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Domination by Borel stopping times and some separation properties
by

Ashok Maitra (Minneapolis), Victor Pestien (Coral Gables)
and S. Ramakrishnan (Coral Gables)

Abstract. Given stopping times ¢ and s such that 1 <s, does there exist a Borel-measurable
stopping time r such that # < r < s?If # is upper analytic and s is lower analytic, the answer is affir-
mative. Moreover, if # is everywhere-finite, » can be chosen to be everywhere-finite. (However, this
is not true if 7 is lower analytic.) These results are used to prove certain separation principles.

1. Tntroduction. Our interest in the problems studied in this paper arose as a by-
product of an investigation of a question in the theory of measurable gambling.
However, the results presented here are purely set-theoretic in nature. This paper
can be read without any knowledge of the theory of gambling and may be of interest
to those interested in stopping times or separation theorems. Applications to the
theory of gambling will appear in a subsequent paper.

. In the mathematical theory of gambling, developed by Dubins.and Savage [4],
the fortune space F, an arbitrary non-empty set, is equipped with the discrete topology,
and the history space H, the product of countably many copies of F, is equipped with
the Cartesian-product topology. A stopping time is a function # from H to the set
of positive integers together with co such that if ' and h are histories which agree
through the first #(k) coordinates, and t(#) < co, then t(h) = t(h). If a stopping
time ¢ is everywhere-finite, then f is a stop rule.

A natural example of a stopping time is the hitting time of A, where A S F,
defined by’

1(h) = min{n > 1: the ath coordinate of h lies in A4} .

(The minimum of the empty set is taken to be +oco). Obviously, if 4 is a proper
subset of F, then # is a stopping time which is not a stop rule. A stop rule important
in optimal stopping theory is min {t, k}, where t is a stopping time and k is a positive
integer.

Key words: stopping time, separation, Borel-measurable.
American Mathematical Society 1980 subject classification. Primary: 03A15, S4HOS; Secondary:
60G40.


Artur


190 A. Maitra, V. Pestien and S. Ramakrishnan

In the theory of gambling, 2 stopping time of interest is one induced by a proper
open subset ¥ of H. This stopping time, denoted by #y, is defined by

ty(h) = min{n > 1: for all &’ which agree with & through
the first n coordinates, we have 4" € V}.

Loosely speaking, ¢, stops along a path at the first instant where one is guaranteed
that any possible continuation of that path remains in V. Since V is open in the
product of discrete topologies, it is easy to see that

V= [ty < o0].

In this theory, it is often mecessary to associate, with a given non-empty proper
clopen subset K of H, the time at which a history’s membership in X or K° is
“determined” (see [4], Section 2.7). This stopping time (which is in fact a stop rule)
is min{tg, #x.}.

In the theory of “measurable” gambling (see, for example, Strauch [12] or Del-
lacherie and Meyer [3]), the fortune space F is given a further topological structure.
with F metrizable as a complete, separable metric space (Polish space). In such a frame-
work, it is desirable to deal with stopping times which are “Borel-measurable”,
that is, measurable with respect to the product of Polish topologies.

However, even if a set V, open in the product of discrete topologies, is Borel
(in the product of Polish topologies), the stopping time #y need not be Borel-
measurable. Indeed, for each positive integer n,

(1.1 [tv>n] = {(hy, by, .)€ H: (hy, by, ..., By e m(VE)}

where 7, denotes projection on the first n coordinates. It is well-known that the
projection of a Borel set need not be Borel. A natural question then is whether
there is a Borel-measurable stopping time sy such that

V= [sy <o0].

It can be verified that such a stopping time must necessarily satisfy sy > ty.

In this spirit, we investigate (Section 2) the question of domination by Borel-
measurable stopping times. Our main theorem (Theorem 2.1) implies that for any
upper analytic stopping time and any larger lower analytic stopping time, there
is a Borel-measurable stopping time which lies between the two. (Terminology is
defined in Section 2.) It is a consequence of this theorem that the stopping time sy,
as desired above, exists. Further, any upper analytic stop rule is dominated by
a Borel-measurable stop rule. However, it is also shown that there exist lower-
analytic stop rules which are not dominated by any Borel stop rule. In Section 3,
we use the stopping time theorem of Section 2 to obtain separation properties
which relate classes of sets associated with the two topologies on the history space H.
In Section 4, we analyse the structure of clopen Borel sets and use set-theoretic
notation and machinery to establish an “effective” version of a separation principle
from Section 3.
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2. Domination by Borel stopping times. A subset A of a Polish space Q is analytic
if there exists a Polish space P and a continuous function f: P — Q such that f(P) = A.
A set is coanalytic if its complement is analytic. (For an exposition of the theory
of analytic sets, see [2].) If 4 and B are disjoint subsets of 2, then the set C separates A
from Bif AcC and BNnC = @.

Now let F be a Polish space, N be the set of positive integers, and let H = F,
Endow H with the product of Polish topologies and also with the product of discrete
topologies. From now on, the term “analytic (coanalytic, Borel) subset of H” refers
to the product of Polish topologics on F, '

Suppose 7 is a mapping from H to Nu{ oo}. If for each n e N, the set [t >n]
is analytic, then ¢ is upper analytic. If for each ne N, [t < n] is analytic, then ¢ is
lower analytic. Clearly, if ¢ is both lower analytic and upper analytic, then ¢ is Borel-
measurable.

THEOREM 2.1. Suppose t is an upper analytic stopping time, s is a lower analytic
stopping time, and that t < 5. Assume further that D is a coanalytic subset of H such
that

Then there exists a Borel-measurable stopping time r such that

t<r<gs
and
[t = w]s[r=ow]eD.

To prove Theorem 2.1, we shall use two standard separation results which we
state here for ease of reference.

LemMA 2.2 (Kuratowski [5], page 485). If A and B are disjoint analytic subsets
of a Polish space Q, then there is a Borel set which separates A from B.

Lemma 2.3 (Kuratowski [S], page 511). If {4,: n>1} is a sequence of analytic
subsets of a Polish space Q and if D is a coanalytic subset of Q such that

o
N 4,D,
n=1
then there exists a sequence {C,: n 1} of coanalytic subsets of Q such that for eachn,
A, C,
and such that
00
nec=2D0.
n=1

Proof of Theorem 2.1. For n>1, let T, = [t>n] and S, = [s> n]. Since
1< s, we have T, < S, for each n 3> 1. Apply Lemma 2.3 to get a sequence {C,: n > 1}
of coanalytic subsets of H such that

(Yn)(T,=C,)  and

a=1
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For each n, let
P, = {mI(S,n G},
where m, denotes projection on the first n coordinates. Then P, is a coanalytic subset
of F", and P,x H= S,n C,. The set P, x H is identified with a subset of H in the
obvious way. (Throughout the paper, we find this abuse of notation convenient.)
Since T, < S, N C, for each n, and since T, depends only on the first n coordinates,
we have
T,cP,xH=S§,nC,.

We now construct, inductively, a sequence {R,: n>1} where foreachn, R,isa Borel
subset of F", as follows. Begin by using Lemma 2.2 to obtain a Borel subset R,
of F such that

(T S R, EP; .

For each n> 1, use Lemma 2.2 to find a Borel subset R, of F" such that
T(T) SR, S P, Ry X F) .

Then {R,x H: n 31} is a decreasing sequence of Borel subsets of H, and it is easily
checked that for each n, ‘ o

1) T, = (T, xHeSR,xH=P,xH=§,nC,,

and

2.2) NT,c N RxH)s C= D.
n=1 n=1 n=1

Now we can define a Borel stopping time r so that for each n, [r>n] = R, x H.
Then by (2.1), for each n, : ’ : ' G
o v >nlclr>nlcls>nl;
and so t<r<s. Furthermbre, by (2.2),

[t = w]sr=oo]cD. B

COROLLARY 2.4. If t is an upper analytic stopping time, and: [t = oo} is Borel,
then there is a Borel-measurable stopping time r such that t<r and [t = ]
= [r = col.

Proof. In Theorem 2.1, let D = [t = o] and s = co. B

COROLLARY 2.5. Let ¢ be any upper analytic stop rule. There is a Borel-measurable
stop rule r such that t<r. More generally, if s is a lower analytic stopping time such
that t<s, then there is a Borel-measurable stop rule r such that t<r<s.

Proof. In Theorem 2.1, take D to be the empty set. B

Remark. In Corollary 2.5, “upper analytic” and “lower analytic” cannot be
interchanged. To see this, let F be an uncountable Polish space. Choose disjoint
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coanalytic subsets C and D of F such that C cannot be separated from D by a Borel

subset of F. (The existence of such C and D was shown by Luzin [9]) Define a lower
analytic stop rule ¢ by

r<h1,hz,...)={; D,
1

and define an upper analytic stop rule s by

if heC ,

s(h1,hz,...)={2 i iC
LEC.

Since C and D are disjoint, # < s. Towards a contradiction, assume that there is
a Borel measurable stop rule r such that t<r<s. Let 4 be the projection of the
set [r = 1] to the first coordinate. Clearly 4 is a Borel subset of F. But, since

t<r<s, it follows that C= A4 < D°, which contradicts the assumption that C
and D are not Borel separable.

‘We now apply Corollary 2.5 to obtain a measurable analogue of a result of
Purves and Sudderth ([11], Lemma 5.1).

PROPOSITION 2.6, Suppose O, S 0,<... are coanalytic subsets of H which
are open in the product of discrete topologies and which satisfy Uy, Oy = H. Then
there is a Borel-measurable stop rule r such that O, = H, where O, = {he H: ke O,3).

Proof. Let B g ‘

5= lllf {max‘(tOk: k)} ’
c Rzl

where 75, is as defined in Section 1. Plainly, s is a stopping time and is'eveiywherc
finite since Ugs1 O = H. Because edch Oy is coanalytic, it follows from (1.1) that
to, is upper analytic. Therefore s is an upper analytic stop rule. By Corollary 2.5,
there is a Borel stop rule r such that'r > 5. It is straightforward to check, using the
definitions ‘of 7y, and the increasing nature of the Oy's, that O, = H. B . -

We have shown so far in this section that any upper analytic stop rule is
dominated by some Borel-measurable stop rule. In Theorem 2.7 below, we shall give
an example of a lower-analytic stop rule which cannot be dominated by any Borel-
measurable stop rule. The lower analytic stop rule constructed in the proof of Theo-
rem 2.9 also has this property. -

Turorem 2.7. There is a Polish space F and a lower analytic stop rule T on
H = FN such that there is no Borel stop rule ¢ on H with t<o.

Proof. Take .F to be any uncountable Polish space and let 4, =4, <... be
a sequence of analytic sets such that Ji2,4; = F, but for every sequence of Borel
sets B, d4;, U2, B, + F. The existence of such a sequence of analytic sets is
a classical result of Liapunov [6]. =

We define a stop rule © on H = F" as follows:

w(hy, hy, ..) = least j such that hy e 4;.
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Plainly, ¢ is a lower analytic stop rule. Towards a contradiction, assume that there
is a Borel measurable stop rule o >7. Let

By={xeF: o(x,x,x,..)<i}, ix1.

Then B; is Borel, and B; S 4; because <o and ({21 B; = F, contradicting the
special property of the 4/s. B

Remarks. We are indebted to the referee for suggesting that we might obtain
an example using Liapunov’s result. Other help for our example came from an
unpublished construction by Roger Purves and William Sudderth. The argument
for Theorem 2.7 actually shows that there cannot be any Borel function o from H
to N such that ¢ >r1.

To formulate the final result of this section, we define “index” of a stop rule
(cf. Dellacherie [2]) and establish the existence of a lower apalytic stop rule of
uncountable index. This is to be contrasted with Corollary IV.21 of [2], which
states that any upper analytic stop rule has countable index.

For a fortune space F, let 7 (F) be the collection of all functions t on FY such
that either ¢ is a stopping time or ¢ is identically zero. (Many authors (e.g. Del-
lacherie [2]) regard the zero function to be a “stopping time”. In that terminology,
F(F) is the collection of all “stopping times”.) Let 2(F) denote the set of those
elements of 9~ (F) which are everywhere-finite. Following [2], define for 1€ 2(F),

t* = inf{s: s€ 2(F) and s>t—1}.
(.e. for each he F, 1*(h) = inf{s(h): se B(F) and s>1—1}.)
1t is easily checked that t* € 2(F). Let t° = ¢. Then the formula
t* = [inf £"]*
n<¢

inductively defines t* for every ordinal &. Clearly, if &>y, then 2> "> 1%, For
te 2(F), the index j(#) is defined to be the least ordinal { such that ¢ = 0. For
te J (F) where ¢ is not everywhere-finite, the index j(t) is defined to be the least
infinite ordinal of cardinality greater than the cardinal of F.

For te 2(F) and x e F, let t[x] be the element of 2(F) defined by

t[xj(h) =0 for all ke F¥ if ¢t =0,
t[x](h) = t(xk)—1 for all he FY if t#0,

The following relationship will be helpful:
LemMMA 2.8. For each element t of 2(F), not identically zero,

Jj@) = sup{jt[x])+1: xe F}.

Proof. The verification is routine. See discussion in ([2], IIL 13). W

Remark. It can be shown using Lemma 2.8 that the lower analytic stop rule =
constructed in Theorem 2.7 has countable index.
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- V‘T}?vaonnm 2.9. There is a Polish space F and a lower analytic stop rule = on
H = FY such that the index j(7) is uncountable. -

Proof. Let F 1.36 the collectiqn T (N) of “stopping times” associated with the
fortune space N. Gch 7 (N) the topology of pointwise convergence. By Dellacherie
([2], III, 1), J(N) is a compact, metrizable space. To define the stop rule =, let

() = 1t L LB <o) < oo <J O] & (o) 2 ()],

where /1 .-=_€111 » By, ...). Plainly 7 is a stop rule because there is no strictly descending

sequence with respect to the relation “<”. Also, 7 is lower analytic because ¢ > 1

and for m>1, S
{h: 2B > m} = {h: j(h) <j(hp-1) < .. <j(h0)},

and the latter set is' coanalytic by Theorem IIL 20 of Dellacherie [2].
In the second part of the proof, we show that the index Jj(7) is uncountable. To
do so, let

a=sup{j(r[rD+1: te 2(N)}.

By Lemma 2.8, j(t) > a. If & were countable, we could find a sequence {r,} of ele-
ments of 2(N) such that

a = sup{j(z[r,)+1: n>1}.

However, given any sequence {r,} of elements of 2(N), there exists r in 2(N) such
that

@23

To verify this, given a sequence {r,} from 2(N), choose r € 2(N) such that j(r) > j(r,)
for each n. 1t is straightforward to check from the definition of 7 that = [r][r,] = t[r;]
for all n = 1. Then Lemma 2.8 implies that for each n,

JEIrD2iGlr D+l = jGnD+1.
Therefore (2.3) holds and « js uncountable. Thus the index j(z) is uncountable. M

jarD+1>sup{j(rr)+1: n>1}.

3. Some separation properties. Define the following classes of subsets of the
history space H:

@ = {d: A is Borel in the product of Polish topologies},
2o = {d: A is clopen in the product of discrete topologies} ,
=209,

3, = {d: 4 is a countable union of elements of X},

5% = {d: 4 is a countable union of elements of X3},

IT; = {d: the complement of 4 belongs to ¥y} .
4 — Pundamenia Mathematicae 135.3 ‘
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Remark. 3, is actually the collection of all open sets in the product of discrete
topologies, because for any such set V,

V= G[tV =n].
n=1

Tuporem 3.1. Let A and B be disjoint analytic subsets of H, and assume there
is a set in I, which separates A from B. Then there is a set in Z¥ which separates A
from B.

Proof. Suppose G € Xy and that G separates 4 from B. That is, 4 =G < B*.
Notice that

0 @B

is the closure of B in the product of discrete topologies. Since G° is closed in this
topology and since G°2B, we have

3.
Define a stopping time ¢ such that for each n,
[t>n] = [r,(B)]xH.

Then tis upper analytic, and by (3.1), A°2[t = co]. By Theorem 2.1, there is a Borel-
measurable stopping time r such that ¢<r and

A°2G62 61([7c,,(B)] xH)2B.

Bc[t=wlslr= w]s4°.
Let

e
C=[r<ow]= Ulr<n].
n=1
Then Ce X} and C separates 4 from B. W

COROLLARY 3.2. Z,n%& = ZT.

Proof. Tt is immediate that Xy n#=Xf, For the opposite inclusion, let
Ae XN A and, in the statement of Theorem 3.1, take B to be the complement of 4.
Then Ae2f. W '

Because of Corollary 3.2 and the remark preceding Theorem 3.1, X} is precisely
the collection of open sets in the product of discrete topologies which are Borel in
the product of Polish topologies.

COROLLARY 3.3 (reduction property for X, n%). If A and B belong to £, 4,
then there exist disjoint sets A" and B' in Z,n & such that A'c A, B' = B, and
AuB= A'"UB.

Proof. By Corollary 3.2, 2,n% = 2%, and so any 4deX,n% and any
BeX{N% can be written in the form

o «©0
A=\ 4, and B= B,
k=1 k=1
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where {4} and {B,} are sequences of elements from the field X§. Let

Ay =4,, B =B n45,
and for n>1,
-1 n—1
A, = A,n ﬂA,ﬁ)n(ﬂ Bj)
k=1 Jj=1
and
n n—1
B, = B,,n( N A,ﬁ)m( N Bj).
k=1 j=1
Now let
o -]
A'= J4 and B = | B,
k=1 k=1

and check that A’ and B’ have the required properties. ll
COROLLARY 3.4 (separation property for II; " %). If A and B belong to II, n %
and A and B are disjoint, then there is a set C in X which separates A from B.
Proof. Take complements in Corollary 3.3. W
THEOREM 3.5. Let A and B be disjoint analytic subsets of H. Assume there is
a set in T which separates A from B. Then there is a set in X5 which separates A from B.
Proof. First observe that if a subset 4 of H is analytic, then its closure 4 in
the product of discrete topologies is also analytic because

i=- "E\l([n,,(A)] xH).

Suppose, now, that 4 and B are analytic subsets of H and 4 can separated from B
by a setin Z. It follows that 4 and B are disjoint. So, by Theorem 3.1, there exists 44
in II, " & such that A = 4, and 4, and B are disjoint. Again using Theorem 3.1,
there exists By in IT, " & such that B < B, and 4, and B, are disjoint. Hence, by
Corollary 3.4, there exists K € 2% such that 4, < K < By. Consequently, K separates 4
from B. W

4. Structure, scparation, and the effective theory. In Dubins and Savage [4],
the notions of “finitary function” and of “structure” of a finitary function have
boen defined. A function from FY into a set R is finitary if it is continuous when
both F and R arc given the discrete topology. It is a straightforward consequence
of the discussion in Section 2.7 of [4] that for any non-constant finitary function g
and x e F, if g is the finitary function defined by

g'(h) = g(xh),
then the structure of g satisfies
4.1 str(g) = sup{str(¢*)+1: x& F}.

'y
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The structure of a constant function is defined to be 0. If # is a stop rule, not identically
zero, let m, denote the finitary function defined by

n(h) = the 1(h)th coordinate of 4.

The following theorem establishes the rclationship between index and structure.

ProposITION 4.1. If the fortune space F contains at least two points, then for
every stop rule t, not identically zero,

J() = sir(n).

Proof. First note that the result is truc for constant £ In view of (4.1) and
Lemma 2.7, it is enough to prove that for cach xe F,

n]* = Tz] »
for then the result will follow by transfinite induction. Now for A e H,
[r]*(h) = m,(xh)
= the t(xh)th coordinate of xk
the #[x](M)th coordinate of A
(). W |

1

i

We are grateful to William Sudderth for pointing out that it is necessary in
Proposition 4.1 to assume F has at least two points.

If K belongs to Z, (notation as in Section 3), it is easy to see that the indicator
of K is a finitary function. Thus we define the structure of K as the structure of its
indicator function. Proposition 4.1 can be combined with a result of Dellacheric
regarding the index of upper analytic stop rules to show the following result about
structure of sets in Z§ (notation as in Section 3):

PROPOSITION 4.2. Let F be a Polish space. If K belongs to If, then the structure.

of K is countable.

Proof. It is easily seen that the structure of K is the same as the structure of
the function m,, where s is the stop rule given by

s = min{tg, fyo} .
(The notation “#y, tg.” was introduced in Section 1.) Since X is Borel, the stop
rule s is upper analytic, and by Dellacheric ([2], Corollary IV.21), any upper analytic
stop rule has countable index. Therefore, with the aid of Proposition 4.1, we have
str(K) = sir(ng) = j(s) <, ,
where @, is the first uncountable ordmal. B

Le‘: o be the set of non-negative integers with the discrete topology, and let
F = % the set of all infinite sequences of non-negative integers, with the product
topology. Tt can be seen that F is a Polish space which is homeomorphic to the
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set of irrational numbers, considered as a subspace of the reals. (For details, see [10]).
Also, let H = F", As before, a subset of H will be called “clopen” if it is clopen in
the product of discrete topologies on F, and “Borel” if it is Borel in the product
of the usual Polish topologies of F. In this section, the notations xR II}, and A}
(cf. Moschovakis [10]) will mean these concepts in the product of the usnal Polish
topologies on /%, The symbols a, f, y, & will denote elements of F, while x, Vs Zy ey
will denote elements of I, If xe H, ye H, and ne w, we write x =,y if x; = y,
for all i, 1 i< n. For a discussion of “effective” methods in set theory, sée Mosc-
hovakis [10]. The approach in this section was used by Louveau in [7].

Let (W, C') be a coding of Borel subsets of H; that is, W and C satisfy the
following propertics: . :

(@) Wis a 11} subset of @®xw;

(b) Cis a IT} subsct of w”xwx H whose projection on ®x o is W;

(c) the sct {(x,n, x) e w®xwx H: (¢, n)e W& (2, n, x) ¢ C} is I;

(d) for fixed (x, n) € w* x w, the section 'C,’, = {x e H: (o, n, x) € C} is 41(¢);

(e) if P= H is Ai(x), then there is » such that («, nye Wand P= C,,.

Define W* < w”xw as follows:

@ meWro(,neW&
V)@, 7, x) ¢ Cv Am) () (¥ = %)= (@, 1, 0) € O] &
V) [(x,n, x) & Cv‘(ﬂm)(Vy)((yf =, X) (@, n, y)¢ C)].

Plainly W* is IT Yand if (x, n)é W, then (x ,_r‘z)e W* if and only if C,, is clopen.
Set - I o

i C* = Cn(W*x H).
Then C* is ITf, and we observe that the set (W*x H) n(C¥)° is also IIL. Let
Wi = {(@,m)e W*: st(Ch)<E).

We wish to show that these sets »Wg‘ have pleasant definability properties as well.
Towards this, define an inductive operator ¢ on the power set of w®xw thus:

(@, mep(S)-(@,neW* &
|Gt = HY Gl = By (VB EAm) (K, By, m)e S&
V(o 1, fy) & CFex(Ca, By, m, 3) € CH))]
where <a, f>: w— o is defined by
<, BY(m) = 2°(2(m)+1) ~
Define the iterates of ¢ by transfinite induction:

o=0(U o".
n<g

As in Louveau [7], a straightforward induction on.{ establishes the following:
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Levva 4.3. For each ordinal &, ¢ = W.
1t follows immediately from the definition that, regarded as a relation in n, «,
and S, @ is a positive 1% set relation. Consequently, the set

Q= {7, Me0”x0” xw: »e WO & (x, n) € o}

is II3. Here WO is the set of ordinal codes, and if 6 e WO, then |5 is the ordinal

coded by 4.
Now assume & < of(= the least non-recursive in  ordinal). Let 6 € WO be

such that |5] = £ and & is recursive in B. Then it follows from Lemma 4.3 that

(@,meWle(a,6,meQ
and

(@, me UC W e @n)((e, n, ¥(5, m)e Q)
n<

where | is a recursive function such that if y € WO, then (y, m) codes the initial
segment of [y| determined by m.

The following lemma is now immediate.

LEMMA 4.4. If &< of, then W} and Uy<iWy are IT1(B) sets.

The preliminaries being complete, we can state the main result of this section.

TeroreM 4.5. Let & <. Suppose A and B are X1(a) subsets of H such that 4
can be separated from B by a clopen set K satisfying str(K) < . Then A can be sepa-
rated from B by a Aj(x) clopen set K* with str(K*) < ¢&.

Proof. We prove the theorem by induction on &. If £ = 0, then X = H or
K = @ and we can take K* = K. Suppose ¢ > 0 and the result is true for all n <¢.
By induction hypothesis, for each B, the section Af can be separated from Bf by
a A{((a, BD) set of structure less than & Define R< 0® x w as follows:

B,n) e R({a,p),ne L()a‘= W* & [AB = Clpyal & [Clpynn BR = 2.

1t is easily verified by using Lemma 4.4 that R is a II3(x) set. Moreover, the sentence
before the definition of R says that
(VR)@n((B,m e R).

So by the Easy Uniformization Theorem ([10], Theorem 4B.4), there is a A}()-re-
cursive function f: ©”— o such that (8, f(8)) e R for each f. Define

K* = {xeH: ({a, x,), f(x;), x¥) € C¥},

where x* = (x,, x5, ...). Then K* has the desired properties. M

By combining Theorem 4.5 with Theorem 3.5 and Proposition 4.2, we get a re-
finement of Theorem 3.5 as follows:

COROLLARY 4.6. Suppose A and B are analytic subsets of H such that A can

be separated from B by a clopen set K. Then A can be separated from B by a Borel,
clopen set K* such that str(K*) < str(K).

icm

Domination by Borel stopping times 201

Remarks. Corollary 4.6 was proved for the case F = w®. However, using
the fact that any uncountable Polish space is Borel isomorphic to w® and the fact
that the Borel isomorphism can be used to induce a homeomorphism between the
history spaces when equipped with the product of copies of the discrete topology,
it is easy to transfer Corollary 4.6 to the case where F is an arbitrary uncountable
Polish. space.

The case F = w of Theorem 4.5 was treated by Louveau [8] and by Barua [1].
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