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The shrinking property and the #-property in ordered spaces
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on his 70th birthday

Abstract. In this paper, it will be shown that

(1) every generalized ordered topological space has the shrinking property,

(2) a subspace of a regular uncountable cardinal » with the order topology has the # (3)-pro-
perty if and only if it is not stationary in ».

As a corollary of (2), we shall also show that

(3) every gencralized ordered topological space is paracompact if and only if it has the
A -property.

1. Introduction. It is known from Y. Yasui [Y2] that every generalized ordered
topological space has the weak 4 -property. He also pointed out that @, (with the’
order topology) does not have the #-property. As remarked in [R], it is known
that every uncountable regular cardinal with the order topology has the shrinking
property, but does not have the % -property. Note that no uncountable regular
cardinal is paracompact. In this paper, it will be shown that

(1) overy generalized ordered topological space has the shrinking property,

(2) a subspace of a regular uncountable cardinal ¢ with the order topology has
the # (x)-property if and only if it is not stationary in ».

As a corollary of (2), we shall also show that :

(3) every generalized ordered topological space is paracompact if and only
if it has the #-property.

In these connections, Y. Yasui asked in [Y1]if spaces having the #-property are
paracompact, Now it is known that the ‘only known counterexample is the Navy’s
space, see [R], [N]. Recently S. Jiang asked in [J] if (normal) spaces having the
B -property are (sub)metacompact. Note that metacompact linearly ordered topo-
logical spaces are paracompact, see [E, 5.5.22(b)], [GH]. [F].
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First we establish our terminology. Let % be a collection of subsets of a space ¥
and x be an infinite cardinal, A collection & = {F(U): Ue @} of subscts of X is
a shrinking of 4 if clF(U) < U for every U in %. A space X has the x-shrinking
property if for every open cover % of size < x, there is a shrinking of % consisting
of open sets (open shrinking) which covers X. A collection [U,: « <! of subsets
of a space index by # is said to be increasing if U, Upif a < ff <x. A space X has
the weak #(x)-property (the #(x)-property) il for every increasing open cover
{U,t o<} of X, there is an (increasing, respectively) open shrinking | V,: o <)
(i.e. clV, < U, for each o <x) which covers X. A space has the shrinkinﬁz
(weak @-, @-) property if it has the x-shrinking (weak # (x)-, #(x)-, respectively)
property for every infinite cardinal %, By these definitions, it is easy to show the
foliowing implications.

shrinking property

' N

// \M
paracompact . weak Z-property
. N A
“ Vs

N e

A& -property
Note that in a normal space, shrinking property is cquiwﬂcnt to that its cvery
open cover has a shrinking which consists of closed sets (closed shrinking) and
covers the space, Also note ‘that in a normal space, for every open cover % ‘which
has a finite subcover, there is a closed shrinking of % which covers the space.
A subset S of a regular uncountable cardinal x is said to be stationary if § inter-

sects with every closed unbounded (cub) subspace of % with the order topology..

A linearly ordered topological space (ILOTS) is the topological space with the
topology induced by usual open intervals on a lincarly ordered set. A generalized
ordered topological space (GOTS) is a triple (X, 7, <) where < is & lincar ordering
of the set X and & is a T, topology which has a base consisting of convex sets,
see [EL]. Here a subset C of a linearly ordered set (X, <) is convex if (a, b) = ( for
every a, b in C ((a, b) denotes the open interval with end points «, #). Note that
every GOTS can be embedded in a 1.OTS as a closed subspace ([L]), every subspace
of LOTS is GOTS, and every GOTS is hereditary collectionwise normal und heredis
tary countably paracompact.

2. The shrinking property in GOTS, In this section, we shall show that every
GOTS has t;lme shrinking property hereditarily. First we recall some basic {acts.
A cut of a linearly ordered set (X, <) is a pair ¢4, B> of subsets of X such that
AuB =X, AnB =0, and if xe 4 and y e B, then x <y Nole that <0, X and
(X, 0) are cuts. Let cX denote the sct of all cuts of X. Definc a linear orderiﬁg <!
oncXby {d,B) <' <A, B)Yif A= 4’ and A # 4'. By identifying x e X with
Fhe cut <4, B>, where 4, = {ye X: y <x} and B, = XA, ¢X with the topology
induced by <’ is a compactification. of the LOTSY and J;<: ‘y o5 equivalent to
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x <y whenever x, y € X, see [E, 3.12.3(b)], [F], [K]. Note that a LOTS X is compact
if and only if every subset 4 of X has the least upper bound (fub), see [E; 3.12.3 ()],
[HK], and every subset 4 of a LOTS X can be represented as the union of disjoint
maximal convex scts, furthermore if 4 is open in X, such maximal convex sets are
also open, see [E, 2.7.5(b)]. In the proof of the next theorem, (x. ), [, »)', ... etc.
denote intervals in ¢ X..

THEOREM 2.1. Every LOTS has the shrinking property.

Proof, Let % be an open cover of a LOTS X, For every U in %, % (U) denotes
the set of all maximal convex (open) sets contained in U, For every V, V' in

v = U {uW): Ueu},

define V=V if there is a finite set {Vy, ..., V,} =¥ such that V= V,, V"=V,
and V;A V., # 0 for i < n(wecall such a finite set finite chain). Then = is an equi-
valence relation on ¥ Let {¥,: AeA} be the all equivalence classes. Then
{U¥:: 2ed)} decompose X into clopen sets, Thus il we can find a (closed)
shrinking of {U #",nU: Ue %} covering |J 7", for each e, then we can con-
struct a closed shrinking of 4 covering X. Since each | ¥7; is open in X, the sub-
space topology on J¥", coincides with the topology induced on [J¥7, by the restric~
tion of the Jinear order < to | ¥ Therefore it suffices to show the next claim.

Cram. Let % be an open cover of a LOTS X such that for every V, V' in
¥ = {UU): UeW}, V=V’ holds. Then U has a closed shrinking which covers X.

Proof of Claim. Let (cX, <) be the compactification of (X, <) described
previously. Define ¢ = <0, X and b = (X, 0). Then a(b} is the first (Jast, respecti-
vely) element of ¢X. For every ¥ in ¥, ' denotes the set

{xecX: Ay, ze V(y<'x<'2)} .

Then. it is easy to show that each ¥ is open convex in (¢X, <), since each Vis open
convex in (X, <).

FACT 1. ¥ = {V': Ve¥) covers cX—{a,b}. .

Proof of Fact 1. Let x be a point in ¢X—{a, b}. Since X is topologically dense
in ¢X, there are p, z in X such that a <’y <'x and x < ‘2z b bold. Then y<'x <’z
holds. Since ¥, & X, there is a finite chain {Fy, ..., V,} =¥ such that y eV, and
ze V, hold. By induction on n, we shall show that z e Vi forsome i < n. Whenever
n =0, xe V§ holds since y, ze ¥ with y<’x <’z and Vg is convex. Assume that
it is valid for <n-1. Take a point zg in ¥, " ¥,. If z, <'x holds, then x € ¥,
holds since z,, ze ¥, and z, <'x <’z. If x <"z, holds, then by the inductive assump-
tion x e ¥/ holds for some i < n—1since y € ¥y, 2 € P,y and y <'x <’zp. Thus ¥
covers ¢X—{a, b}. -

Note that if X has the first (last) element, then ¥™ also covers the point a
(b, respectively). Also note that if X has no first (last) element, then ¥ does not
cover the point a (b, respectively). This completes the proof of the fact:
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Fix a point ¢ in cX—{a, b}. For every U in %, define U’ = U{V": Ven(vy.
Put %' = {U": Ue%}. Whenever X has the last (first) element, since %' covers th,e
compact set [¢, b]' ([a, ¢]', respectively), U’ has a shrinking .# (%, respectively)
covering [c, b]' ([a, ¢]', respectively) consisting of closed subsets of [e, b (la, (']"‘
respectively). Next we shall show the following (uct.

Fact 2. If X does not have a last (first) clement, then %' ha¢ o shrinking
F (T, respectively) covering [c, bY ((a, e]'. respectively) consisting of closed subsets
of [en Y ((a, ¢, respectively’).

Proof of Fact 2. Assume that X does not have a last element (the other case
is similar). A subset 4 of [¢, bY said to be cafinal in b if For every x in [, bY, there
15 an a in A such, that x €'a. Let x be the least cardinal |A] such that A is cofinal
in b. Well order such an 4 with {ay: y <) by type 2. By induction, we shall find

a strict increasing cofinal (in ) sequence {x,: y <} such that Ay is the lub of-

és';, .e f‘:y 7’/}; i ih\)\lljl?‘j::y]):ﬁii c\‘;ls ;Zra.:h,:tis?l?w‘that y’< ;crnnfl Xg ha]s been deﬁnc.d
ad<xsuchthata, <a aﬁd‘ \" <~z\1 f'a 1:éve- a/: ﬂ;}%\{v}‘ﬂ' Pyl < ?he‘re s
n A< such tha ofﬂ{‘c ~A,B< " s i for every B<7y. Define x, = a;. When y is limit,

y Xy V5. Since ¢ X is compact and by the definition of %, such

ax, is well defined and x, <'b. Thus we can find such a sequence. Furthermore.

by the definition of x, x is a regular cardinal,

_ If % =  holds, then [¢, b)' = | {lesx,0"s vy <%} is Lindeldf since each [e, %]
Is compact. Thus we can find such an %, whenever » = (., Next assume that xyis
_aregular uncountable cardinal. Since [¢, b)’ = (J {le, %)t p<x} and cach Je, x i
15 compact, every open cover of [c, )" has a ‘subcover of size <. Thus we m:ty
assume that [%| < x. Well order % = {Uy: <2} where A< x. For every y in
Lim(x) = {y <x: y is limit}, fix an «(y) < 2 such that Xy € Ugyy. Then there is
an f(3) <y such that [x,), x,)' @ Uy, for every y in Lim () since x, is the hb of
{x;: B <y} if y is limit. Note that Lim (%) is cub in % There are mz’o cases.

Case 1. A<x,

In tl}xs case, since A < and x is regular uncountable, there are a stationary
set S < an(x) and an 2 < A such that a(y) = o for every y & §. Then by the pressing
down lemmg, there are a stationary set 8" < § and a 3’(()) < % such that /'(y) w‘;’(d)
fm: cvery/y in S’. This means that [¥yons %) & U, holds for every y in 5. Thﬁs
;(.\,.(o)_. b) c:)' X001 ) = q; 1'10].ds:. On the other hand, since [¢, Xyon]” 18 compact,

here is a finite subcollection of %' which covers [¢, Xy} Therefore u finite sub-

collection of %' which covers ‘ A e st

e fe.BY. Thus we can take such a closed shrink-
Case 2. 1= x,

In this case, put € = {y e Lim (x): A4 ! i i
o i s, { 09: VB <y(x(B) <y)}, then Cis cub in #. There

Subcase 1. {yeC: a(y) <y} is stationary.
In this' subcase, by the pressing down lémma, there are a stationary set
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SciyeC:a(y) <y}l and an @ <A =% such that a(y) = « for every y in S. Then
as in Case [, we can find such a &,.

Subcase 2. § = {ye C: y<a(y)} is stationary.

In this subcase, for every 7, v in § with 9" <y, a(y’) <a(y) holds. Therefore
elements of oS = {a(y): ye S} are all distinct. By the pressing down lemma,
there are a stationary set S' < Sand a 9(0) <y = x such that f(y) = y(0) for every y
in ', This means that [¥,;, X,]’ & Uy for every 7 in S”, Take a finite subcollection
{Us: we T} of %' which covers [¢, xyp)', where T is a finite subset of 4 = 2. Let
{F: e T} be a collection of closed sets which covers [¢, o)) such that F; < U,
and Fy < (¢, xyo))' for each o€ T. Define F, by

F, = F, ifoel—o’S",
Fupy = Fagpy W X0y %1 if a(y) e Tna” S,
if a(p)ea” ST,

ifaex—(Twa’s’).

Fay = X0, %)
F, =0
Then &, = {F,: o <x} is the desired closed shrinking of %' which covers [¢, b).
Thuy Fact 2 is proved.
By the above argument, we may assume that
' Fo = {F,(U): UeU}(F, = {Fo(U): Ueu})
in any case whether X has a last (first) element or not. Then
o ((F(D)UF(U) A X: Ue %)
is a closed (in X) shrinking of % which covers X. Thus the proof of the claim is
complete.
COROLLARY 2.2. Every GOTS has the shrinking property hereditarily.
Proof. Since every subspace of a GOTS is GOTS, it suffices to show that every
GOTS has the shrinking property. By using the technique of [L], we can embed a

GOTS X into a LOTS Y as a closed subspace. By Theorem 2.1, Y has the shrinking
property. Therefore X has the shrinking property.

3. The % -property in GOTS, In this section, we shall show thai every GOTS
having the 4-property is paracompact. First we characterize stationarity in a regular
uncountable cardinal x by the 4 (x)-property as follows. L

TuroreM 3.1. Let S be a subspace of a regular uncountable. cardinal % with the
order topology. Then S is stationary if and only if S does not have the B (x)-property.

Proof. Assume that S is stationary. For every « in S, put U, = anS. Then
{U,: e S} is an open cover of S. Furthermore by enumerating S with the increasing
order, {U,:ueS} may be considered as an increasing open cover of S. If §
has the 4 (x)-property, then there is an increasing (by the enumeration) open
cover {V,: ae S} such that clg¥, < U, for each o in S. Then for each & in 5,
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there is 4 B(«) <o such that (f(e), aJ P, = 0 since « is not a point of cls V.
By the pressing down lemma, there are a stationary set S’ < Sand a f <x such
that (o) = B (.e. (B, 2]V, = 0)for every « in S'. Noting the unboundedness
of S, take «(0) in § with f# <a(0). Since {V,: € S} is an increasing open cover
of 8, 50 is {¥,: @€ S'}. Therefore there is an « in §” with a(0) e ¥,. Since Ve U,,
a(0) <o holds. Thus a(0)e (B, «]n ¥, and xS’ But this is a contradiction.

To prove the other direction, assume that § is not stationary, We shall show
that § has the @ (x)-property. Let % = {U;: f<x} be an increasing open cover
of $, and C be a cub set which is disjoint from S. Enumerate C with the increasing
order, say C = {a(y): y<x}. Foreveryy < x, put S, = (a(y), aly+ 1)) S. Then Sis
the disjoint sum of S,’s since C is cub, furthermore each S, is a clopen subset of S.
By putting %, = {U;nS,: f<x}, %, is an increasing open cover of S, for cach
y <. Since |S,| <» holds, there is a A(y) <x such that Uy, n S, = S, for each
y<n For each y<x, define ¥y, = 0 if f<A(), and ¥V, = Sy Uyyy < Up) if
A < B <x. By putting ¥ = U {Vy,: v <u}, ¥y = clgVy < Uy holds since Vj is
the discrete sum of clopen sets ¥p,. If #'<f <x holds, then we have Vjy < ¥,
since ¥y, < Vp, for eyery y <. Let x be a point of S,. Then x & Uz, n Sy = S,
= Vi © Vag bolds. Thus {V,: f <2} is an increasing open cover of S such that
clg¥Vy < Uy for each <. This shows S has the @ (x)-property.

LeMMA 3.2 [EL, 2.3]. Let X be a GOTS. Then X is 'not paracowpact if and only
if there are a reguldr uncountable cardinal » and a stationary subset S of » such that
the topological space S is homeomorphic to a closed subspace of X.

COROLLARY 3.3, Let X be a GOTS. Then X is paracompact if and only if X has
the 9% -property.

- Proof. Assume X is not paracompact. By Lemma 3.2, take a closed subspace §
of X which is homeomorphic to a stationary subsct of a regular uncountable cardi-
nal ». If X bas the % (x)-property, then so does S. But thjs contradicts Theorem 3.1,
thus X does not have the % (x)-property. The other direction is obvious, This com-
pletes the proof.

Remark. Note that every well ordered set is order jsomorphic to some ordinal o,
and every well ordered set with the order topology has the shrinking property by
Theorem 2.1. On the other hand, since every well ordered set o of uncountable
cofinality » has a closed subspace which is homeomorphic 10 %, it does not have
the @ (x)-property (#-property). Using this we can show that every well ordered
set o s paracompact (Lindeldf, o-compact, has the @& -property) if and only if the
cofinality of o = w,
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