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Finite-dimensional complement theorems in
shape theory and their relation to .S-duality

by

Peter Mrozik (Siegen).

Abstract. The finite-dimensional category isomorphism in shape theory determines a functor &
assigning to each isotopy class of homeomorphisms D"— X~ D"— ¥, X, YC §»-1 compact, a shape
isomorphism X Y. The finite-dimensional complement theorem is used to prove that the stabiliza~
tion 9* of & is a full functor; orientation and boundary obstructions are applied to show that 9* is
not faithful., We specily a functor R, defined for shape isomorphisms induced by simple homotopy
equivalences between compact subpolyhedra of $7-1, which is a right inverse for H* and effectively
cortrols these obstructions, R is then used to exhibit the relation between S-duality and complement
theorems.

Introduction. Let us recall

1. THE FINITE-DIMENSIONAL COMPLEMENT THEOREM IN SHAPE THEORY ([4], [16],
[18]). Two compacta X, Y in the sphere S*, satisfying suitable embedding conditions,
have the same shape iff S"— X, S"— Y are homeomorphic;

2. THE S-DUALITY COMPLEMENT THEOREM ([17]). Two compact subpoly-
hedra X, Y of S" have the same stable homotopy type iff S"— X, S"— Y have the same
stable homotopy type. )

The striking similarity of these two results suggests that they might not be
independent but rather be two partial aspects of a more complex geometric pheno-
menort,

Let us consider the two obvious functors & and @ assigning to each isotopy
class p of homeomorphisms D"V X — D" !~ ¥, where X, ¥ are compacta in the
boundary of the ball D"*!, isomorphisms 9(u): X— Y in the shape category and
d(u): 8"—X-» 8"~ Y in the ordinary homotopy category (9 involves the well-
known category isomorphism theorems in shape theory 31, [13]; 21is the “boundary”
functor). All what seems to be known about 8, 8 and their interrelations concerns
the image of $: The shape-theoretic complement theorems supply information
about which shape isomorphisms occur as images of isotopy classes; cf. Propo-
sition 4.1. The first step towards something new is to recognize 8 and @ as operator
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functors between operator categories (this means that $ resp. d are “compatible”
with certain endofunctors operating on domain and range of 9 resp. 9; for details
see Sections 1-3). These additional structures enable us to transform ¢ and 9 into
operator functors 9% and 0* assigning to each “stabilized” isotopy cluss
p*: D1 X - D"~ Y isomorphisms 9*(u*): X— ¥ in the shape category and
F*(p*): §"=X—8"~Y in the stable homotopy category; cf. Section 4. In this
stabilized setting we get rid of all technical conditions appearing in the finite-
dimensional complement theorems: Tt turns out that each shape isomorphism X~ ¥
between compacta in S” is in the image of 9*. However, the boundary obstruction
given by 0* shows that 9* is not faithful, and thus we would considerably improve
our stable version of the complement theorem, if we were able to specify a section R
of 9* controlling the boundary obstruction, i.c. an operator functor assigning to
each shape isomorphism @: X—Y a stabilized isotopy class R(D): D"y
—D"*1— ¥ such that $* R(®) = @ holds and o* R(®) is made explicit. We do not
know a complete solution of this problem but for our objective it will suffice to
construct the desired R(%) for each @ which is induced by a simple homotopy equi-
valence X - Y between compact subpolyhedra X, ¥ of $”: This is accomplished in.
Theorem 4.10.

So far we have exclusively been dealing with functorial versions of complement
theorems. However, once we have our partial section R of 9*, it is a straightforward
exercise (see Section 5) to derive Spanier—Whitehead duality in its original form [17],
thereby exhibiting the intimate relationship between 9, @ and the “geometric”
Spanier-Whitehead duality functor D, The point is that D factors through the stabili-
zations R* of R and 9* of 6% (Theorem 5.4): For each stable homotopy equivalence
@, D(o) = 8% R*(a™),

Finally, we sketch in Section 5 how our results are related to the following
theorem (which is essentially contained, though not explicitly stated, in Lima [11];
of. also Nowak [14]): Two compacta X » Y= 8" have the same stable shape iff
S§"—X, S"—7Y have the same stable homotopy type.

Note. This paper is based on parts of the author’s doctoral dissertation written

under the supervision of Professor F. W. Bauer at the University of Frankfurt am
Main.

1. Preliminaries. We begin with some notation. If 4 is a category, we let Ob A
denote the class of objects of A, and for any two objects X, ¥ of A we let A(X, ¥)
denote the set of morphisms from Xto ¥. If M < Ob.4 is a class of objects we let 4| M
denote the full subcategory of A with Ob(4|M) = M. By Tsod we mean the sub-
category of all isomorphisms in 4. If A is a category such that 4 = Iso.4, we can
identify 4 with its dual category A°": The contravariant “dualizing” functor
o0p: A~ A" = 4 is then given by op(X) = X for Xe ObA and op(f) =s""
for fe A(X, ).

We let I denote the closed unit interval [0, 13, J the closed interval [—1, 1]
and R" Euclidean n-space. The n-ball D" = {(x, , ..., %,) € R"| Z}a1x} <1} and the
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(n—1)-sphere """ = {(xy, ., x,) € R"| Zh.yx? =1} will be endowed with
PL(= piecewise linear) structures in the natural way.

By an operator category we mean a system € = (C; F,, Fy; 1) consisting of
a category C, two functors F,, F,: C—C and a natural isomorphism p: F, F,
& Fy F, (for a much more general concept of an operator category see e.g. [1];
the definition given here should only be regarded as a convenient terminus technicus).
Letting ® = (D; Gy, G,; v) denote another operator category, an operator functor
U: €-Disafunclor U: C-».D such that G, U = UFy, G,U = UF, and vU = Up.
Note that Io: €— € is an operator functor, and that the composition of operator
functors yields again an operator functor; it is now left to the reader to give the
obvious definition of an eperator category isomorphism. € is called stable with respect
to Fy, i== 1 ori=2,if Fis a fully faithful functor; € is called stable if it is stable
with respect to both £ and F,. This definition of stability possibly is somewhat naive
(it would be more sophisticated to require the F; to be auto-isomorphisms of ),
but it has the advantage that stabilizing operator categories becomes an extremely
simple procedure which does not involve any new objects (like e. g. spectra), A stabili-
zation [resp.  Fpystabilization] of € consists of an operator category
€* = (C*; Ff, Ff; u*) which is stable [resp. stable with respect to F*] and an
operator functor A*: €— €* such that the following universal property holds:
For each operator category D = (D; Gy, G,;v) which is stable [resp. stable with
respect to G} and for each operator functor U: €+ D, there is a unique operator
functor U*: €* - D with U = U*2*. By this universal property, all stabilizations
[resp. Fi-stabilizations] must be isomorphic in the obvious sense. To show that
F-stabilizations exist, we introduce the canonical Fi-stabilization A(F): €— C/F;
= (C/F;; By, Fy; p) following the pattern of the stable homotopy category of Spanier
and Whitehead [17]: Define ObC/F, = ObC and

(CIFY(X, Y) = dirlim{C(F X, F{ Y)}

forall X, ¥ e Ob C. Then composition of morphisms in C/F; as well as the definitions
of Fi,Fy: CIF,=CIF,, pr FF =B F, and A(F): C— C/F; should be obvious.
It is also left to the reader to verify the following important fact: If € is already stable
with respect to Fy, j s i, then G/F, is stable. As a comsequence, each operator
category € admits a stabilization: In fact, A(F)A(F): C—(C/F)/F, will do, and
we simply denote it by A(F;, F,): € C[F,, F,.

2. The basic operator categories. These are

(1) T = (Ho(Top); 1, Z; id): Ho(Top) denotes the ordinary homotopy cate-
gory of all topological spaces; £ = Iy, rop) denotes unreduced suspension (we adopt
the convention 5S¢ = $°).

(@) © = (Sh; 1, X; id): Sh denotes the Borsuk-Marde$ié shape category of
all topological spaces, given together with the shape functor S: Ho(Top).—»Sh
f. [21, [12]); X = Zg, denotes the shape suspension functor which is uniquely
characterized by the property Zg,S = SZuorop) (f. [12]).
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(3) I = (Isot; my, m,; p): Isot denotes the isotopy category of locally compact
spaces (whose morphisms are the isotopy classes of homeomorphistms); 7y, 7, denote
the product funciors defined by

n(X) = XxJ, m(X) = Xx(—1,1) for the objects X,
n(f) = fxid for the morphisms f, i =1,2;
y: My &y 7w, 18 induced by the rotation
a: Jx(=1,1)-(~1,1)xJ, a(s, t) = (¢, —s).

# P = (WHo(P); 7y, mp;9): wHo(P) denotes the weak proper homotopy
category of all locally compact spaces (cf. [4], [7]); 7y, =, denote the product functors
given by the “same” definitions as above (but note that, on wHo(P), 7, is naturally
isomorphic to the identity); y: m,7; & m, @, is again induced by the rotation a.
Observe that there is a functor E: Isot —wlo(P) such that E(X) = X for each
object X and E([h]is0) = [Alyp for each [Aly, € Isot(X, ¥), where [ Ji, denotes
isotopy class and [ 1, denotes weak proper homotopy class (see [6] to check that
this makes sense).

(5) T = (Ho(Top)'; Z, 1; id) with

Ho(Top)’ = Ho(Top) .

For our geometric purposes, however, the five categories C = Ho(Top), Sh,
Isot, wHo(P), Ho(Top)' are too large; we are actually interested in certain sub-
categories C* of C.Let subsets K,(C) of ObC be defined by K,(Ho(Top)) = K,(Sh)
={X<8§""! compact}, K,(Isot) = K,(wHo(P)) = {D"~X| X<=S""! compact}
and K,(Ho(Top)) = {§""'—X|X <= S""! compact}. Then the C, = C|K,(C) are
full subcategories of C, and we take C* = |J=., C,. Unfortunately, none of the
operator categories

(CiF L, Fosp)=%,8,3,8,%

satisfies F(C*) = C* for both i = 1 and i = 2. However, for each object X of C,,
we shall supply an object F; (X) of C, ., together with a “canonical” C-isomorphism.
o, x: B (X)— F{(X). A straightforward construction (left to the reader) yields then
functors F;': C* = C* = C naturally isomorphic to F,|C* as well as a natural
isomorphism p*: F) Ff' = F" Fy, i.e. an operator category

G = (C*5 FF L B 5 %)
which is called the reduction of (C; F,, Fas 1) to C* by the oy, x and oy x.
(1) For each object X of Ho(Top),, we set
1*(X) = Xx {0},
EHX) = {(%y, oes Xys1) €S yaq] = 1, or

Isrl <1 and (1=x3 )" Y2(xy, ..., x,) € X}
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The obvious homeomorphisms gx: 1"(X)—X and Ay SHX)>ZX induce
Ho(Top)-isomorphisms

axt 1"(X)=» X and  by: ZH(X)—IX.
Let
T = (Ho(Top)*; i= 1%, ¢ =35%; § = id*)

be the reduction of T to Ho(Top)" by the ay and by.
(2) Similarly, let @* = (Sh™;/, ¢; &) be the reduction of & to Sh* by the
Sl ")~ X and Sy I*(X)~2X.
(3) For each object D" X of lIsot,, we set
(D= X) s DX and 2i(D'—X) = D' —gX.
The obvious homeomorphism
Syt D" leg X (D" X)x (=1, 1)
induces an Isot-isomorphism
0x: Wy (D"~ X) > my(D'= X) .
By (2.1) below there also exists a natural isotopy class of homeomorphisms
oyt D" i X (D" = X) %,

e a “canonical” Tsot-isomorphism

uy: wi (D" =~ X)- (D" X).

Let I = (Isot™; ], my ;") be the reduction of I to Isot* by the uy and vy.
(2.1) LemmA. Let X< S"" ' be compact, U be a neighbourhood of X in D
and G: D"xJ~» D" be a homeomorphism with

GID"x{0} = id  and G(D'xI)= Di'' = D" A (R ).
&) There is a map of triples
he (D", X xd, (D"~ X)xJ)= (D", X {0}, D' —Xx {0})

with the following propertios:

W) he XxJ o X {0} s the natural retraction.

(i) hy (D" XYy D' X% {0} Js « homeomorphism.

(i) A1 D"x {0} - id.

@v) D" dy = DL

W) H(D" - Uyxd = GI(D" - U)xJ.

(b) For any two mups hgy Ny satisfying (i)-(v) there exists an isotopy
H: D" s few DY, Jixed on D> {0}, such that Hy =1 and Hyhy = hy (with
H(x) = H(x, 1)),
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In particular, there exists a homeomorphism
ex: DX (D= X)%J

such that ex ! is the restriction of a map h satisfying ()~(iv); ex is unique up to isotopy.
Proof. (a) A simple geometric argument shows that there is a homeomorphism,
g: D"xJ— D"xJ such that

iD=y xJuD"x{0} = id and g(x, 1) = (x, t/2)

for each xe X. Choose a map v: D"—1I with X = v~'(0) and D"~ U co~(1).
Define r: D"xJ— D"xJ by

r(x, 1) = (x, w(x) for |1 <}

and
r(x, 1) = (x, sga()(0(0)/2)) +(1 — (0(x)/2)) 2]1] - 1))
Then h = Grg is the desired map.

(b) Consider the homeomorphism k: D***—Xx {0} —» D"*1— X'x {0} defined
by k(&) = hy kg '(). Tt is easy to show that & extends to a map K: D"+1- pré1,
Obviously K is a homeomorphism with K|.D"x {0} = id and K(DL'1) = Dt
There is an isotopy H: D"*'xI— D", fixed on D" x {0}, such that H, = 1 and
H; = K. This implies H, hy = hy.

(4) Similarly, let

for |t} 2%,

B = (WHo(P)"; nf, my 5 9*)
be the reduction of P to wHo(P™') by the
E@): tf (D'~ X)—m(D'—X) and  E(g): nf(D"~X) = my(D"— X) .

It is easy to verify E(uy) = [qx];pl[px]wp where py: D""1—iX - D"— X and
gx: (D"—X)xJ— D"-X are the projections (which are proper homotopy equi-
valences).

(5) We begin with some notation needed below. For any nonempty space Z,
we have the natural quotient map g¢,: ZxJ—3Z; given A<Z, we set
A" = (4 x{0}) © XZ. There is a natural injection

Jat BZ—A)~(2Z)~A' .
Now, for each object S"~*—X of (Ho(Top)'),, we set
IHS"T X)) = S"—iX and  1T(S""'—X) = §"—0X.
There are obvious homeomorphisms
Lt S"—iX>(ES"N=X' and g S"—oX—(S" = X)x (=1, 1).
The projection
e ("I X)X (=1, 1) > S* X
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is a homotopy equivalence, and (2.2) below shows that also the injection
Jxi Z(S"E—X)—>(ES"" 1)~ X" is ome. (N.B.: jy is not an embedding unless
X = @, §"~1). Hence, we have Ho(Top)-isomorphisms

ox = Uxl 7' x]: 24" = X) > 2($""1~X) and
Wy = [renglt 15" —X)> St .
Let
(@) = {(Ho(Topy)™; Z*, 1*;0 = id*)
be the reduction of X' to (Ho(Top)')* by the ¢y and wy.

(2.2) LemmA.  For each nonempty space Z and each zero-set AcZ (i.e.
A= o 1 0) for some map w: Z—1) j,: Z(Z~d)—(ZZ)~ A’ is a homotopy equi-
valence.

Proof. We only consider A # Z since A = Z is trivial. Define

¢: IxI-{(0, 0)} »J

by @(u,v) = ufv for |u|<v and @(u,v) = sgn(w) for |u|=v. Choose w: Z~TI
with ©™*(0) = A. Define a map

Fi (ZxJ—~Ax{0}) x [~ZxJ~ A4 x{0}
by Fz,5, 1) = (z, (s, (1= () +1)).
Obviously F restricts to a map
F*: (Z—A)xJx I+ (Z~d) xJ .
Define
0 ZxJ-Ax{0}~+2(Z~4) by
0(z,9) = ¢y 1 F¥z,5,0} forzeZ—-A4 and
0(2,8) = gz 4(Z~A)x {sgn(s)}

1t is readily checked that g is continuous and maps both Z x {1}, Zx {~1} to points.
Hence, there is o unique map ri $Z—4' -2 (Z—~4) such that ¢ = rg; where

for ze 4.

0pt ZxJ=AX{0}>2Z~A'

is the quotient map induced by ¢,. The maps F and F* induce homotopies f4r=1
and rj 1, respectively.

(2.3) Remark. In the intuitive sense, the operators F;": C*— C* seem to be
“less manageable” than the original Fy: C'—C. Therefore, one may ask for an
F* -stabilization of €* which makes transparent what the stabilized morphisms look
like. Let

A(F): € C/F, = (CIF; By, Fas )
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be the canonical Fi-stabilization. Define a subcategory of C/F; by
(CIF") = U1 (CIE)IKL(C)
ne

and let (G/F)" denote the reduction of €/F; to (C/F)" by the A(F)(e,x) and
A(F) (02, x)- Then A(F) induces a functor A*(F): C* - (C/F)" which is readily
seen to be an F;' -stabilization, called the regular one.

3. The basic operator functors, It is obvious that the shape functor S Ho(Top) -
-+Sh and the functor E: Isot—wHo(P) restrict to operator functors
S: It -at
and
E: 3" Pt
Let us next recall the finite dimensional category isomorphism in shape theory.
We use the description given in [13}, restated here in a slightly different form.

(3.1) ProposITION (cf. [13]). There exists a unique functor T: wHo(P)" — Sh*
satisfying the following conditions:
(T1) T(D"—X) = X for each object D"~ X;
T2) If f: D"~X—D"—Y is a uniformly continuous proper map, and f': X— ¥
denotes the unique map that can be picced together with f to a continuous
Ff: D= D", then T([ flyp) = SAFD.
The functor T is an isomorphism of categories.
(3.2) ProrosiTION. T: B+ —&* is an operator functor (hence, an operator
category isomorphism),
Proof. Try = iT: Since i is a full embedding, there exists a unique functor
R: wHo(P)* —Sh* such that iR = Tn{. Obviously, R(D"~X) = X for each
object D"~ X. Let f: D"—X—D"— ¥ be a uniformly continuous proper map. We
have

nI’([f]w,,) = E("Y)‘lni([f]wp)E(uX) = [iY.[pX]Wpl

where iy: D"— Y-+ D"*'— Y is given by iy(3) = (¥, O). fy and py are uniformly con-
tinuous proper maps, and

Gy fpx) = () f'(px) = g7 ' flgx .
Thus

iR(Lf Iwe) = Tl ([ 1) = S(lg7 * f'ax)
= S(an) ' S/ DS(ax) = iSUSD
i.e. R([flyp)= S{S']D. It follows from (3.1) that R=T.
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Tny = oT: Let /: D"~ X—=D'—Y be g uniformly continnous proper map.
Computations as above yield

Ty ([f Jop) = Sy *E(fYhy]) = Sby) " SELF DS by)

= Sy ESUSDSGx) = Sbe)  ET([f 1up) S(by) = T fup) -
Given a map r: X-» ¥, one can easily construct a uniformly continuous proper map
R: D" X= D" Y such that R" = r, i.c. T([R),,) = S([r]) (cf. [13], [15]). This
implies So = ¢§ == Trc;}" TS, Now let o e Sh(X, Y). Choosc a Ho(Top)-expan-
sion p: Y=Y such that
Y e { Yus Am & Ho (TO.P)( Vnri-l » Ym)’ me N}

with compact polyhedra ¥, in "' (sec [12]). Note that p is a morphism in
pro-Ho(Top) (ef. [7], [12)), i.c. consists of p, & Ho(Top)(¥, Y,), me N. There is
a unique ¢ = {g,}: X~ Y in pro-Ho(Top) such that Sg) = S(p)y, ie S(g.)
= S(pn)¥ for cach m. Then Z(}) is the unique shaping such that SZ(q,)
= SZ(py) o Zp for all m (cf. [12]); hence o () is the unique shaping such that

Sa(qu) = Sa(p,)ea(y) for all m.
On the other hand,
8o (py) e Tny T ') = Tny T~ S(py) o Tns T~ ()
= Tny T (S(pu)h) = Triy T™(gy) = S0 (gn) s
implying Try T7')) = a(p). Thus, Tny = oT.
AT = Ty*: It is immediate from the construction of d and y* that - dy}

and Ypn-x = [dylyp, Where both dy: oiX—icX and dy: D" 2—giX~»T ' - ¢X
are given as restrictions of the rotation

d: D" 2o 2' d(»"l 7 ey *‘n-l-z) = (317 s Xy Xz —l,,.”) .
Thus,

(Ty" Yoy == ’1'()’}3}-..;;) =y = ‘ST(D“--X) = (0T )pn-x-

Finally, we have the “boundary” functor
d: Isot* - (Ho(Top))* ,

which is given by a(0" - X) = §"" ' X = boundary of the manifold D"—X, and
A([Migo) = [0h), where [Aly, € Isot(D'—= X, D"~ V) and dh: S" 1=X 8" 'y
is the homeomoyrphism induced by .

(3.3) Provosriion. d: I (XYY is an operator functor.

Proof. anf = X*0: For each homeomorphism h: D"—X— D"~ Y we have
o ([h)yo) = [F], where F = der'(hx1)ey): S"—iX~ §"~i¥. Obviously F is
an extension of f= ah: S""'=X-8"'~Y such that F(S3)eSL (with
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o= (s s K1) €S| 5800 4q) = +1}). It is easy to see that CyF&y ljy
~jgZ(f) (cf. Section 2 for j; and &y); this implies

[F] = o7 [Z(f)ox = 2 [0h] = ZF8([hl;s0) -

dny = 1*3: For each homeomorphism h: D"~ X—-D"—-Y we have

dny ([Miso) = [G], where

G = ﬁ(f;l(hxl(_l'n)fx): S"—¢X—S"—cY, and
1 O([hliso) = 17([0R]) = Yy '[OA1Yx -
It therefore suffices to show that

[ryny Gl = Yy[G] = [0h]Yx = [@R)rxnx] .

The maps rynyG, (@R)ryny: S"—cX—5""1—Y agree on 4 = ($"7*—X) x{0};
since 4 is a strong deformation retract of S"—¢X, they are homotopic.

of = dy*: It is again immediate from the construction of ¢ and y* that
Osn-1-x = [0dyx] and pm-x = ldxle With dy as in the proof of (3.2). Thus,

@ pn-x = d(pn-x) = Qsn-1x = (@)pr-x -

4. Complement theorems. The operator functor 7o E: I* - &* induces an
operator functor 9: I* o (IsoSh*; i, ¢;8) = IsoS* which gives a jfunctorial
version of one half of the finite-dimensional complement theorem [16]. The other
half of this complement theorem can be restated as follows:

(4.1) ProposiTION. Let X,, X, € ObSh,, n> 6. Assume that the fundamental
dimension FdX; (cf. [2]) satisfies 2Fd X;+3 <n, and that X; 8" satisfies the
inessential loops condition TLC (cf. [18]). Then, for each ® elIsoSh(X;, X;), there
exists a homeomorphism h: D"—X, — D"— X, such that ([h];,) = P.

Proof. For ®elsoSh(X,X;), T Y&)ewHo(P)(D"-X;, D"-X,) is
a wHo(P)-isomorphism. By [8], T™}(®) = [f],, for some proper homotopy
equivalence f: D"— X; — D"~ X,. It follows from [18] that for each neighbourhood U
of X; in S"~1, the inclusion U —X;— U is a l-equivalence. Careful examination
of [16] shows then that we can construct a homeomorphism A: D"— X, — D"— X,
properly homotopic to f.

In addition to (4.1) it should be emphasized that
(4.2) 9 is not a full functor.

Moreover we have
(4.3) 8 is not a faithful functor.

The easiest way to check (4.3) leads to the orientation obstruction, Consider the
category OR which has one object * and two morphisms denoted by 1 and —1
(with the obvious composition). We define a functor

o: Tsot* »OR by w([hly) =1 iff h: D'"—X=D'—Y

is an orientation preserving homeomorphism.
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For example, let X be any compact subset of §"~1, Define the reflection map
Ry: D" X% {0} —+ D" X% {0} by Ry veey Xy49) = (%4, oo, Xy = Xpgs1)
Then ‘9([1{](]190) =], but C’)([RX]IM) = -1 MOTCOVCI’,

(44) w: I*—(OR; 1, 1;id) = ON is an operator functor.

Another way to check (4.3) is to use the boundary obstruction. For example,
let X = 8" 2x{0}=S""! (n22). Then 3([Ryliso) = 1, but O([Ryliso) 5 1.

The following elementary examples show that orientation and boundary obstruc-
tions are independent.

(4.5) For X = Y = » (n arbitrary), @ does not detect different isotopy classes
but w does.

(4.6) Define a homeomorphism = of R = Cx R onto itself by
1(tl (284 1))
oM = (re > S)
= {020
Let X = S consist of the four points (0, 0, 1) and ++/2/2(0, 1, 1). Then t restricts

to a homeomorphism h: D*—X o D3~ X, Let ¢ = [A)iso- It is readily verified that
() = 1 and o(P) = 1, but §(P) # 1. The isotopy classes

ls|<1/2,
ls]=1/2.

@, = (m3)(P): D> —" X D3~ X, r 21,

provide examples for the same phenomenon in higher dimensions.

The fact that § is not full means that Isot* is too small for an “unrestricted”
complement theorem: There are not enough homeomorphisms h: D" — X — D"— Y.,
To remedy this defect, we simply stabilize nf : Isot* —Isot*. Letting

A(r)r I = (D) = ((sot/my)*; xf, n¥; y¥)
denote the regular =y -stabilization, we obtain operator functors
¥*: (I/my)t = Ts0 "
and
w*: (In)* DN

characterized by $* A" (my) = § and w*A*(m,) = ®. Moreover, d induces an operator
{unctor

M (Ffn )t - (T2
characterized by 0% A*(n ) = A"(2)a, where
AT (X -+ (T2 = ((Ho(Top)/2)*; Z*, 1%; 0¥)

is the regular ¥"-stabilization, Recall that (Ho(Top)'/2)* is a subcategory of the
stable homotopy category Ho(Top)'/2 = Ho(Top)/Z.

(4.8) Prorvoserion, 9% is a full functor.
5 — Pundamenta Mathematlcae 134/1
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Proof. Let X;,X,cS""! be compact and @ elsoSh(Xy, X,). Consider
X, = i"*X) = S®*+91, Then 2n+4>6 and 2FdX;+3 <2n+4 Since X, lies
in a (n—1)-dimensional submanifold of $'*3, X, = §2*? satisfies ILC. By (4.1),
there exists ¢ elsot(D***~X,, D™*_X,) such that 9(p) = i"*4(®), i.e.

9* A% (n,) (@) = ""4(®). Since nf is a full embedding, there exists
o & (Isot/n ) (D"~ Xy, D'~ X;)
such that ()" **(¢") = A (1) (). Then 9*(p) = ®.

Again, orientation obstruction w* and boundary obstruction 8* may be used
to show

(4.9) 9* is not a faithful functor.

With respect to (4.9), the functorial complement theorem (4.8) is not completely
satisfactory — it would be morc desirable to have a section of 9* (i.e. a functor
R: IsoSh™ — (Isot/m,)* such that $*R = 1) controlling orientation and boundary
obstruction in the sense that the functors w* R and 2* R should be explicitly known.
For the purpose of this paper a partial solution of the section problem will be suffi-
cient. Let Si denote the subcategory of Ho(Top) whose objects are the compact
polyhedra and whose morphisms are the homotopy classes of simple homotopy
equivalences (cf. [5], [20]), let P(S™~*) be the set of compact subpolyhedra X < S~ 1
and Jet Si* = U2, SilP(S"""). Then Gi* = (Si*;#, 0;8) is an operator sub.
category of T*, and the shape functor restricts to a faithful functor S: &t* —Is0 &*

(4.10) TueoreMm. There exists an operator functor R: &% —(I/my)"™ having
the following properties:

(R1) $*R = S;

R2) w*R(p) =1 for each morphism o ;

R3) If X, Y are compact subpolyhedra of S"* with Y < X, and if the inclusion
Ju Y= X is a simple homotopy equivalence, then 8* R([j1™") is the stable homotopy
class of the inclusion S"~*—X-»S" 1.

Proof. If a polyhedron 4 collapses simplicially to a subpolyhedron 4, we let
¢(4, 4,) denote the homotopy class of any retraction r: A 4,.

(D Let X be a subpolyhedron of $”~* which collapses simplicially to a sub-
polyhedron ¥ = X. Choose a regular neighbourhood N of X in D" (meeting the
boundary regularly, of. [10]) and a homeomorphism A: D"— X - D"~ ¥ such that
h|D"—IntN = id, where “Int” denotes the interior of subs paces (recall that
N—X =~ (BAN)x[0,1) ~ N—Y, where “Bd” denotes the boundary of subspaces).
The isotopy class of % does not depend on the above choices, and we define

(e(X, Y)) = [Aljy, € Tsot (D"~ X, D"~ ¥) .
By construction

(4.11) wa(e(X, ¥)) = 1.

Given fe ¢(X, Y), we use Borsuk’s homotopy extension theorem to extend fto
a map f': N— N such that f |BAN = id; morcover, since ¥ < 0N is a Z-set in N
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(cf. [13], [15]) we can assume f'(N—X) = N— Y. Next we extend /7 by the identity
to f''t D"— D" Then /' induces a uniformly continuous proper map F: D"— X —
- D"—Y¥ which is properly homotopic to 4, ie. E([Mlio) = [Flyp- By (3.1),
T([Flup) = SS1); thus

(4.12) So(e(X, ¥)) = S(c(X, 1)).

We Tave do(e(X, Y)) = [9h] & Ho(Top)($"~ ! — X, §"~*—Y); oh is homotopic
to the inclusion $"~!— X -+ 71 ¥ beeause N S™ 1 is regular neighbourhood
of X in $*1. Hence

(4.13) de(c(X, Y)) is the homotopy clags of the inclusion $"~! — X - §7=1_ Y,

Let M be a regular nejghbourhood of X x {0} in D"+, Choosea homeomorphism
G: D' J D" such that GILD*x {0} = id, GD"xIye Dy and G(XxJ) < M.
Then choose a regular neighbourhood N, of X in D" such that G(Ny xJ)= M and
a homeomorphism fiy: D"~ X - D"— ¥ such that ol D"—1ntN, = id, ForZ = X, Y,
we use (2.1) to represent

Uz € Lsot (D" ~Z x {0}, (D"'—2Z) x J)

by a homeomorphism e, such that e '|(D"—TInt Np) xJ = G|(D"~IntN,) xJ. Then
i @(c(X, Y)) = [H]iy, where H = 5 (hyx 1;)ey. By construction H|D"* 1 —Int M
= id. Thus

(@14) w{ (c(X, ¥)) = 0(c(iX, iY)) = qi(c(X, V).

Moreover, o.X is a subpolyhedron of .D"** which collapses simplicially to the
subpolyhedron ¢ ¥ of ¢.X; we have ¢(aX, 0 ¥) = gc(X, ¥). Choose regular neigh-~
bourhoods M of ¢ X in. D"** and N, of X in D" such that N, x (~1, 1) cfx(M—09D),
and choose a homeomorphism Ay: D" X— D"~ Y such that ho| D" ~IntN, = id.
Then nz'a(c()(, Y)) = [Gly, Wwhere G = fy Whgx 1(=1,1y) fx. By construction,
G D"l Int M == id, Thus ’

(4.15) 77 0(c(X, Y)) = o(oc(X, 1))

If also ¥ collapses to a subpolyhedron Z < Y, we have

(4.16) ¢(c(Y, Z)e(X, V) = o(c(¥, Z))o(c(X, Y)).

(N Yet X, ¥ be disjoint compact subpolyhedia of §"~' and ¢ e Si(X, Y).
We use [19] to find o sufficiently large k30 and a compact subpolyhedron P of
" UE collapsing both to X and # Y such that

@ e(P, FX) = (P, i V) ;
the pair (k, P) is said to be admissible for ¢. We write X resp. Y instead of i*X
resp. i* ¥ and define R(p, k, P) & (Isot/n,) (D"~ X, D"— Y to be the unique element

such that
(B R(p, ke, P) = 27 () (e(e(P, V))e(e(P, X))™Y).

Using (4.14), we obtain
“.17) R(p, k+1,1P) = R(p, k, P).

o o
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If Q is-a compact subpolyhedron of 71+ oollapsing to P, then (k, Q) is also
admissible, and (4.16) implies

4.18) R(p,k,P)= R(p, k, Q).

Consider admissible pairs (k, P) and (k, P') with “sufficiently large” k and
PAP = XuY. Letjy: X—P, jy: Y= P, jx: X—P' denote inclusions, ry: P Y,
ry: P'=Y denote collapsing maps. Then jyryjy & jyivjx o Jx via a homotopy
F: XxI-P'. Define G: (XU Y)xTuPx{0}—P' by GlXxI=F, G¥xI=jp
(with projection p: ¥xI-Y) and GIPx{0} = jyry. Use Borsuk’s homotopy
extension theorem to extend G to H: PxI—P'. Then g: P—P', g(x) = H(x, 1),
is a simple homotopy equivalence with g|.¥'U ¥ = id, and (for a sufficiently large k)
there exists a compact subpolyhedron @« §"~1** collapsing both to P and P’
(use again [19]).

Applying (4.18) we obtain

(4.19) R(p,k, P)= R(p, k, P’).

Finally, consider arbjtrary admissible pairs (k, P) and (&', P). Using (4.17)
we may assume k = %’ and that k is “sufficiently large”. A general position argument
yields a PL embedding f: P— 8" ***such that f| XU ¥ = id and f(P)nP = XU Y
= f(P)nP'. Then (k,f(P)) is admissible and (4.19) implies

(4.20) R(p,k,P)= R(p, k', P").

Hence, R(@, k, P) does not depend on the admissible pair (k, P), and we simply

write R(@).
The following propertics are immediate consequences of the definition.

(4.21) w*R(p) = 1;

(4.22) 9*R(p) = S(9);

(4.23) R(ip) = 71 R(¢);

(4.24) R(p™) = R(p)~*.

Let X, Y, Z be pairwise disjoint compact subpolyhedraof " and y € Si( Y, Z).
Choose admissible pairs (k, P,) for ¢ and (k, P,) for . For a sufficiently large k,
general position arguments allow to assume PynP, = Y. Then (k, P, UP,) is
admissible for ¢, ¥ and Y. This implies

(4.25) R@o) = RO R(p).

(Iil) Let X, Y be arbitrary compact subpolyhedea of S"! and ¢ & Si(X, Y).
Choose any ae Si(i¥, Y’), where Y’ is a suitable compact subpolyhedron of $*
such that Y' n(jXuiY) = @. Using (II), we can define

R(p; &) € (Isot/n ) (D"~ X, D"~ Y)

to be the unique element such that #}(p; @) = R(«"!) R(xip). Using (4.24) and (4.25)
one verifies that R(¢p; o) actually does not depend on the choice of & and that, in
case XnY =@, R(p;) = R(p). We therefore always write R(p) = R(¢;0).
Again (4.24) and (4.25) imply that R is a functor from Si* to (Isot/m,)* (with
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R(X) = D"~ X for X = 8"""). The following properties are immediate from the
definition.

(4.26) w* R(p) = 1 for each morphism ¢;

4.27) 9*R = S,

(4.28) Ri = 7% R.

Let X < S" 1 collapse to the subpolyhedron Y < X. Choose a PL embedding
fr XxI—=S8" such that f|Xx{0} =id. Define ¥' = f(¥Yx{1}), P =f(XxI)
and o = ¢(P, Y)e(P,i¥)"'. Then n¥R(c(X, Y)) = R(@™ ) R(xe(X, ¥)), and
straightforward computations using (4.16) and (4.17) show that the latter is equal to

2 (m)e(e(X, V) = wfa*(x)e(e(X, 1))
Hence

We know that dy € Si(oiX, igX) is represented by the restriction dy: giX —icX
of the rotation d: D"*2 - D"*2 considered in the proof of (3.2). Define

P = {(‘xi) vors Xy x,,.Hcost, X,,,HSillt)l (xln ey xn+1) € 6X= te [Os 7!/2]} .

Then P is a compact subpolybedron of $"*! collapsing both to ¢iX and icX;
‘moreover, it is casy to see that dyc¢(P, 0iX) = ¢(P, icX). (4.29) implies

(4.30) R(x) = A" (1) (Ypn-x) = ¥3n-x (cf. Proof of (3.3)).

Let X, Y be disjoint compact subpolyhedra of $"~* and ¢ € Si(X, Y). Choose
an admissible pair (k, P) for ¢. Then (oi*¢)c(aP, 6 X) = c(oP, o ¥). (4.29), (4.15)
and (4.28) imply that R(ci*p) = a3 R(¥p) = n5(zl)* R(p). Wsing (4.28) and (4.30)
we obtain (tN*R(cg) = R(*o¢) = (n})*n% R(p), i.e. R(sp) = n3 R(p). We easily
gencralize this to

(4.31) Ro = n}R.

‘We now know that R is an operator functor satisfying (R1) and (R2). (R3) follows
from, an obvious argument using [19] and [4.29].

5, S-duality. Let Pol be the full subcategory of Ho(Top) whose objects are
the compact polyhedra, and let Pol™ = i ; Pol| P($"~*). Then Pol* =(Pol*; i, 5; )
is an operator subcategory of TV,

(5.1) Tumornm (cf. [170). (a) There exists a unique contravariant operator functor
di Pol™ - (T'/X)" having the following properties:

(d1) d(X) = S*1~X for each object X &P(S"™")
(d2) If ux,y is the homotopy class of an inclusion X — Y, then d(ix,y) is the siable

homotopy class Ix,y of the inclusion Sl Y S X

(b) The functor d satisfies d| Si* = 8* R(op) where op: Si* - Sit is the “dualizing”
Junctor.

Proof. Let X, Y be compact subpolyhedra of 571 and « e Ho(Top)(X, Y).
There exist k 0, a compact subpolyhedron P < §"~'** containing X = *X and
@ €Si(P, Y) such that o = @iy p (choose a PL representative f: X— Y of a and


Artur


70 P. Mrozik

1

et P be the polyhedral mapping cylinder of f; suitably embedded in $"~** ". Define
d(e) € (Ho(Top)/Z)(S"™ '~ ¥, S" '~ X) to be the unique element such that
(Z*¥d(@) = Ix,p(0* R(p™")). Similarly as in the proof of (4.10) one checks that
d(a) does not depend on the choices of k, P, ¢ and that d is a contravariant operator
functor satisfying (dl), (d2) and (b). The uniqueness of d follows from (d2) and the
fact that for each « e Ho(Pol)(X, Y) there exists a k >0 such that i*a = f, .., §,8,
where each f§; € Ho(Pol)(X;, X,..;) is the homotopy class of cither an inclusion
or of a homotopy equivalence whose inverse is an inclusion.

The regular stabilizations of Pol*, &%, I* are
AF(3): Pol* > (PolE)* = ((Pol/E)* ; i*, o*; %) ,
ATE): 8Y (B0 = ((Sh/Z)*si*, 0*; 0%),
At(my, me): I = (Ifmy, m)t = ((Isot/ny, )" ; 75, mhs v%)

where (Pol/Z)* and (Sh/X)* are subcategories of the stable homotopy category
Ho(Top)/Z and the stable shape category Sh/Z. Moreover, if j: &i* —IsoPol™
denotes inclusion, then A(c) = (Is0A¥(Z)) o j: &i* —Tso(Pol/Z)* is a stabilization
of Gi* because double suspension makes everything simply connected. The stabilizing
construction yields operator functors

S*: Tso(Pol/2)* — Lso(S/2)",
9% (Bny, my)* - Is0(S/D)*F,
*: (Ffmy, ma)t (@D,
R*: Yso(Pol/2)* — (J/n,, m)* .

Observe that S* is a full embedding. Moreover,

(5.2) 9% R* = §*,

From (4.8) we obtain a functorial complement theorem in stable shape theory:

(5.3) Prorosrrion. 8% is a full functor.

(54) Turorem (cf. [17]). (a) There exists a unigue contravariant operalor functor
D: (Pol/2)* - (T'/2)* satisfying the following conditions:

(D1) D(X) = $*"'—X for each XeP(S*™Y).
(D2) If vy, y is the stable homotopy class of an inclusion X — ¥, then D(x,y) = Ix,y.

(b) The functor D satisfies D|Iso(Pol/Z)* = 8" R*op.

Proof. Let D be defined by DA*(X) = d. Then (D1), (D2) and (b) are satisfied.
Uniqueness follows from 5.1.

The functor D is the duality functor of Spanier and Whitehead [17] (the duality
property follows from (D1) and (D2)). Property (b) and (5.2) reflect the intimate
relationship between S-duality and the complement and category isomorphism
theorems in shape theory.

We conclude with
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(5.5) ToeoreM (cf. [11], [14]). Let X, Y = S" be compact. Then the Sfollowing are
equivalent.

(a) X and Y have the same stable shape (i.e. are isomorphic in the stable shape
category Bh/X).

(b) S"—X and S"—Y have the sume stable homotopy type.

(©) 8"~ X and S"—Y have the same stable shape.

Proof. The equivalence of (b) and (c) follows from (2.2): All suspensions
IXS"— X), Z¥(S™~ ¥) are homotopy equivalent to polyhedsa. By (5.3), (a) implies (b).
To show that (b) implies (a), one can use Lima’s extension of Spanier~Whitehead
duality: The functor D of (5.4) extends to a contravariant operator category iso-
morphism D: (&/2)" = (€S/E)" in which the operator category

€& = (CoSh; 1, X;id)

is based on the coshape category CoSh of finite-dimensional o-compact polyhedra.
The reader is urged to consult [11] or [14] (in [11], the shape and coshape construc-
tions are performed on the level of stable homotopy theory; cf. also [9)).
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Mapping approximate inverse systems of compacta
by

Sibe Marde3ié (Zagreb) ahd Jack Segal (Seattle)

‘ Abstract. Recently, T. Watahabe has extensively studied approximate mappings of mverse
systems of spaces f2 X-» Y. He showed if p: XX and g: ¥—Y are ANR-resolutions of topo-
logically complete spaces X, Y, then f X Y induces a mapping f3 X-> ¥ and conversely, every
mapping f: X-» ¥ is obtainable in this way. In this paper it is shown that the basic results of Wata-
nabe’s theory are valid also for approximate mappings of approximate inverse systems X, ¥ of
compact ANR’s and compact Hausdorff spaces X = limX, ¥ =limY. Approxunate systems,
newly introduced by 8. Mardc¥i¢ ad L. R. Rubin, have bonding maps pas, 4 < a’, where in general
PasazPazay differs from pujag, but in a controlled way.

1. Introduction. An inverse system of gpaces X = (X,

0> Paars A) (in the usual sense)
consists of a directed set (4, <), spaces X,, ae 4, and maps p,»: X,— X,, aga’,
such that p,, = id and

)
The (usual) inverse limit X = lim X is the subspace X < ITX,, which consists of all
points x = (x,) € I X, such that p,.(x,) = x,, a< a'. Projections p,: X X, are
restrictions to X of the projections m,: IIX,— X,, ae A.

A mapping of systems f: X = ¥ = (¥}, ¢y, B) consists of a function f B—-rA

and of mappings f,: Xpuy— ¥y, b B, such that whenever b, <b,, there exists an
index ae A, azjf(by), f(bs), such that

@

(sce, o.g., (8], I, § 1.1). It is well known that for any mapping of systems
= (f,fy): X Y there is a unique mapping /2 X~ ¥ of the limits X = lim X,

Y = lim ¥ such that

6)] JePswy = s

This mapping is called the imit of fand is denoted by f = lim f (see, e. 8., [8], I, § 5.1).

PaiaiParas = Payays @1 S 03 S 3.

SoPswine = Aoiba SsaPrioara

beB.

This paper was written' during the Summer and Autumn Quarters of 1987, whileJS’. MardeSié,
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