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Imbeddings in R*" of m-dimensional compacta with dim(X'x X)<2m
by

Stanislaw Spiez (Warszawa)

Abstract. In this note we give a sufficient condition for two maps from compacta into balls
to be transversely trivial. As a corollary we conclude that any m-dimensional compactum X
with dim(Xx X)<2m admits a dense set of imbeddings into R¥® provided m>3.

Introduction. Recall that a mapping f from a space X into the p-dimensional
cube I?, I = [—1, 1], is said to be inessential (in the sense of Alexandrov—Hopf)
if there exisis a mapping g: X— 0I° (8I° denotes the boundary of I?) such that
g(x) = f(x) for each x e f~*(3I"). Two maps f: X—1I" and g: Y —I* are said to
be transversely trivial (see [Kr], compare also [K~L], Problem (2)) if there exist two
mappings F: X—I"xI? and G: Y—~I°xI® satisfying the following conditions:

() FIfH@r%) = (f,0\f~*(@r"),

(i) Glg™*(aI% = (0, g)lg~*(a1*),

(iii) F(X)nG(Y) = O.

In this note we prove the following:

THEOREM. Let X and Y be compacta with dim(X) = p and dim(¥) = ¢.
Suppose f: X->IF and g: Y—1° are mappings such that fxg: Xx Y- xI? is
inessential. If p>3, q=2 then f, g are transversely trivial.

This result gives a positive partial answer to Problem (2) in [K~L].

In [M=R] D. McCullough and L. R. Rubin proved the following interesting
result: for each m>2 there exists an m-dimensional continuum X such that the
space E(X, R*™) of imbeddings from X into R*>" is dense in the space C(X, R*™)
of continuous maps from X into R*". They asked whether this property is related
to the phenomenon of m-dimensional compacta whose squares have dimension
less than 2m.

J. Krasinkiewicz (see [Kr]) proved vhat if E(X, R*™) is dense in C(X , R*™)
then dim(Xx X)<2m for any m-dimensional compactum X, and he asked
whether the converse is true.

A consequence of Theorem (2.2) in [Kr] and our theorem is the following:

COROLLARY. If X is an m-dimensional compactum, m = 3, with dim(X x X) < 2m
then the space E(X, R*™) is dense in C(X, R*™).
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Thus the well-known examples of m-dimensional continua X with
dim(¥ x X) <2m (which can be very easily constructed using the Boltyanski’s
Example, see [Bo]) satisfy the conclusion of the theorem in [M-R] provided m > 3.
The property E(X, R*™) is dense in C(X, R®") is equivalent to the property
dim(X x X) <2m for any m-dimensional compactum, m # 2. The case m = 2
is open. (Added in proof: see note at the end of the paper.)

1. Intersection cocycle. We choose once and for all an orientation in ™. Let c and
¢ be p-dimensional and respectively g-dimensional singular chains in R™ The
intersection number cnc’ of ¢ and ¢’ is defined classically (sce [S-T]) whencver
Carr(c) N Carr(d¢’) = & = Carr(9c) " Carr(¢') and p+g = m. The following pro-
perties of the intersection number are well known:

cac = (-1 ne,
@ ac = (—Dfen(dc),

An oriented p-cell o is a p-cell |o| together with a homeomorphism 7, of the
standard p-simplex 4, onto |a|. If is a continuous map of |a] in R™, we shall denote
by f(6) the singular p-simplex f o #,: 4, - R™. For a p-dimensional chain ¢ = In,o;
and a continuous map fin R™ defined on the carrier of ¢ by f(¢) we denote the singular
p-chain Zn, f(0;).

Let (K, K;) and (L, Lo) be pairs of simplicial complexes and let f: |K| - R"
and g: |L]— R™ be continuous maps such that

@ FUEDNg(Lo)) = @ = f(KD g (L], )

Gi) f(lo]yng(lc)) = & whenever o is a p-dimensional simplex of X, = is
a g-dimensiopal simplex of L and p+¢g<m.

One can define an m-cochain c(f, g) in (K, Ky) x (L, Lo) w1th mtegral coeffi-
cients by the formula

ptg=m,
ptrg=m+l1.

e(f, 9)(ox1) = (-1 f (@) Ag(7)
where ¢ is an (oriented) p-simplex of K and t is an oriented g-simplex of L and
ptqg=m )

Here we consider the group of (relative) n-cochains in (K, Ko} x (L, L) as
the subgroup of C"(K x L) consisting of those cochains that vanish on every oriented
n-cell o x1 of (Kx Ly) U (Ky x L). In the same way as in [Sh] or [Wu], we shall prove
the following lemma:

(1.1) LeMMA. The cochain c(f, g) is a cocycle in (X, Ko) % (L, Lp).

Proof. Let ¢ be a p-simplex of X and let v be a g-simplex of L.

If p+¢g = m+1 then

Se(f, 9)(o %) = e([, 9)(0(o x 7)) = e(f, 9)(@o x 1) +(=1)’e(f, g)(o % &)
= (=1)*f (@) Ag @)+ (= 1**71 £ (o) Ag (37)
= (=D f(0) Ag @) +(= 1P fo) Ag(ar) = 0.
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The cocycle ¢(f, g) we shall call the intersection cocyele of fand g with respect
to (X, Ky) and (L, L,). The cohomology class

[e(f.9)] € H™((K, Ko} x (L, Ly))

we shall call the intersection cohomology class of f, g with respect to (K, Ky), (L, Lyo).

Remark. One can see that the above definition agrees with the following one.
Let (X, 4) and (Y, B) be pairs. of compacta. Suppose f: X — R™ and g: Y- R"
are continuous maps such that f(X)ng(B) = & = f(4)ng(Y). Consider the
map
d: (X, A)x (Y, B)—(R™, R™\0)

given by d(x, y) = f(x)~g(y). Now we define the intersection cohomology class
of fand g with respect to (X, 4) and (¥, B) as the image H™(d)(e) of the generator e of
H™(R", R"™\0) (induced by the orientation of R™) by the homomorphism

H™(d): H™(R", R™\0) - H*((X, 4) x (¥, B)) .

2. Some lemmas. In this section we apply some techniques developed in [Sh]
and [Wu] to prove the main Lemma (2.4). Let M be an m-dimensional oriented
PL-manifold (with boundary or without boundary). Let P and O be two connected
oriented transversal PL-submanifolds of M with dimP+dim Q= m. If ae P Q
one can define the index e(a) = +1 of intersection of submangf'al:b P,QinMata
(see [R-S]).

Suppose T is a closed subpolyhedron of Af with dimension

dim7<dimgQ .

Suppose that a, be PN Q, ¢(a) = —e(b) and that there are two PL-arcs o < IntP,
B<sIntQ joining @ and b, and such that (uf)cIntM\T and (an Q)
= fnP = {a, b}. Checking the proof of the Whitney Lemma in [R-S], one can
obtain the following version of the Whitney Lemma which allows us to reduce the
intersection points a, b.

. (2.1) LemMA. Suppose that iimP >3, dim Q> 2 and n,(M\P) = 0. Then there
are an arbitrarily small neighborhood (a ball of dimension dimP) B of the PL-arc «
in P and a PL-imbedding h: P— M such that

(@) A(x) = x for each x e P\B,

@) ABNTUQUBIM) =&

Now we consider two pairs (K, K,), (L, L) of finite simplicial complexes with
dimK = p, dimL = ¢, p+g = m, and two PL-mappings f: |K|- M, g: |L| > M,
where M is an m-dimensional PL-manifold. We say that f; g are in general position
with respect to (K, K;) and (L, L,) if the following conditions are satisfied:

(G f(IKD g (L) = B = f (1Kol g (IL]),

(G2) F71(@M) < |K,| and g~ (0M) < |Ly|,

(G3) F(IKNNg(S(@) = B = g(LDf(S(S)).
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(G4) dim(S(/NIKol) < max(p—g¢, — 1), dim(SONILol) < max(g—p, —1),

(G5) f1 o] and ¢| |7| are PL-imbeddings and f(|0o)\0M # @ for any simplex
o of K\K, and for any simplex © of LN\Ly,

(G6) f(lal)and g (|7]) are transversal for any simplex o of KE\K, and apy simplex <
of INLy.

Here by S(f) and S(g) we denote the singular sets of f and g respectively,
i.e. S(f) =cl{xe|K|| f*f(x) +* x} and S(g) = cl{ye|L|] g7 'g(») 5= y} Letus
recall that (G6) implies that if dimo+dimz < m then f(|¢]) ng (ie}) = &.1f dime = p
and dimr = g then the intersection £ (jo]) ng (|z]) consists of a finite number of points
(contained in Intf(jo])nIntg(jz))nIntM) and for any point @ of Sel)ng (=)
there are neighborhoods Uy, U,, Us of a in f(lo}), g(Itl), M, respectively, such that
the triple (U, Uy, Us) is PL-homeomorphic to some neighborhood of the origin
in the triple (R?x0,0x R% R’ x R9.

Now let (K, Ky), (L, L) be pairs of finite simplicial complexes with dim K = p >2
and dimL = g3 2. Suppose f: |K|— R™ and g: |L| > R", m = p+gq, are PL-map-
pings in general position with respect to (X, Ky), (L, Lo). There exist subdivisions
(X', Kb) of (K, K,) and (L', Ly) of (L, Lo) such that f| |¢’| and g| |7'| are linear for
any simplexes o’ of K’ and 7’ of L'

Now suppose ¢ is a p-simplex (respectively (p—1)-simplex) of K\K; and 7 is
a (g-1)-simplex (respectively g-simplex) of IN\Ly. We take a simplex ¢’ of K’ with
|o'| € o] and dimo’ = dimo, and a simplex ¢’ of L’ with |7'| 7| and dimz’ = dim.
There exist points x e Int|o’|\S(f) and y € Int|7'|\S(g), and such that f(x) ¢ g (L))
and g(3) ¢ £ ({K]). By the General Position Theorem there is a PL-arc o in R™ arbi-
trarily close to the straight line segment £ (x), g () such that xn(f (KD ug(Ll)
= {f(x),9(»)}. Inasimilar way as in [Sh] or in [Wu] (by the tube construction near a,
see [R-S], p. 67) one can prove the following lemma (compare Lemma (7.3)
in [Sh] or [Wu], p. 234). .
there is a PL-mapping f': |K|— R™ (respectively g': |\L| - R™) such that

(2) f' and g (resp. f and ') are in general position with respect to (K, Ky), (L, Lo),

(b) f differs from f (resp. g’ differs from g) only on an arbitrarily small ball B
which is a closed neighborhood of x in Int|o’| (resp. of y in Int|t']),

) c(f',g) (resp. c(f,g") is equal to c(f, g)+ 20Xy

Here for any oriented simplexes o of K\K, and ¢ of INL, the cocycle X, is
given by the formulas:

Xa.t(a'x 7) =1
and
Xos@xT) =0 if 18] # lo] or [2] # Ial.

(2.3) Remark. Suppose' additionally f(K)sI", g(LDsI” and
Frerm < K|, g7 (@I™ < |Ly|. Then the segment f(x),g(y) is contained in
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IntI™, so we may take U in IntI™ Thus in Lemma (2.2) we may then additionally
require that the image of f” (resp. ¢') is contained in I™, and (f/)~*(AI™) < |K,|
(resp. (g')”1(3I™) = | Lo)).

Now we are ready to prove the main lemma of this section.

(2.4) Lemma. Let (K, Ky), (L, Lo) be pairs of finite simplicial complexes with
dimK = p>3,dimL = ¢ > 2. Suppose f: |K|»I™andg: |L| ~»I™are PL-mappings
in general position with respect to (K, Ko), (L, Lo), and m = p-+q. If [c(f, )} = 0
then there are PL-mappings f': |K|=1I™, g’: |L| - I™ with disjoint images and such
that

@ £ 1 1Kol = 711Ko| and g'[|Lo| = g || Lo,

() (f)7HAI™) =Kyl and (¢') (O™ S |Lo| .

Proof. Since [¢(f,g)] =0, there is an (m—1)-dimensional cochain z in
(K, Kp)x (L, Ly) with 6z = ¢(f,g). Then

r
zZ= }1: lil«n,n

where 1; = +£1 and o;, 7, are simplexes of K\K, and L\L,, respectively, with
dimo;+dimt; = p+g~-1. Thus

C(f, g) = 21:315}&:4,1« .

By applying Lemma (2.2) r times (see also Remark (2.3)) one can obtain two
PL-mappings f,: |K|-I™, g,: |L|—I™ in general position with respect to (K, Kj),
(L, L,) such that

Sl 1Kol =f11Kol, 8. 11Lol = g | |Lo| e(fr9) =0.

We know that f,(lo]) ng,.(|z]) = @ for any two simplexes ¢ of K and ¢ of L with
dimo +dimz < m. Let us consider now a p-simplex ¢ of K\K, and a g-simplex ©
of INLq. Then P = fi(|o|) and Q = g,(j7|) are transversal oriented PL-submanifolds
of I"™ with dimensions p and g, respectively, and ,(I™\P) = 0. The intersection P n Q
consists of a finite number of points contained in IntPnIntQnI™ The equality
c(f,g.) = 0 implies £,(¢) Ag,(z) = 0. Thus P Q has an even number of points, say

- b}

with e(a;) = —&(b;) for each i = 1, ..., 5. By (G3) the set P Q is disjoint from the
set W = fi((K[\Int|o]) Ug,(|L|\Int|z]). By (G4) we obtain

and

PnQ={ay,..,a,by,..

dim( (K [\Int|e}) nIntP) < dim{S(£)N|Ko|) < max(p—gq, —1).
By (G6) and (G1) it follows that the intersection of g,{|L|\Int|t]) and IntP is a finite
set. Thus
dim(WnIntP) < max(p—gq,0) <p-2.

2 — Fundamenta Mathematicae 134/2
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Similarly,
dim (W nInt-Q) < max(g~p, 0) < g2

Thus by the General Position Theorem there exist a family oy, ..., o of pairwise
disjoint arcs in IntP\W and a family f;, ..., f of pairwise disjoint arcs in Int O\W
such that o;; and f; have the end points a;, b;and 6, Q = pinP = {al, b;} for each
i=1,..,s Since IntPnIntQcIntI™ it follows that (¢;uf;) is contained in
IntI™\W for each i.

Now by Lemma (2.1) there exist a family By, .., By of pairwise disjoint
p-dimensional balls in Int P\W and a PL-imbedding A: P—I" differing only from
the inclusion of P into I™ on the set B = B, u..,u B, and such that #(B) is disjoint
from g,(JL)vdI" (take T = g,(|L\Int|z])).

" We define a map f,: |K|—I" by the formulas

£l =) if  x¢|KNnt|o]
and
£l = hofx) if

It follows that f; (|o]) and g,(lz[) are disjoint. Let us also observe that f and g,
are in general position with respect to (K, Ky), (L, L,) and I Kol = f, | K| and
e( £, g, = 0. By applying the same procedure to other pairs ¢’ and 7', where ¢’ is
a p-simplex of K\K, and 7’ is a ¢- -simplex of INL,, we can get finally
amap f': |K|—1I" such that f* and g, have disjoint images, f* and g, are in general
position with respect to (K, Kp), (L Ly), and /' | |1K,| = fi |Kol. Then f and ¢’ = g,
are the desired maps. = ) :

xelo|.

3. Transversely trivial maps. The proof of the following lemma is standard.

(3.1) Lemma. Let f: (X, A)—{I", 1%, g: (¥, B)y~(I",0I") be mappings of
pairs of compacta such that the homomorphism H™(fxg) of the relative cohomology
groups is trivigl, m = p+g. Then there are two pairs of simplicial complexes (K, Ko),
(L, Ly) with dimK < dim X, dimL<dim Y and there are factorizations

Q) (¥, A5 (k1 lKol)*(I” oy,

@) (% BS L, 1L S @, ar
such that f' o o and g’ <\ are homotopic (as maps of pairs) to f and g, respectively,
and the homomorphism H™(f' xg") of the relative cohomology groups is trivial.

Now we are ready to prove the following theorem.

(3.2) TueoreM. Let X, Y be compacta with dim X = p and dim ¥ = ¢, Let
fr X andg: Y- 1% be maps such that fx g is inessential. If p 2 2, g = 2 thenf, g are
transversely trivial.

Proof.. Let 4.=f~!(0I") and B = g~ '(0rI%). Since fixg: Xx ¥—I'xI* is
inessential, the map

Fxg: (X, A)x (Y, By~ (1%, o7 x (1%, o1
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induces the trivial homomorphism H™(fxg) of the relative cohomology groups,
where m = p+¢. Now we consider factorizations (i) and (ii) satisfying the conditions
of Lemma (3.1). Recall that dimK < p and dimL < ¢g. We may additionally assume
that f/, ¢’ are linear on each simplex of K and L, respectively, and that 0 ¢ f'(lo])
for any (p—1)-simplex ¢ of K and that 0 ¢g'(Jt]) for any (g—1)-simplex  of L.
By iy: F—~1"x1? and i: I'>I"xI? we denote the inclusions defined by
i,(x) = (x, 0) and 7,(y) = (0, ). Let us observe that for any » > O there are maps
PARNY (iad &y

and g”: |L{-I"™

such that

(a) f and g” are in general position with respect to (K|, |Kyl), (LI, [Lol),
additionally they are linear on each simplex of K and I, respectively, and
(f")7HEI™) = Ko, (9") @™ = |Lol,

(b) f is n-close to iy of" and g’ is #y-close to i, og".

Let |oyf, ..., |0y be all p-simplexes of K with the images by f* covering the
point 0 of I and let |7,], ..., |1, be all g-simplexes of L with the images by g’ covering
the point 0 of I. Let us assume that the orientation of each ¢; is coberent (by the
map f') with the orientation on I”, and that the orientation on each 7; is coherent
(by the map g’). with the orientation on I%. If 4 is sufficiently small then f "(lO‘:D and
and g”(|z;|) meet transversely and

fe)ag’@w) =1 TN A °9’(Tj) =1

for each i and j, and also f"’([cr!) ng''(jt)) = @ for any two simplexes o of K and <

of L such that || ¢ {|oy], -, o} or |t] ¢ {Izsl, ..., [wl}. Thus the cocycle of inter-

section ¢(f”,¢'") is given by i
e(f, g oxy=1 if
e(f",g")oxt)y =0 if

and e(ty of', 09 = c(f",9").

On the other hand (by the Kiinneth Formula), we have
H™(f xg')(e) = HY(f)(er) ® H(9)(es)

where e;, e, and e are the generators of H'(I®, oIF), H(I% oI*) and H™(I™,0I™),
tespectively, induced by the orientations of I?, I and I™ = I? x I* (here we idd_antify
the groups H(K|, |K) ® HYL|, [Lol) and H™((K|, |Ko]) % (IL], |Lol)) by the
natural isomorphism). Observe that

, o) and 1€ {1y, ... ;} ,

]0" ¢ {Ia'lI: ey ]Ukl} OI' Tl ¢ {lrll ERATE] ln'}

oce{og, ...

Sk
HY(f)(ey) = [; %l

HYG) ) = [Z 2]
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where x is the p-cochain of (K, K,) given by

o) =1 and x'(@) =0 if |o] & |o}]
and yj is the g-cochain of (L, Lo) given by
Gy =1 and i@ =0 if |7 # |t

Thus
k1
H™f'xg')e) = Zj ,Z: ©CA1® kgD = [e(S 9.

Since H™(f"xg') is trivial, it follows that [¢(f",9')] = 0.

Because f” and g' are in general position with respect to (K, K,), (L, L,)
in I™, thus by Lemma (2.4), there exist PL-mappings f: |K|—»1™and §: |L| 1™
with disjoint images and such that

FlK] =" 11Kl,  §11Lol = g” | Lol

and
(F)71EI™) = 1Kol , (@)™ = |Ly| .

Now we are going to modify (in a standard way) the maps fo @ and § o ¢ in
order to get maps f* and g* with disjojnt images and such that f* coincides with
1, o fon 4 and g* coincides with i, o g on B, We may assume (it is enough to take
n<1/2) that

f(K)solFx D'  and

where D = (—1,3) and D' = (-4, D)%
Since

9"(Lo)) = D* xa1*,

JUKDA@Px81% =@ and  GOL)N@IPxID) = &,
it follows that there are open neighborhoods ¥ of 4IF in I” and W of 8I* in I such
that

FUEDN@Px W) =0 and
Observe that

GULNN (VI = .

Topd) s f(Kol) s V% DT,

FoyB=g"(L)s DPxW.
There are closed neighborhoods 4’ of 4 in X and B’ of B in Y such that
Joo(A)sVxD' and Foy(BYS D*xW.

We may assume (we take n sufficiently small) that fo ¢|4 is homotopic to
Iy of|4 in @I"x D% By the Borsuk Homotopy Extension Theorem there exists
a map f: 4’ - ¥x D? such that

flA=iof|l4 and J|Bdryzd' = Joq|Bdrycd’.
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Similarly, there exists a map §: B'— D? x W such that
§lB =iog|B and §|BdryyB = §oy|Bdry,B .
Now we define maps f*: X—I™ and g*: Y—-I™ by the formulas:
A4 =F14 and  fHANL) = o pl(X\4),
g*|B' = g|B' and g*|(Y\B) = §oy|(\B).

Then f* and g* are well defined continuous maps such that f*|4 =i, -f]4 and
g*|B = iy o g|B. If we take ¥ and W sufficiently small (i.e. such that the intersection
of the sets ¥'x D and D” x W is empty) then f* and g* have disjoint images. Thus f
and g are transversely trivial.

Let us note that it was proved in [Kr] (compare also [K-L]) that if f; X —I®,
g: Y—1% are transversely trivial then fxg: X x ¥Y—IPxI? is inessential.

4. Imbeddings inte R?™. Suppose X is an m-dimensional compactum with
dim(X x X) < 2m, where m>3. If f: X—I", g: X—]™ are apy continuous maps,
then the map fxg: X'x X—I™xI™ is inessential, thus by Theorem (3.2) f and g
are transversely trivial. Now it follows by Theorem (2.2) [Kr] that E(X, R?™) is
dense in C(X, R®). Thus we have:

(4.1) Tueorem. If X is an m-dimensional compactum with dim(X'x X) <2m
and m> 3, then E(X, R*™) is dense in C(X, R®™).

For the sake of completeness let us give a sketch of the proof of Theorem (4.1).
In fact, we sketch the proof of a particular case of Lemma (2.1) in [Kr] and applying
Theorem (3.2) we get Theorem (4.1).

It is enough to prove that the set of ¢-mappings from X into R®™ is dense in
C(X, R®™). Let f: X — R*™™ be any continuous map. It is well known that for any
& > 0 there is an m-dimensional finite complex K, an ¢-map ¢: X—|K]| and a map
g: |K|-» R*" such that g o ¢ is §-close to f. We may also assume that g is linear on
each simplex of K, the images by g of vertices of K are in general position in R*™
(so the simplexes g (|a]), g(|z|) are transversal in R** for any two simplexes ¢ of K, 7
of L with |o]n|t] = @) and ¢ has oniy double critical values (i.e. the set g ~*g(x)
contains at most two points for each x e |K|).

The set C = {g(»)] x € |K] and g™ *g(x) is not a point} of critical values of g
is finite, say C = {y,. ..., ¥,}. For each i = 1, ..., 5, there are exactly two simplexes
o}, 7; of K such that the simplexes s; = g(la}]), t; = g(l7;]) intersect transversely at
the point y;. For each i, there exists an arbitrarily small closed neighborhood U;
of y; in R*™ such that the triple (U;, U;ns;, U;nt) is PL-homeomorphic to
(I"x I", I"x0,0xI™) and such that U;ng(|K|) = U;n(s,ut;). Let us consider
A;=(g°0)"HU;ns) and B, = (g ¢)"Y(Uint). If UJs are sufficiently small
then diam(4;)<e and diam(B)<e¢ and U;s are pairwise disjoint. Since
dim(A4;x B;) < 2m, thus by Theorem (3.2) the maps

geold;r 4;->U;ns; and  go|B;: Bi»Uint;
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are transversely trivial. So we can find a continuous map f': X - R*" differing from
g ° @ on pairwise disjoint sets 4;, ..., 4, By, ..., By and such that

FAYuf(BysU, and fd)nf(B)=0
Thus f' is an ¢-mapping. Since U, can be chosen arbitrarily small, J' can be chosen
arbitrarily close to g o ¢ and so to f.

Comments. Suppose M is an m-dimensional oriented PL-manifold (with a
chosen orientation). Let (X, ), (Y, B) be pairs of compacta and let f: X~ M,
g: Y- M be continuous maps with

F(X)ng(B) = @ = f(4)ng(Y).

Then one can define a cohomology class of intersection [c(f,g)] (an clement of
H™((X, 4)x(Y, B))) of the maps f, g with respect to (X, 4), (¥, B). We say that f, g
are transversely trivial with respect to (X, A), (Y, B) if there are homotopies
F: Xx[0,1]-» M and G: Yx[0,1]— M such that

FXx[0,1)nG(Bx[0,1]) = & = F(4x [0, INn(¥x]0, 1]),
F(x,0) = f(x) for x¢ X and G(y,0)=g(y) for p¢ ¥,
F{Xx1}nG{Yx1} =@

(equivalently we may additionally assume that F and G are fixed on 4 and B,
respectively).

Now suppose that n,(M) =0, dimX =3, dim¥>2, dimX+dim¥ = m,
and f(X)cP, g(Y)<Q, where P, Q are polyhedra with dimP<dimX and
dim Q@ <dim ¥. Then one can prove that [¢(f, g)] = 0 if and only if £, g are trans-
versely trivial with respect to (X, 4), (¥, B). This gives a generalization of The-
orem (3.2).

I would like to thank J. Krasinkiewicz for calling my attention to the problem
mentioned in the introduction.

Added in proof. Since this paper wasaccepted there has been essential progress of investigations
initiated in [M-R1], [K-L], [M-R], [Kr] and in ihe present paper. The Corollary of the Introduc-
tion has been proved using a different argument by A. N. Dranishnikov and E. V. Shchepin in
[D-8]. Theorem (3.2) is true without any assumption on p and g: the case p = 1 is treated in [M-R 1]
and [K-L] and the remaining case p = ¢ = 2 was established in [Sp2] by applying methods of the
present paper and a 4-dimensional version of Whituey's Lemma. Consequently the Corollary is
true for any m. (Slightly earlicr the case m = 2 of the Corollary was proved in [Sp1] and announced
in [D-S]; see also [D-R-S)).

[D-R-S] A. N Dranlshnxkov D. Repovs, E. V. Shchepin, On intersection of compacta of
dij in Euclidean space, to appear in Topology Appl.
[D-S] A N Dranishnikov, E. V. Shchepin, Onr stability of intersections of compacta in
Eyclidean space (in Russian), Uspekhi Mat. Nauk 44 (1989), 159-160.
[M~-R1] D.McCullough, L. R. Rubin, Intersections of separators and essential submarifolds
in IV, Fund, Math. 116 (1983), 131-142.
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[Spl1] . Spiez, The structure of compacta satisfying dim (X X) < 2 dim X, Fund. Math. 135
(1990), 127-145.
[Sp2] — On pairs of compacta with dim(Xx ¥) < dim X-+dimY, to appear in Fund. Math.
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