~g(0)—Ah(0)e K. Define &,/, p: G~ H by
(12 k() = p@)+h0)+9O=f0), I(x) = —v(x)+k(x),

(13) o) = —k@E)+f(x)~1(0).

Indeed k(x) and /(x) belong to K and

P+ =0 XM= 0(3) = —k(x+y)+f (x+2) =1 () £k +7 () ~F (1) + k()
k(x4 + [ G+ 3) =~ () + 1) +h0)+9 () —f ()] +
+k(y) ' '

also belongs to X for all x, y & G because of (11). Thus (7) holds for all x, y & G.
‘Finally, putling a = f(0), b = ¢(0), from (13), (10) and (12) we obtain the
desired forms of f, g, h: : : ’ )

]

) = kx)+o(x)+a, B
9 = ~h(O)+h(0)+b—a—k(x)+k(x)+ () +a = b—a+ () +a,
h@) = —v)+kE)+ox)+a—b = I(x)+o(x)+a—b

for every x e G. The converse is easy to check.

In the next three theorems we obtain the representation of the Cauchy dif-
ference (7). '

THEOREM 3, Let E be a topological vector space, F be a topological Abelian
group and K be a diserete subgroup of F. Suppose ¢: E~ F satisfies (T) forallx, ye E
and is contimuous at the origin. Then there exists a continuous additive function
A: E~F such that

(14). ¢p(x)-A(x)e K for every xe E,
ie.
cp(x) = AX)+A(x)  for every xe E,
where A: E— K is continuous at the origin.
Proof. Since K is discrete, that is, every element of X has a neighbourhood

contained in F containing only that element, there exists a neighbourhood V(= F)
5‘
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of zero such that Kn ¥ = {0}. Further there exist a neighbourhood W < F of zero

such that
-W=W, W+W+WeV

(see p. 10 in [11]) and a balanced neighbourhood Uc E of zero such that
p(U) = p0)+ W
(see p. 11 in [I1]). Then for x,ye U with x+ye U,
[ex+2)— 0O~ [e() @ O]~ [e(»-~eO)]e W- W~We V.
On the other hand, from (7), ¢(0)e K and

[o(x+»)~ O] [p(x)-0O]~[e(N—¢pO)e K.
Consequently,

P+~ ©0) = [p(x)— @(O)]+[p(¥) - ¢ (0)]
for all x, y € U'with x+y & U. Therefore by Lemma | there exists an additive func-
tion 4: E—F such that

15) P(@)—p0) = A(x) for every xe U,

In particular, 4 is continuous everywhere. Further, if x & K then = ¢ U for some
- n

positive integer # and using (15) and (7) we get
; X X X X
px)—-A(x) = ¢ (n ) - mp( ) +nep (x) = nd (\)
n n n n
[~ X X
L= ‘_(P (n ) ~ne (~)]+ncp(0) K.
n n/.

This proves the theorem. :
Tn the next theorem we assume a measurability condition on ¢, instead of the
continuity at the origin, ‘
THEOREM 4. Let £ and F be topological vector spaces and K be a countable,
discrete subgroup of F. Suppoic p: E- F satisfies (Y for all x, y ¢ E. Then whether E
1s a Baire space and ¢ is Baire measurable, or £ i a separable F-space and o is Christen-
sen measurable, there always exists an additive function Az E- F such that (14) holds.

Proof. It is possible to choose neighbourhoods V,, ¥, W(< F) of zero such
that

KaVy={0}; V=

ViVaeVaVy;, W-WaV,

Since

-v E= ¢ Y(F) = ¢~}( Uan) = lep“l(nW)
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and E is of the second category (or E is not Christensen zero set) we infer that
there exists a positive integer 7, such that ¢~ '(n#) is of the second category (or
it is not a Christensen zero set).

1
First we show that ¢~ "(nW)cnp™' (W—I— . K>.
1

Let xe @™ '(nW). Then ¢(x) e nW and, in view of (7) (p(x)-—nrp(f)el(.
n

Consequently,

ne (\) eK+op(x) = K+nW.
n

X 1
ol-)e W+ -K,
n n

1 1 .
which means that > et (W+ - K) ,that is, ™ 1(nW) < ;z(;o“1<W+ ;K) . This
n

Hence

implies, ‘
‘l )
e W) cng™! (W—I— - K) = Unp~! (W+ Z-) .
n yeK n
Hence, since K is countable and ¢~ !'(nW) is of the second category (or it is not

1 .
a Christensen zero set), there exists a y e~ K such that ne ™ '(W+3) and so also
n :

¢~ (W+y) is of the second category (or it is not a Christensen zero set). Moreover,
this set satisfics the condition of Baire (or it is Christensen measurable). Conse-
quently ‘

0elntfp *(W+3) -0 {(W+y)]

(see Difference Theorem 10.4 in [8] and [4]) and there exists a balanced neighbour~
hood U E of zero such that

Ueco ™ (W+p)—e (W+y).

Suppose x& U. Then x = x,—x, for some x, X, € ¢ '(W+y). Consequently
@(x1), p(xy) € W4y and using (7) we have

(%) = (X —x3) = [POr=X2)— @ (%) + @ ()] + [ (%)~ @ (x2)]
e K+(W+»)—~(W+)y) = K+ W-WcK+V.

That is, ¢(U) = K+ ¥ which shows that there exists a function f: U-+V such that

(16)

p(X)—f(x)e K for every xeU.
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For x,ye U with x+y e U we have

FEHD~FE) =) = [f 9= +2)]+[p (et 3) = o () - p ()]
+[px) = O+ e (N ~f (Ml e K
and, on the other hand,
TN L@ =[P & VoV =V ¥y

Consequently (3) holds and by Lemma 1 there exists an additive function 4 ; Ews F
such that
f(x) = A()

for every xve (/.
X
If x e E then ; e U for some positive integer n and using (7) and (16) we get .- - -
X X &3 X
[ <n ) —= 1 (—) e ( ) nA ( )
n " n n
l" A) x\ ; Co\ X
L oln~)- ne - |-+n =Sl ) e K.
‘ —<p n pn ? n / n __QMK
This proves the theorem,
Unfortunately, the above Theorem 4 guarantces only the existence of an additive
function 4: E— F satis{ying (14) but no regularity of it is guaranteed. However,

if K has a special form then we can use an idea of Z. Gajda from [6] to get more
information about 4. o

9 (x)—A(x)

]

i
=

TaeoreM 5. Let E and F be real topological vector spaces and assume that
L: F~R is a continwous linear functional. Suppose @ E—F satisfies
AN ~p)-p()eL™(Z)

Whether E is a Baire space and ¢ is Baire measurable or F is a separable F-space
and ¢ is Christensen measurable; there exists a continuous linear operator M: E-+ F
such that

Jor all x,pek.

.1

T =M e L"YZY  for overy ve B

' Pr_oof. 1L = 0, then it is enough {o take M = 0, So we can assume that L 0,
Since Lo ¢ is Baire (or Christensen) measurable and

Lo b= Llpx)] =L@ ()] e Z

we may use Proposition | and 2 from [2] to get a continuous linear (unctional
N: E- R such that

Lip()]-Nx)eZ for every xe kK.
Fix an x; € F such that L(x,) 0 and define M: L F by the formula

for all x, ye ¥
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This function M is continuous and linear. Moreover,
Lip(x)=M(x)] = Lip(x)]-LIM(x)] = Llp(x)]~-N(x)e Z,

for every x € E which ends the proof.
Returning to the Pexider difference (2) we have the following corollaries.
COROLLARY 6. Let E be a topological vector space, F be a topological Abelian
group, K be a discrete-subgroup of F and f,g. h: E - F satisfy (6) for all x,yeE.
If any one of f, g, h is continuous at the origin, then there exist a continuous
additive function A: E~ F, functions k, 1, m: E— K and constants a, b € F such that

Sx) = k() +A(x)-+at+b,
17 g(x) = 1(x)+A(x)+a,
h(x) = m(x)+A)+b,

Proof. This follows from Theorems 2 and 3 and from the fact that E and F
are commutative groups. . ’

i

Jor every xeE.

COROLLARY 7. Let E and F be topological vector spaces, K be a countable and
discrete subgroup of F and f,g,h: E— F satisfy (6) for all x,yeE.

If either E is a Baire space and any one of f, g, It is Baire measurable, or E is
a separable F-space and any one of f, g, h is Christensen measurable, then there exist
an additive function A: E-»F, functions k,1,m: E— K and constants a, b e F such
that (17) holds.

COROLLARY 8. Let E and F be real topological vector spaces and assume that
L: F—~R is a continuous linear functional. Suppose f,g,h: E— F satisfy

fx+3)—g@)-h(») el XZ) forall x,yekE.

If either E is a Baire space and any one of f, g, h is Baire measurable, or E is
a separable F-space and any one of f, g, h is Christensen measurable, then there exist
a continuous linear operator A: E—F, functions k, I, m: E -+ L™YZ) and constants
a,beF such that (17) holds.
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The shrinking property and the #-property in ordered spaces
by

Nobuyuki Kemoto (Okinawa)

Dedicated to Professor Kiyoski Iséki
on his 70th birthday

Abstract. In this paper, it will be shown that

(1) every generalized ordered topological space has the shrinking property,

(2) a subspace of a regular uncountable cardinal » with the order topology has the # (3)-pro-
perty if and only if it is not stationary in ».

As a corollary of (2), we shall also show that

(3) every gencralized ordered topological space is paracompact if and only if it has the
A -property.

1. Introduction. It is known from Y. Yasui [Y2] that every generalized ordered
topological space has the weak 4 -property. He also pointed out that @, (with the’
order topology) does not have the #-property. As remarked in [R], it is known
that every uncountable regular cardinal with the order topology has the shrinking
property, but does not have the % -property. Note that no uncountable regular
cardinal is paracompact. In this paper, it will be shown that

(1) overy generalized ordered topological space has the shrinking property,

(2) a subspace of a regular uncountable cardinal ¢ with the order topology has
the # (x)-property if and only if it is not stationary in ».

As a corollary of (2), we shall also show that :

(3) every generalized ordered topological space is paracompact if and only
if it has the #-property.

In these connections, Y. Yasui asked in [Y1]if spaces having the #-property are
paracompact, Now it is known that the ‘only known counterexample is the Navy’s
space, see [R], [N]. Recently S. Jiang asked in [J] if (normal) spaces having the
B -property are (sub)metacompact. Note that metacompact linearly ordered topo-
logical spaces are paracompact, see [E, 5.5.22(b)], [GH]. [F].
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