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A fixed point index for bimaps
by

Helga Schirmer (Ottawa)

Abstract. A bimap @: X—X is a continuous multifunction on a topological space X for
which the image of each point consists of either one or two points. Bimaps are the common special
cases of {1, n}-valued multifunctions and of symmetric product maps. A fixed point index for
bimaps on compact polyhedra is defined which has not only the properties of localization, additivity
and homotopy invariance, but also the property that an isolated fixed point of index zero can be
removed by an arbitrarily small deformation of the bimap. The definition and proofs use results
about homotopy groups of symmetric products of spheres and about fix-finite approximations of
bimaps and their homotopies.

1. Introduction. A bimap ¢: X — ¥ from a topological space X to a topological
space Y is a continnous (i.e. upper and lower semicontinuous) multifunction for
which the image or each point consists ot either one or two points, and a bihomotopy
is a bimap of the form &: X'x I [0, 1]. The aim of this paper is the introduction
of a fixed point index for a bimap ¢: X'— X which will be used to define a Nielsen
number N(p) so that N(p) is for many spaces a sharp lower bound for the least
number of fixed points in the bihomotopy class of ¢ [12].

Bimaps can be considered as the simplest multifunctions, and occur naturally
e.g. as ¢: D— D, where D = {ze C| |z] <1} is the disk in the complex plane and
¢(z) = /z. Bimaps generalize single-valued maps, and belong to two classes of
multifunctions for which a Nielsen number has been defined. The first class consists
of the {1, n}-valued multifunctions first studied by B. O’Neil [7]. The second class
consists of the multifunctions induced by symmetric product maps. We write X, for
the symmetric product space X"/S, which is defined as the orbit space of the n-fold
Cartesian product X” of a topological space X on which the symmetric group S, acts
by permuting its factors with the topology induced by the quotient map
¢ X" X,. A map (i.e. a single-valued continuous function) f: X' — X, is called
a symmetric product map, and a point x € X is a fixed point of the symmetric product
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map fif f(x) = q(z) implies that x is a coordinate of z. Fixed points of symmetric
product maps were first studied by C.N. Maxwell [6]. If # = 2, then f: X— X,
defines a bimap ¢: X— X by ¢ = nog™ ' of, where n: X?— X is the multivalued
projection 7((xy, x,)) = {x,, x,}, and ¢ also defines f. We say that ¢ is induced
by f, and that f is induced by ¢. If the fixed point set of ¢ is defined, as usual, by
Fixp = {xe X| xe ¢(x)}, then Fixg = Fixf, and hence the fixed point theories
of symmetric product maps f: X— X, and of bimaps ¢: X— X are equivalent.

A fixed point index for {1, n}-valued multifunctions was introduced by
Z. Dzedzej [2] and for symmetric product maps by S. Masih [5]. Hence two fixed
point index theories for bimaps exist. But neither Dzedzej nor Masih prove one
property which is crucial in Nielsen fixed point theory: they do not show that a fixed
point of index zero can be removed. Both Dzedzej and Masih define their fixed
point index with the help of homology theory, as is usually done in the classical case
of single-vaiued maps. But the proof of the removability of an isolated fixed point
of index zero tor maps uses the Hurewicz isomorphism H,(S") = r,(S") to homotope
the fixed point away, and it is not clear whether this proof can be adapted to either
{1, n}-valued multjfunctions or to symmetric product maps. Hence it is not clear
whether the Nielsen number N(f) for symmetric product maps defined by Masih
is actually a sharp lower bound (and not only a lower bound) for the number of
fixed points in the homotopy class of f. )

As we plan to define a Nielsen number N(p) for a bimap ¢ and prove that it
is a sharp lower bound for the number of fixed points in the bihomotopy class of ¢,
we introduce here a fixed point index for bimaps which permits the removal of fixed
points, of index zero. To do so, we use homotopy rather than homology groups,
and define the index of an isolated fixed point in R” with the help of the homo-
morphism 7, (")~ m,_ (S5~ ) induced by a bivector field near the fixed
point. This definition is a natural extension of the geometric idea which underlies
the definition of the fixed point index for single-valued maps. The fixed point index
for bimaps is still an integer, and equals twice the usual index in the special case
where the bimap is single-valued. The extension of the definition from bimaps
of R"to bimaps of compact polyhedra is modelled on [3], but we use methods from [8]
and [10] to prove the properties of the index, and exploit both the algebraic pro
perties of symmetric product maps and the geometric properties of bimaps in our
arguments.

The paper is organized as follows. In § 2 we give some necessary background
on m,(S3). Next we study, in § 3, fix-finite bimaps and fix-finite bihomotopies, where
abimap ¢: X~ Xis called fix-finite if its fixed pojnt set is finite, and a bihomotopy
@ = {p}: X— X is called fix-finite if ¢, is a fix-finite bimap for all 0 <¢< 1. The
results of § 3 are closely related to corresponding ones for fix-finite 7-valued multi-
functions and their fix-finite homotopies [9] (see also [I1]), and some proofs are
only sketched. These results are used in § 4, where the fixed point index for bimaps
is defined. This is done first for isolated fixed points in R, then extended additively
to finite fixed point sets in R", and finally to arbitrary fixed point sets on compact
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polyhedra with the help of retraction and fix-finite approximation. The fized point
index has the properties of localization, additivity and homotopy invariance
(Theorems 4.5-4.7). Finally, in § 5, we prove the removability of an isolated fixed
point of index zero on compact polyhedra (Theorem 5.3).

I wish to thank Professor Satya Deo of the University of Jammu, India, for
his help with the proofs in §2.

2. Some facts about homotopy groups of symmetric products on spheres. 'We
gather here some results concerning m,(S5) which are needed for the definition of the
fixed point index and the proofs of some of its properties. It follows from [4],
p. 539, (11.2) that S%T* is homeomorphic to a space obtained from the suspension
S(S2) by attaching a (2n+2)-cell. Hence a homomorphism

1
S;l: nn(.S;)*’wn-&-l(S;*- )

is defined by sending o = [f]em,(S3) to [i, o S(f)], where S(f): S(S™)~ S(S2)
is the suspension and 7,: S(S3)—S3+" the inclusion.

LEMMA 2.1. si: m(8%) ~ 7,4 1(S3+1) is an isomorphism for all n>1.

Proof. This follows immediately from the fact that i, : m(S(S3)) —»m(Sz")
is an isomorphism for all k<2rn—2([13], p. 402, Lemma 15).

We write id,: §"— 8" for the identity map, ¢,: §"—S" for a constant map
and g,: §"xS"— S} for the quotient map. Hence a homomorphism 7, 7,(S™) —
- 1,(S3) can be defined by 1, = ¢,, © (id, X ¢;) -

LeMMA 2.2. 1, (S —n,(S%) is an isomorphism for all nz1 ‘and
Hn = Qux O(Cn X I.dn)*'

Proof. As g, (id,xc,)(S") = I'; is a regular imbedding ([4], § 3) of S” we
see from [4], p. 528, (5.1) that H(S3 I ;Z) = 0for s<n+1. Hence H"(S7; Z)
~ HI'y; Z) ~ Z. and so [4], p. 522, (1.4) and the Hurewicz isomorphism theorem
show that 7, is an isomorphism. The fact that 5, = gy (¢, X id,), follows from
the commutativity of the diagram

: Snx Sn

tinx 0/ Nan
Su/ \l S

en x\i}n\ /
S"x% S

We now choose a generator e; of #,(S*) and let ¢, be the generator of 7,(S™)
given by s,_;(e,—1) = €,, where §,.: 7,—4(S""")~>x,(S") is the suspension iso-
morphism. If e, denotes the generator of =,(S3) given by n,(e,) = ey, then clearly
shalen_i) = e :

LemMA 2.3. If h: S"— 83 is a symmetric product map which factors a.
h=g,o(g,%g,) and if gy (e,) = dpe, for k=1,2, then h*(e,,) = (d,+d,)e},
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Proof. We have
ha(en) = Guu© (g1 % g2)n(en) = Gunldiny dae,)
= dy gue(en, 0V +d, 4,40, &)
= dy[qs o ({d, % c)i(e)]+ da[qum o (¢, x id)u(e,)] = (d) +dp)e; .

LemMa 2.4, Let h,: S"— S5 and byt S"*' = 853* be two symmetric product

maps such that the diagram
I3

n+ 1
n+ 1 m 1
AL P

SN i

S(S2)

is homotopy commutative. Then h,s(e,) = de, if and only if h,. 4(e,.,) = dej. ..
Proof. This follows easily from s,(e,) = e,., and sy(€}) = €} .,.

3. Fix-finite bimaps and fix-finite bihomotopies. It follows from [11], Theorem 1
that any bimap ¢: |K|—|K]| from a compact polyhedron to itself is homotopic to
a bimap ¢': |K|—|K]| which has a finite fixed point set. In order to define the fixed
point index of ¢ and to establish its properties, in particular its homotopy invariance,
we need a stronger form of this result which specifies the location of the fixed points
(Theorem 3.4), and an extension to bihomotopies which say that two fix-finite and
bihomotopic bimaps @q, ¢;: [K|—|&| with well located fixed points can be con-
nected by a bihomotopy {¢,}: |K|—|K| for which each ¢, is a fix-finite bimap with
well located fixed points (Theorem 3.5). The main tool in the construction of fix-
finite bimaps and bihomotopies is an extension of the Hopf construction for single-
valued maps [1], pp. 117-118 to our setting (Lemma 3.3).

We use o to denote the Hausdorff metric on the compact polyhedron |K| with
the barycentric metric, and d(¢,, ¢,) for the distance between two bimaps
@0, ©1: |K|—=|K]| in the sup metric given by

d(9o, ¢1) = SllP{Q(‘Po(x)’ (Pl(x))] xe|K[}.

Two bimaps ¢p, ¢1: 4—|K| are g-homotopic 1if there exists a bihomotopy
{p}: 4K} with d(e,, ) < & for all 5, ¢ & [0, 1]. Other notation and terminology
can be found in [9], § 3 and § 4 and [10], § 3 where corresponding results for n-valued
multifunctions are developed.

Lemma 3.1, Let |K| be a compact polyhedron and A < |K| a closed subset of |K|.
Given £> 0, there exists a 6> 0 such that any two bimaps ¢,, @, A—|K| with
d(po, ;) <6 are e-homotopic.

Proof. We write fy,f;: 4—|K| for the symmetric product maps induced
by @o and ¢, dy for the metric on |K|, defined in [6], p. 808, and d’ for the sup
metric

d(fo, £2) = sup{du(fo(x), ()| x € 4} .
It follows from [i], p. 40 that given &> 0 there exists a 6’>0 such that
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d'(fo, f1) < &' implies that f,,f;: A—|K|, are e-homotopic. Let { £;}: 4—|K], be
such an e-homotopy, and let § = 6'/./2. 1t is an easy consequence of the definitions
of ¢ and dy that g(@u(x), ¢4(x)) <& implies dy(fy(x),f1(3)) <6’ and that
Ay (fi(x), £i(x)) < & implies @(p.(x), ¢.(x))< &. Hence any two bimaps ¢o, ¢y: A—
— | K| with d(¢o, @) <0 induce two &-homotopic symmetric product maps f,,,f1: 4A—
|Kl;, and this ¢-homotopy in return defines an e-homotopy from ¢, to ;.

As in [9] and [11] we say that a bimap ¢: [K'| = |K"| is simplicial if, for every
closed simplex [g| of |K’|, the restriction ¢| |&| splits into two (not necessarily
distinct) maps f}, f, so that each f, maps || affinely onto a simplex |%;| of |K"'|.

LemMa 3.2. Let |K| be a compact polyhedron and ¢: |K|—|K| be a bimap.
Given ¢>0, there exist subdivisions |K'|, |K"| of |K| and a simplicial bimap
o K= |K"| with d{p, ¢") <e.

Proof. The fact that dy( fo(x), f1(x)) < & implies 0(po, ;) <& if @,, @y are
the bimaps induced by the symmetric product maps f,, f; shows that the proof
of [11], Lemma 1, case n = 2 can be used after |K| is replaced by a suitably fine
subdivision |K"|.

LEMMA 3.3 (Hopf construction). Let K' be a refinement of a finite simplicial
complex K, let ¢: |K'|—|K| be a simplicial bimap, and let ¢ be a p-dimensional
non-maximal simplex of K' with |6|nFixe = & and |o|nFixe # @. Then there
exists a simplicial bimap ¢ |Ki|—1K|, where L = K'—stg.0, such that

(1) all fixed points of ¢'| |KY| lie in |L|,

(i) @ = ¢ on |L],

(i) de. @) < 2u(X).

Proof. As ¢ is simplicial, ¢||G| = {f;,/f»} splits into two (not necessarily
distinct) maps f;: |6} —[T;|. To obtain ¢’ on the vertices of X;, we distinguish three
cases. ¢ <t means that the simplex o is a face of the simplex 7, and v(o) is the
barycenter of o.

Case 1. o||o] is single-valued, i.e. f, = f, and hence 7, = 1,. In this case we
modify ¢ by making a Hopf construction aralogous to the single-valued case [1],
p. 117. More precisely, we define ¢’ on the vertices of K; as follows: if v is a vertex
of L, we put ¢'(v) = ¢(v). If 6 <o, but ¢ 5 oy, we let ¢'(v(g;)) be any vertex of 74.
Finally we let ¢'(v(0)) be any vertex of tf —1,, where 7 is a maximal simplex of K,
containing a maximal simplex ¢* of K’ with o <o*.

Case 2. ¢llg] is (1,2)-valued, i.e. nejther single-valued nor 2-valued. As
there exists a point x € [g] with f{(x) = f,(x), we have 7; = 1,. We index the f; so
that f; has a fixed point on |o|. Hence (as in [I], p. 117) we have |5] <|%,|, and as
by assumption f,: |5|—|%;| has no fixed point on |¢|, it must have a fixed point
on |a] also. We now determine ¢’ on the vertices of Ky in the same way as in Case 1.

Case 3. ¢||o] is 2-valued, i.e. fi(x) % f5(x) for all xe|o|. Then t; # 7, as
the distinct affine maps f, map barycenters to barycenters. Again we index f; so
that f; has a fixed point on |a}, and hence we can determine, as in [1], p. 117, maximal
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simplexes o* of K’ and 7§ of K with o < ¢* and ¢* =17, Then we determine ¢’ on
the vertices of Kj, as follows: if v is a vertex of L, we put ¢'(t) = ¢ (®). If 0 <5,
but ¢ # o; we let ¢'(v(cy)) consist of the union of any vertex of v; and any vertex
of 7,. Finally we let ¢'(v(0)) consist of the union of any vertex of t{—1; and any
vertex of 7,.

We leave to the reader the laborious task of checking that ¢’ can be extended
from the vertices of |Kj| to a simplicial bimap ¢': |K7| —|K| which satisfies the
conditions (i), (ii) and (iii) of Lemma 3.3. The argument consists of a straightforward
extension of the one used in the single-valued case.

As in the single-valued case, i.e. as in the proof of [1], Theorem 2, p. 118-119,
Lemmas 3.1, 3.2 and 3.3 can be used to construct arbitrarily close fix-finite approxi-
mations with nicely located fixed points. More precisely we can obtain the following
result, which sharpens [11], Theorem 1 (iii) for n = 2.

TurorEM 3.4 (Fiz-finite approximation for bimaps). Let X be a compact poly-
hedron and @: X — X a bimap. Given &> 0, there exists a bimap y: X=X so that

Q@) ¥ has finitely many fixed points,

(ii) there exists a triangulation of X so that each fixed point of \ lies in a maximal
simplex,

(iil) ¥ is &-homotopic to ¢.

A combination of the techniques used in the proofs of Theorem 3.4 and [8],
Theorem 2 leads to the following extension of [10], Theorem 2.3 (case n = 2) which
we need in the next section. The fairly long and technical proof is omitted. By
a hyperface of a polyhedron |K| we mean, as in {10], p. 209, an open simplex ¢ so

=i

that & = ¢ n&", where ¢’ and ¢" are maximal simplexes of K.

THEOREM 3.5 (Fix-finite approximations for bihomotopies). Let | K| be a compact
polyhedron, let |K,| < |K| be a subpolyhedron and let ®: |K,| x I~ |K]| be a bihomo-
topy so that ¢, and ¢, are fix-finite and have all their fixed points located in maximal
simplexes of |K,|. Given e>0, there exists a bihomotopy ®': |K,|xI—|K| from
Qo = @y 10 @1 = ¢, so that

() @ is fix-finite,

(ii) the fixed points of each @y are located in maximal simplexes or in hyperfaces
of |Kyl,

(iii) Fix @' is a 1-dimensional compact polyhydron in |K,| x I sa that no edge lies
in a section |K|x{t} of [K,|xI,

@iv) d(®, &) <.

4. A fixed point index for bimaps. Our aim is to introduce a fixed point index
for bimaps of compact polyhedra. We start by considering simple cases to which
the general case will be reduced.

(a) The fixed point index of an isolated fixed point in R" (nz2), Let U be an
open subset of R", let ¢: U~ R" be a bimap and let a ¢ U be an isolated fixed point
of ¢. Let B < U be a closed ball centered at a with Fixg n B} = {a}, and let S, "
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be its boundary. If xe 871, then o (x) = {y, ¥} with x ¢ {y, ¥,} defines two
(not necessarily distinct) vectors Ux(x) = };} (for & = 1, 2), and hence a bimap yx
from S%~! to the unit sphere S"* in R" by

_ { u(x)  va(x) }
2 = =7, =
[o: ()l Jo2(0)
Let £: S2~1— 857! be the symmetric product map induced by . We use an orienta-
tion preserving homeomorphism to identify 7,_;(S"~*) with m,_ {(Ss~*) and choose
generators e,_, of 7, _(S" ) and ¢, _; of , (S5 *)asin§ 2. Then Au(e,— )= dejy
defines an integer d, and we define the fixed point index of ¢ at a by Ind(p, 4) = d.
It is clearly independent of the choice of S, *. We can think of d as the degree of
the symmetric product map h, and as the degree of the bivector field x. If we write
ind(f, @) for the index of the isolated fixed point a of the (single-valued) map
Jf: U~ R" as defined e.g. in [3], p. 11, then the following examples are an immediate
consequence of Lemma 2.3 and the definition of ind(f, a).
ExaMmPLE 4.1. Let ¢ = {f;,f2}: U— R"split into two (not necessarily distinct)
maps. Then
Ind(p, @) = ind(f;, @) +ind(fs, @) .

ExampLlE 42. Let ¢ = {f,f}: U-R" be single-valued. Then Ind(p,a)
= 2ind(f, a).

The next result will be used in the proof of Theorem 5.3.

THEOREM 4.3 (Restriction). Let U< R" and ¢: U—> R" be such that ¢(U) = R™
with m<n. If ae Un R™ is an isolated fixed point of ¢, then

Ind(ep, @) = Ind(p|lUnR", a).

Proof. It is sufficient to consider the case m = n~1. In this case, Theorem 4.3
follows immediately from Lemma 2.4.

(b) The index of a finite set of fixed points in R". Let again U be open in R
and let the bimap @: U — R" have a finite set of fixed points 4y, da, ..., @. We define
the fixed point index of ¢ on U additively by

Ind(p, U) =Y (Ind(p, a) j=1,2,...,k).

If Fix ¢ is contained in the interior of a ball B centered at a point ¢, then a map
h: BdB"— S5 (where Bd denotes the boundary) can be defined as in the definition
of the index of an isolated fixed point, and the homomorphism

Byt 7, ((BdBy) = m,— (837 !

determines again an integer d. It is an immediate consequence of the definition
of the index that

4.9 Ind(p, U) = d.
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We will use this fact in the proof of the homotopy invariance of the index (Theo-
rem 4.7). If FixonU = @, then we define Ind(p, U) = 0.

(¢) The fixed point index for compact polyhedra, fix-finite case. Now let
¢: X— X be a bimap of a compact polyhedron X = |K], let a be an isolated fixed
point of ¢ and let U be a neighborhood of a in X. We imbed X into RY (N3 2)
with inclusion i: X—RY, and let W be a neighborhood of i(X) in RY which has
a retraction r: W—X. Then io @ or: r~Y(U)—R" is a bimap with a as anisolated
fixed point, and we define the fixed point index of ¢ at a by

Ind(p, ) = Ind(ieqpor,a).

If ¢ is fix-finite on the open subset U < X, then the fixed point index of ¢ on U is
defined additively by

Ind(p, U) = Y, (Ind(¢, @)} a e Fixg).

It can be shown that the definition is independent of the choice of N, W, i and r,
but this fact is not needed here. If ¢ = f: U— X is single-valued, then it follows
from Example 4.2 that Ind(p, U) = 2ind(f, U), where ind(f, U) is the usual
fixed point index as defined e.g. in [3], p. 14.

(d) The fixed point index for compact polyhedra, general case. We proceed
in a way analogous to that in [10], § 4, but we can omit the smallness conditions
caused by the gap of n-valued multifunctions. We say that a triple (X, ¢, U) is
admissible if ¢: X — X is a bimap on a compact polyhedron X and U an open subset
of X with FixpgnBdU =@. If U= @, let &= inf{d(x, o)) xeBdU} >0
and use Theorem 3.4 to find a bimap ¢': X — X which is fix-finite, has all its fixed
points located in maximal simplexes of a triangulation of X and is /2-homotopic
to @. Thend(x, ¢'(x)) > O for all x € Bd U, and hence Ind(¢’, U) is defined. Therefore
we can define for any admissible triple (X, @, U) the fixed point index of ¢ on U by

Ind(p, U) = Ind(¢’, U) .

A proof that this definition is independent of the choice of ¢’ can be obtained
asin [10], § 4. Note that such a proof needs an extension of [10], Lemma. 3.2 to biho-
motopies which can easily be obtained by using Theorem 3.5 instead of [10],
Theorem 2.3 and generalizations of [8], Propositions 2 and 3 to bimaps. The generali-
zation of [8], Proposition 2 to bimaps is immediate from the definition of Ind(¢p, a).
To obtain [8], Proposition 3 for bimaps we can clearly asswme that |21 is so small
that x and all x; lie in the interior of a ball BY and then use (4.4). Again we define
Ind(p, @) = 0.

As in the case of -valued multifunctions we cannot prove commutativity of
the index, for the composite of two bimaps need not be a bimap. But we can establish
the other usual properties of the index with methods similar to those in [10], § 4.

TrEoREM 4.5 (Localization). Let (X, ¢, U) and (X, , U) be admissible and
@ (%) = Y (x) for all xe CLU. Then Ind(p, U) = Ind(y, U).
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Proof. As in [10], proof of Theorem 4.3, with &' = ",

THEOREM 4.6 (Additivity). Let (X, ¢, U) be admissible and Uy, U,, ..., U,
be mutually disjoint open subsets so that ¢ has no fixed points on

AUu-U@Wlj=12,..,3.
Then
Ind(p, U) = Y, (Ind(p, Up| j = 1,2, ..., ).

Proof. As in [10], proof of Theorem 4.4, omitting n < y(¢p).

TueoreM 4.7 (Homotopy invariance). Let ¢: XxI-X be a bihomotopy so
that (X, @, U) is admissible for all teI. Then Ind(g,, U) = Ind(ep,, U).

Proof. Similar to [10], proof of Theorem 4.5. As in the proof of the independence
of Ind(¢, U) from ¢" which was sketched above an extension of [10], Lemma 3.2
to bihomotopies has to be used.

From Theorems 4.6 and 4.7 we obtain two corollaries in the standard way-
(See [10], Corollaries 4.6 and 4.7, or [1], p. 53, Corollaries 1 and 2.)

CoROLLARY 4.8. If (X, ¢, U) is admissible and Ind(¢p, U) # 0, then ¢ has a
Jfixed point on U.

COROLLARY 4.9. If ¢: X — X is a bimap and Ind (@, X) # O, then every bimap
W X— X which is bihomotopic to ¢ has a fixed point.

We can also use Theorem 4.7 to obtain extensions or Examples 4.1 and 4.2.

Examprr 4.10. If ¢ = {f;,fo}: X X splits into two maps, then Ind(p, X) =
= ind(fy, X)+ind(f,, X). In particular, if ¢ = {f,f} is single-valued, then
Ind(p, X) = 2ind(f, X). .

Proof. We use the single-valued Hopf construction to homotope f;, for
k = 1,2, to a fix-finite map g;: X— X. If = {g,, g,}, then clearly  is bihomo-
topic to ¢, and hence by Theorem 4.7 Ind(p, X) = Ind(y, X). But

fopor={logyer,iogyor}
in the definition of Ind(@, X) part (c), and so Example 4.1 shows that

Ind(p, X) =) {Ind(Y, a)l aeFixy} =Y {Ind(i ) o7, a)| a e Fixy}

=Y {ind(iog or,a)+ind(iog, or, a)l aeFixy}
= ind(g;, X)+ind(g,, X) = ind(fy, X)+ind(f2, X) .

5. Removability of fixed points of index zero. The removal of an isolated fixed
point of index zero is crucial in Nielsen fixed point theory, and motivates our method
for defining a fixed point index for bimaps. To show removability, we first prove
a lemma which shows that it is only necessary to deal with fixed points at which the
bimap is 2-valued, so that the Splitting Lemma [9], Lemma 1 and removal in the
single-valued case can be used. The lemma is stated in a more general form than is
needed here, as it will be used again in [12] to unite two fixed points in the same fixed
point class.
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LemMMA 5.1, Let o be a maximal simplex of a compact polyhedron |K| and a e o
an isolated fixed point of a bimap ¢: |K|~|K| which is single-valued at a. Then
there exist, for any integers dy and d, with d +d, = Ind(¢, a), a neighborhood U
of a with Fix vClLU = {a} and a bimap : | K|~ |K| which is homotopic to ¢ relative
|K|~-U so that W|CLU = { f1,£,} splits into two maps, Fix f, = {a,} is an arbitrary
point of U, and ind(f;, a) = dy for k = 1,2,

Proof. Let ¢ be n-dimensional. We consider ¢ as a subset of R", write
B, = {xeR" |x—a/<r} and choose 0 <6< & so that ¢(By) = B,= B;, <0 and
Fix onB; = {a}. ¥ ¥ = {xe R"| 0 <|x|< 2¢} is a punctured n-ball, then a bimap
%o: BdB;—+Y can be defined by xo(x) = {x—y,, x—y,}, where o(x) = {y,,y,}.
Let g,: BdB;—BdB, be two maps of degree d,, let i: Bd B,—Y be the inclusion,
and let y,: BdB;—Y be the bimap given by xy = {ieg,.,iog,}. It follows from
Lemmas 2.1 and 2.3, Theorem 4.3 and the fact that ¥ is of the same homotopy type
as §""* and hence n,_,(¥,) ~ Z [4], (1.2) that y, and y, induce symmetric product
maps which are homotopic, and thus x, and y, are bihomotopic. Let 3,: BdB;— Y
be this bihomotopy.

We now define a bimap ¢,: B;— Bs, as follows. If x, € Cl(B;— By),) is the point
on the segment from @ to x; € BdB; with |x,—a] = s6 for 1/2<s< 1, we put
(Pl(xs) = {x_,—21, xs"zz}: where xz—ls(x) = {Zi7 zl}' Hence (PLIBdBJ/Z SplitS
into two maps {fi,f2}, say, and by coning f: Bd By, ~ B, from a, € Int By, we
obtain two maps f,: By, — By, with fixed point a,. We extend ¢, over By, as
@y = {f1,f2}. Then the bimap y: |K|-|K] given by

_Jodx) if xeB;,
¥ {(p(x) if xe|K|-B;
and the neighborhood U = Int B, have the desired properties if we can show that ¢
is homotopic to i relative |K|— By,.
To construct a suitable homotopy, let

V' (Bsx0)U(Bsx 1) (BdB,xI)—+ B,
be defined by
W, 1) = o(x) if (x,t)e (Byx0)u(BdBy;xI),
’ o(x) if (x,)eB;x1,
Then ¥’ induces a symmetric product map
H': (Byx0)u(Bsx YU (BAB;xI)Y—(B;,); -

As (By,), is contractible [4], (1.3), H' extends to a symmetric product map
H: B;xI—(By,);, and H induces a bihomotopy ¥: B;x I By, from ¢|B; to @4
relative to BdB;. Thus a bihomotopy & from ¢ to \ relative to [K|~ U can be
obtained by

V(x,t) if (x,£)eByxI,
@ (x) otherwise .

B(x, t) = {
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We state a corollary which strengthens Theorem 3.4 and will be used in [12].
Its proof is immediate from Theorem 3.4 and Lemma 5.1 with a; # a5.

COROLLARY 5.2. Let X be a compact polyhedron and ¢: X — X a bimap. Then ¢ is
homotopic to a bimap i1 XX so that

(i) ¥ has finitely many fixed points,

(ii) there exists a triangulation of X so that each fixed point of Y lies in a maximal
simplex,

(iii) ¥ is 2-valued at each of its fixed points.

Finally we prove removability. ‘

TreorEM 5.3 (Removability). Let |o| be @ maximal simplex of a compact poly-
hedron |K| and a an isolated fixed point of index zero of the bimap ¢: |K|—|K]|.
Then there exist a neighborhood U of a in |o| with Fixo nClU = {a} and a bimap
Y2 |K| = |K| homotopic to ¢ rélative |K|—U which is fixed point free on Cl1U.

Proof. We can assume that ¢ is 2-valued at a, for we can otherwise use
Lemma 5.1 with d; = d, = 0 to homotope ¢ relative [K|—V for some V <|o|
to a bimap which has two isolated fixed points of index zero on V. If ¢ is 2-valued
at a, then it follows from the fact that the set of points at which ¢ is 2-valued is
open that we can select a Euclidean neighborhood U of a with ClU < |g] so that ¢
is 2-valued on ClU and Fixg nClU = {a}. Thus ¢|CLU = {g,, g,} splits into two
maps g;: ClU—|K| ([8], Lemma 1) and we index the g, so that g,(@) = aand g, is
fixed point free. By definition of the fixed point index and Example 4.1 we have

Ind(p, @) = Ind(icpor,r (V)
= ind(iogy or, r HU))+ind(io gy »r,r ~H(V)),

and so Ind(e, a) = 0 implies ind(io g, o r, r~(U)) = ind(g,, @) = 0.

We can now use standard methods to homotope g, relative BdU to a fixed
point free map (see e.g. [1], p. 123 Theorem 4, or [3], p. 12), and thus obtain a bimap
which satisfies Theorem 5.3.
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Imbeddings in R*" of m-dimensional compacta with dim(X'x X)<2m
by

Stanislaw Spiez (Warszawa)

Abstract. In this note we give a sufficient condition for two maps from compacta into balls
to be transversely trivial. As a corollary we conclude that any m-dimensional compactum X
with dim(Xx X)<2m admits a dense set of imbeddings into R¥® provided m>3.

Introduction. Recall that a mapping f from a space X into the p-dimensional
cube I?, I = [—1, 1], is said to be inessential (in the sense of Alexandrov—Hopf)
if there exisis a mapping g: X— 0I° (8I° denotes the boundary of I?) such that
g(x) = f(x) for each x e f~*(3I"). Two maps f: X—1I" and g: Y —I* are said to
be transversely trivial (see [Kr], compare also [K~L], Problem (2)) if there exist two
mappings F: X—I"xI? and G: Y—~I°xI® satisfying the following conditions:

() FIfH@r%) = (f,0\f~*(@r"),

(i) Glg™*(aI% = (0, g)lg~*(a1*),

(iii) F(X)nG(Y) = O.

In this note we prove the following:

THEOREM. Let X and Y be compacta with dim(X) = p and dim(¥) = ¢.
Suppose f: X->IF and g: Y—1° are mappings such that fxg: Xx Y- xI? is
inessential. If p>3, q=2 then f, g are transversely trivial.

This result gives a positive partial answer to Problem (2) in [K~L].

In [M=R] D. McCullough and L. R. Rubin proved the following interesting
result: for each m>2 there exists an m-dimensional continuum X such that the
space E(X, R*™) of imbeddings from X into R*>" is dense in the space C(X, R*™)
of continuous maps from X into R*". They asked whether this property is related
to the phenomenon of m-dimensional compacta whose squares have dimension
less than 2m.

J. Krasinkiewicz (see [Kr]) proved vhat if E(X, R*™) is dense in C(X , R*™)
then dim(Xx X)<2m for any m-dimensional compactum X, and he asked
whether the converse is true.

A consequence of Theorem (2.2) in [Kr] and our theorem is the following:

COROLLARY. If X is an m-dimensional compactum, m = 3, with dim(X x X) < 2m
then the space E(X, R*™) is dense in C(X, R*™).
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