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Separation in sequential spaces under PMEA
by

Peg Daniels (Auburn)

Abstract. We show that the Product Measure Extension Axiom implics that normal (countably
paracompact) sequential spaces are collectionwise normal (strongly” collectionwise normal with
respect to compact sets) and use the method of proof to show that, under PMEA, normal or coun-
tably paracompact, metalindeldf, locally compact (or, more generally, k-) spaces are paracompact.

I. Introduction. The Product Measure Extension Axiom (PMEA) has been
used to show that normal spaces of character < ¢ are CWN [N], and that countably
paracompact spaces of character < ¢ are strongly CWN w.r.t. compact sets [Bu].
Nyikos asked whether the “character < ¢” in his result could be replaced by “weak
character < ¢”. Junnila showed that the answer is “yes” [J]. We were able to gene-
ralize Junnila’s result to show that PMEA implies normal (countably paracompact)
sequential spaces are CWN (strongly CWN w.r.t. compact sets). We also discovered
that certain quotient spaces of normal or countably paracompact, metalindel6f,
locally compact (or, more generally, k-) spaces have enough sequential-like properties
to enable us to show that they are also strongly CWN w.r.t. compact sets (and thus
paracompact). These “applications” of our results on sequential spaces are less
interesting now that Balogh has proved that if supercompact-many Cohen or
random reals are added to a model of set theory (an assumption stronger than
PMEA), then in the resulting model, normal, locally compact spaces are CWN,
although our results use a weaker hypothesis [Ba,].

In this paper we prove that PMEA implies normal (countably paracompact)
sequential spaces are CWN (strongly CWN w.r.t. compact sets) and indicate how
to apply these results to metalindeldf, locally compact spaces.

IL. Definitions. The following concepts are used in the next section.

Product Measure Extension Axiom (PMEA): For each cardinal A, the usual
product measure on *2 can be extended to a ¢-additive measure defined on all sub-
sets of *2.
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X is collectionwise normal (with respect to compact sets), abbreviated by CWN
{w.r.t. compact sets), provided that every discrete collection of closed (compact)
sets can be separated by disjoint open sets; if every such collection can be separated
by a discrete collection of open sets, the spacc is said to be strongly CWN (w.r.1.
compact sets).

X is sequential provided that a set U is open in X if, and only if, for cach x € U
and sequence {x,>-»x, there exists an m such that for each n2>m, x,e U.

X is countably paracompact provided that every countable open cover has a locally
finite open refinement.

1. On sequential spaces. Normal or countably paracompact spaces have the
property that every countable discrete collection of closed sets has a locally finite
open expansion. We will use this property to separate the desired sets. Our first
theorem is analogous to Burke's result for spaces of character <e:

TuEOREM 1 (PMEA). Suppose X is sequential, @ = {P,: <]} is a discrete
collection of closed sets, and every countable subcollection of P has a locally finite
(point finite) open expansion. Then there is a sequence {H,),cz+ Of open refinements
of the canonical open cover such that for each x € X there is an n€ w such that 3, is
locally finite (point finite) at x.

Proof. We omit the “point finite” case — its proof is analogous to the one pre-
sented. For each fe “*%2, let A, = {f & 4: f(n, f) = O for each n & w}, and let
Ay ={fei: f(n,H =1 and f(m,f) =0 for each m<n}. For each a<w,
let #,, = {P;: f<2and fe 4, }. By hypothesis, we may let %, = {U,,: ¢ < w}
be a locally finite open expansion of {U#,,: o <}, with

Upyp = XNU {Pp: B<2, Bedyy}.
For each x € X, let U, , be an open set containing x that meets only finitely many

elements of %, with U, N{Ue%,: xe U}
For each x,yeX, let A(x.y) = {f: ye U,,}, and for each neZ"*, let

Ux) = {J’! w(AGx, p)> 1~ T

fact that X is sequential. Suppose ye U/(x) and y,—j. For cach feA(x,»),
ye Uy, 5o let myew be such that for each k> m,, y & U, .. For each k € w;
let A(x,p, k) = {fe A(x,»): m;<k}. Then A(x,y, OV A(x,y, 1) A{x, »,2)
c..a {4l K): kew} = 4(x, y), so let kew be such that w(d(x, v, k)

. We now show U{x) is open in X, using the

1
>1-~ o Suppose m k. If fe A(x,p, k), then m,<k<m, so y, & Uy,

and so fed(x,y,). Thus A(x,y, k) = Ad(x, »,), which means that p(A(x, y)

1- Tera™ and 50 y,, € Uy(x), tor every m k. Therefore U,(x) is open in X.

Now let H,, =\ { ) Uu(): xePoh and let #, = {Hyu.: a<h, for
msEn

each neZ*. We now show (#,),.. is the desired sequence.
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Suppose xe X and for each n, [{He #,: Hn [} Uyx) # @} > ». Choose
mesn
distinct B, such that () U,(x)nH,y, # 9, and choose p,e Py, y,€ X such that

msn
Yy € Q U (%) Q U,(p,). Foreachn, let B, = { f: U, meets no more than n ele-
msn msn
ments of %,}. Then ¢(B,: new) is an increasing sequence with union 2°*% so
we may let m € w be such that u(B,) > 7/8. The idea is to obtain a contradiction by
finding an f'e B, that puts m+1 of the p’s into diffevent elements of % ; and cause U, ,
to meet each of these. For each j> 1, let I = {By(nr1y4:: 0 i< m}. (The Ij's parti-
tion the f’s into sets of size m-+1.) Let M, be a basic neighborhood in 2°** defined
as follows: let o;: (m+1)x I, be the function such that o,(r, Byms1y+s) = 1 iff
n

r =i, and let M, 1 = [0;]. Burke showed that under these conditions, (U M) >3/8
=1

for any n 2"~ 1[B]. Note that for fe M;and 0 < i <, Bjmspy+i € Apy iff r= i
(so M; puts m+1 of the p’s into different elements of % ).
Let S = B,n U {M;: 1<j<2" 71} 5(8) > 1/8, so let 1 <7< 20" be
1
gpm =1 = ot

such that p(B,n M) > Finally, let

" m
E = iQOA(PJ(m+1)+i, yj(m+l)+i)niDOA(x= Viome 1y+1) +
Since
Yim+ 1)+i € Ujon+ 1)+i(x) N U s 1)+i(Pj(m+1)+l) s
the measure of each A(Pjpus1y+i> Yimsn+s) and each A, Yymen+) 18

! Thus u(E°) <

> Gt 1) +1) 200 0D which is >1

m

L ) 1
W A@sonry+1:7sme 40+ TpAE Vjons 140 S 2L, fe s mwin =
1

= gy

M=

<
i

[

' 1
So  u([(BunMYNE) Sp((Ban M) )+u(EV<1- YW +

. 1 .
+ g.gOn+ 1y < 1. Thus we may choose an fe B, " M;nE. Since fe B,, U, meets

no more than m elements of %,. Since fe M, Bimsny+1 €45y, and so Pgoo00,
e U, in patticalar, Uy, ... < U, for each i,0<i<m. But since feE,
Vit 1341 € Us pimary s O Us e 50 Uy meets each U, ;, giving us a contradiction.
So there must be an n with 5, locally finite at x.

The following results are analogous to those obtained by Burke, and may be
proved by using our Theorem 1 in place of his Theorem 2.2 in his proofs: .

COROLLARY 2 (PMEA). In a sequential countably metacompact space X, any
closed set which is the union of a discrete collection of Gy-sets is itself a G4-set.

COROLLARY 3 (PMEA). In a sequential countably paracompact space X, any
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set which is the union of a discrete collection of regular Gg-sets is itself a regular
Gs-set.

Tuporem 4 (PMEA). Suppose X is sequential, @ = {P,: a <A} is a discrete
collection of closed sets in X, and {U,,: neZ *,a< A} is a collection of open sets

in X such that P, c:ﬂ Upo = ﬂ U,,: = D, for each u.

@) If X is counfablv paracompact, and W is open such that ) Dy W, then

3
there is an open set U such that ) P, < UcUcw. a
a<d

. (b) If every countable subcollection of # has a locally finite open expansion,
and if Dyn Dy =@ for all « # B, then P can be separated by disjoint open sets.

COROLLARY 5 (PMEA). 4 sequential countably paracompact space is strongly
CWN w.r.t. compact sets and also strongly CWN w.r.1. regular Gs-sets.

TuroreM 6 (PMEA). A sequential, countably paracompact, subparacompact
(submetacompact) space is paracompact.

It also follows from Theorem 4(b) that:

CoroLLARY T (PMEA). Every sequential normal space is (strongly) CWN,

After hearing of our results, . Fremlin proved that PMEA implies that normal,
countably tight, k-spaces arc CWN, which implies Corollary 7 [F]. 1t is difficult
to find countably tight compact spaces that are not sequential - in fact, it is consistent
that they are sequential.

1V. Applications.

THEOREM 8 (PMEA). If X is normal or regular countably paracompact, meta-
lindelsf, and every compact subset of X (point in X)is contained in a compact set of
character less than ¢, then X is strongly CWN w.r.t. compact sets (SCWH).

Proof. We do the case where every compact subset of X is contained in a com-
pact set of character less than c¢. Suppose {C,: a <1} is a discrete collection of
compact sets in X. Let Y be the absolute of X [see E, p. 464], and let g be the natural
(perfect) mapping from ¥ onto X. For each x ¢ | C,, let U, be an open set contain-

ing x such that U,n | €, = & and for each x € C,, let U, be an open set contajning x
such that U {Ux:m.{e—a} n U Cp = @ (use the compactness of C,). For each ¢ <4,
Ba

let K, be a compact set containing C, having character less than ¢, and let
{Vy8: B<2} be a basis for K,, where y,<¢. Let # be a point-countable open
refinement of {U,: xe& X}; for each a< 4, let

Ve=U{Ve¥#: VnC, +B}c U {U, xeC}.
Let ¥ = {V,: a<7} list {V: a<A}u{Ve#: ¥n | C, = B}. For each a <3,
let L, = KA\U V. Since Y is regular and extremally disconnected and g (L) is
p#a

compact, let W, be a clopen set such that g~ (L) « W,c g~ (V,) for each a <.
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Since g is closed let R, be an open set such that L, = R, < ¥, and g™Y(R,) = w,.
{Ryt a<2}U{U,: x¢ U R,} covers X, so let ¥ be a point-countable open refine-

ment. We claim that %-—{g“l(Ra) e<Mu{g™iV): Vey', Vg UR,,}

a point-countable open cover of ¥: if p is in g“‘(R ) for uncountably many o, then p
is in W, for uncountably many «, so p is in g ~*(¥,) for uncountably many «, con-
gg.dicting the point-countability of #°. Y is extremally disconnected, so each
g7 *(R,) is clopen. Rename & as {S,: « <}, where S, = g~ (R,) for each o< A.
For each a < 2, let M, = g"‘(K,,)\U S,, {M,: « <2} is a discrete collection, and
g7HC) < M,.
For each fe®**2, let Ao,y ={Beh:i f(m, B) = 0 for each mew}, and let
Apy=A{Bel: f(m, B) =0 for m<n and f(n, f) = 1} for new. Let

My ={My: Be A, }

for each o < w. We now show { {J #,, ;1 o < w} has a locally finite open expansion.
First we show & = {g(M,): a<A} is discrete. Suppose pe X. Note that
M.ng~'(Ry) = @ for « # B in A, so each R, witnesses the discreteness of &. If
PEU Ry, let peVe¥” for some Vet %}R,,. g~ 1(V) = S for some B, and by

definition of the M’s, S; misses each M,, so ¥ misses each g(M,). For each ¢ < o,
let P, = U {f(My): Bedy } Let {T,: « <w} be a locally finite open expansion
of {P:a<w} U .#, ;=g (T,) for a<w, and it is easy to check that
Uy = {U,,;: a<w}, where U, , = g~"(T,) is a locally finite open expansion of
{U A4, a<aw}; without loss of generality, T, = X\U Py, and so

B#a

97T INU {Mp: f<2, Bédy ).
For each x¢ ) C,, let K, be a compact set of character < c containing x;
o

let {V, s: B <7} be a basis for K, where y, <¢; let M, =g~ "(K)\U {S;: Bel
and g~'(x)n Sy = B}. For cach xe X, let F, = {f: g"Y(x)n S; # B}; since ¥
and ¥ are point-countable, F, is countable, and so let F;, = {«, ,: me w} and for
each new, let Fln = {a, ,: m<n}.

For each x ¢ U C, and each y € M,, let U, .., be an open setin ¥ containing y

that meets only finitely many elements of %,, with U, . ,= N {Ue%;: ye U};
let %, . be a finite subset of {U,, ,: ye€M,} which covers M,, and let
Uy, = U %,,. For each x e C,, and each y e M,, let U, ,,, be defined similarly;
let ;. be a finite subset of {U, ., yeM,} which covers M,, and IJet
Uf,x = U %f.x'

For each xe X and ye ¥, let A(x,y) = {f: ye U}, and for each new

1
let U(x) = {y: w(A(x, y)>1- W}

We now show U,(x) is a neighborhood of g~ *(x) for x ¢ U C,. First we need a:
. «
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Levma. If M, < U, U an open set, then there is an & <9 and a C e [INF, ™
such that g~ (Ve NU {Sp: Be C} e U “ .
Proof of Lemma. Assume the hypothesis. Suppose for each Ce [ANF,]™%,

there is an hgeg (KN U {Sp: BeCul). Let 4= {fzc: Ce [ANF]™).
Ac g™ {KIN\U, so is compact. If y € 4, then y € M,, so there is a B e ANF, such
that y € Sp. Let Ce [ANE,]“® be such that {S: § € C} covers 4. Since he cannot be
so covered, we have a contradiction. Thus there is a Cel[ANF]®" with
g HEIN(Sy: BeCleU. So g (Ky= UV {Sp: Be C}. Let R be an open set
containing K, such that g7i(K)cg ‘(R =Uv U {8p: peC}. Let u<y, be
such that K, < ¥, 4= R; then M, =g (¥, NU {Sp: e cyeau.

Returning to the proof of the theorem, given fe ""_‘2, let oy <y, and
Cpe[ANF,]™® be such that M, g™ (Vy,uNU {Sp: e Cs} = Uy,;. For cach
w<yy, let Dy = {fi u; = a}. Since“Zy w(D,) = 1, let {o;: i<} <y, be such that
p(‘Lle Dy)y>1- —lgnl'—z—;,g, where le . Let ¢<y, be such that Vx,,,c‘{gl Via-
Suppose for each Fe [ANF]“®, g7 (Va, )\ U {Sp: B F}2Uy(%); let

yiegd _X(IVx,u)\( U {Sﬂ: ﬁ E‘gan()’k)li\Fx} v U,,(X)).

By choice of the y’s, for each fe @*4) there is a k, € o such that for each k 2ky,
¢ U {S;: B e Cy}, since otherwise infinitely many of the y’s would be in the same Sg
for some B. Therefore, for each k>k,, y, g™ (V. \U {Sp: fe Cp}.

For each kew, let 4(k) = {fE.Q,D“':' kp<k}. <4 keow) is increasing,

————%;2- . We show

with union | D,,, so let kew be such that u(A(k))>1- o
i<

y € U ), a contradiction. For each f'e 4(k), k; <k, so

yk,eg_l(Vx,a)\U {Sﬂ: ﬁ € CI} :g-l(Vx,a;)\U {Sﬂ: ﬁ € Cf} < Uf,x

1
and so fe A(x, y). Thus p(4(x, y)) > 1= — and so y, € U x).

16n-2""°

" Thus we may conclude that there is an o<y, and Fe [ANF 1 with

971 cg (Ve )\U {Sp: BeF} = Uy(x); since F A each Sy is clopen for fe F,
and so U,(x) is a neighborhood of g~ *(x).

Now if M, < U for some a <A and some open set U, there is a y<7y, and

Ce [en{a}]® with g (Vo )NU {Ss: B e C} = U, so by similar reasoning there.is

d y<y, and FePpe\{a}]®® with g~ (Ve NU {Sp: BeF} = Up{x}, for xeC.

Now for f & F, either Sp = g™ '(R), and so is closéd, or S5 = g~ '(V) for Ve ¥

with V¢ U R,. In the latter case ¥ < U, for some z ¢ U Rq. If y e g7 (x) S, then

xegcsﬁ) ;g(g”i(V))c:g(g_l(V)) = VCU;, but U, miSSéS Cy: Thus g"l(x)
g™ Vo INU Sy BeFY c U x), and so U(x) is a meighborhood of g~'(x).

Separation in sequential spaces under PMEA 123

Define H,, = U{ ) Uu(¥): xeC,} for each a <2 and #, = {H,,: a <2}

msn
for each n e Z™*. By an argument similar to the one presented in the proof of Theo-
rem 1, for each x € X there is an ne Z™ such that 2, is locally finite at g ~1(x).
Since each U,(x) is a neighborhood of ¢~ '(x), H, . is a neighborhood of
g~ !(C,); for each neZ™, let J, , be an open set containing C, such that

g—l(Jn.u)CHn,a: Jn+1,aﬁ c‘]n,as

an neZ" such that ¢, is locally finite at x. Similar to Burke’s proof of his

Theorem 3.1 (b), let K, , = J, .\ U {Jn,ﬁ;—fﬁel\{u}} for each a<li, neZ®,
and let K, = UK, ,. Then C,c kK, and K,nKy =@ if a # f, so {K;: a<i}

separates {C,: a < A}. Obviously if X is normal we can now get a strong separation
of {C,: «<}. If X is countably paracompact, proceed as in Burke’s proof of his
Corollary 3.2 (a): let 4, be open such that Gy« A, <A, < K,. Let B, , = J, ,n4,.

Let ¥, = XNUB,.. {UKJu{¥,: neZ*} covers X,solet { U K.} U{G,:neZ"}
be a precise locally finite open refinement. Then | C, = X\ U——G,, e XN L_)—E,, c UK,
. . i - n n « ’

. a
so we may get a strong separation of {C,: a <41}

COROLLARY 9. Normal or countably paracompact, locally compact, metalindelof
spaces are paracompact.

Proof. Use Theorem 8. along with Balogh’s result that locally Lindelof; sub-
metalindelsf spaces that are SCWH are paracompact [Ba,]. '
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