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On pairs of compacta with dim(X'x YY) <dimX+dim Y

by
Stanislaw Spiez (Warszawa)

Abstract. In this note we give a necessary and sufficlent condition for maps fy: X;-»D*x
x {0} C DY fo: Xy-r{0}x D2C D* of 2-dimensional compacta into discs to admit mappings
Fi: Xi->D* which have disjoint images and coincide with i on fi*(@D%), for i = 1, 2. As a corollary
we obtain that dim(X,x X;) < 4 iff any two mappings X; -+ R*, X,— R* can be approximated by
mappings with disjoint images. We also characterize pairs Xy, X, of finite dimensional compacta
with dim(X; x Xa) < n = dim X;+dim X, in terms of extensions of mappings from closed subsets
of X into certain CW-complexes. In the Appendix we also give an alternative proof of the latter
result and of a result of [Sp2] by applying Eilenberg-MacLane spaces.

Introduction. Recall that a mapping A: Z— 17, here I = [—1, 1], is said to be
inessential (in the sepse of Alexandrov-Hopf) if there exists a mapping A': Z-or*
such that k'(x) = h(x) for each x & A~'(0J*).. In this note we prove the “only if”
part in the case m = 2 = n of the following

Trnorem 1. Let f: X—1I™, g: Y~ I" be mappings of finite dimensional com-
pacta, so that m = dim X and n = dim Y. Then, the product mapping fXg: XxY—
—~I™*" is inessential if and only if there exist two mappings

F: XTI and G Y- [T
with disjoint images and such that
F(x) = (f(),0) and Gy =(0,90))

Sor each xef™'(oI") and each y g~ @I" (i.e. the mappings f and g are trans-
versely trivial in the sense of [Kr]).

The " part of the above theorem was proved in [K-L]. The case m = 1 of
the “only i part was proved also in [K-L] and the case m=>3, n=2 of this part
in [Spl}. The proof of the missing case (m = 2 = n) of the theorem is the same as
that given in [Sp1] cxeept that one has to apply a homotopy version of the Whitney
trick for 4-dimensional manifolds (which is described in § 1) instead of the isotopy
Whitney trick for higher dimensional manifolds.

A consequence of Theorem 1 and of (2.1) in [Kr] (cf. [M-R]) is the “only if”
part of the following characterizations of compacta with the properties which ocour
in the famous constructions of L. S. Pontryagin [Po] and V. Boltyanskii [Bo] (the
“if* part was proved in [Kr]).
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COROLLARY 1. Any two mappings X~ R* and Y— R* of finite dimensional
compacta, where k = dmX+dim Y, can be approximated arbitrarily closely by
mappings with disjoint images if and only if dim(Xx ¥) <dim X+dim Y.
CoroLLARY 2 ([Spll, [Sp2]). Let X be an m-dimensional compactum. Then
dim (X x X)< 2m if and only if the set of all imbeddings X — R*™ is dense in the space
of all mappings X — R*™
We are also interested in characterizing pairs X, ¥ of compacta with the property
dim(X'x Y) <dim X+dim Y in terms of extensions of mappings of closed subsets
of X, Y into certain CW-complexes. In the statement of the following result, which
in a weaker form was announced in [Sp2], we need the following notation. Let
S5~ v S7'"! be the one point union, with the base point #, of (m—1)-spheres S 1
and ST~ Let ; be a generator of the group m,.,(S7 ™%, ») for je {0, 1}. By P},
where m > 2, we denote the CW-complex obtained by attaching to S§~* v ST~ two
‘m-cells by mappings corresponding to @0} and af, and by RY; the CW-complex
obtained by attaching to S§~*v S§'"* one m-cell by a mapping corresponding to
(a, a’{)z. (We use multiplicative notation for the higher homotopy groups also.)
THEOREM 2. Let X and Y be compacta such that dimX = m and dim ¥ = n.
Then, dim(X x ¥) <m-+n if and only if there exists a permutation (U, V) of the
letters P and R such that for arbitrary closed subsets A, B of X, Y, respectively, any
mappings

A-S3"' and B-SHt

admit extensions

X>Up and Y-V

for some integers k and I,

In this note we prove the “only if” part in the case m = 2 = n, see § 3 (the
proof in the higher dimensions is the same). In the proof, Lemma (3.9) in [Sp2] plays
an essential role. The inverse implication can be proved similarly to (1.5) in [Kr]
(compare also the proof of the “if” part of Theorem 3 in [Sp2], §4).

In the Appendix, we give an alternative proof of Theorem 3 in [Sp2] that is
independent of the results of [Sp2] and we sketch an alternative proof of Theorem 2.

I would like to remark that recently I have learned by letters from DD. Repovs
that he, A.N. Dranishnikov, and E.V.Shchepin have obtained results along the lines
of Corollary 1, case m =n =2 (see [D-R~S1] and that some results of [Kr] and
[Spl] have been very recently recovered in [D-S] in an alternative way. (Added
in proof: After this paper was accepted the author received a preprint [D-R-S2]
containing an alternative proof of Corollary 1 in the case m = 2 = n.)

1. A version of the Whitney lemma. The proof of the case m = 2 = » of the
“only if” part of Theorem 1 is the same as that of Theorem (3.2) in [Sp1]except that
one has to apply Lemma (1.1) below instead of Lemma (2.1) in [Sp1]. The proof
of Lemma (1.1) is a modification of Lemma (3.1) in [Fr] (compare also Lemma
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(immersed Whitney move), section 1 in [F-QJ). In this section we will use notations
of [R~S] and [Spl]. C

(1.1) Lemma. Let X = X, 0X, be a disjoint union of compact 2-polyhedra
X, and X, with triangulations Ty and T,, respectively, and let M be a 1-connected
oriented 4-dimensional PL-manifold. Suppose fi X— M is a PL-map such that

(a) the singularities of f are transverse double points;

®) F(XINAS(X) = B = f(X) S (X5, here X{V and X5V are the 1-skele-
tons corresponding to the triangulations Ty and T

© S (X)naM = f (X u X noM;

(d) for each puair of (oriented) 2-simplexes o €Ty, o, €T, the intersection
number f(oy) Af(og) is 0.

Then there exists a PL-mapping g: X —M* such that

gX)ng(X) =@ and g =f(x) for each xe XPUXEV.

Remark. Observe that, by general position theorem, the assumptions (a), (b)
and (c) are not too restrictive.

In the proof of (1.1) we will use the following homotopy version of the Whitney
move (see [Fr], the proof of (3.1), and [F-Q] section 1).

(1.2) LemmA. Let M be an oriented 4-dimensional PL-manifold and let
Py, Py,cM be two transverse locally flat oriented 2-dimensional PL-submanifolds
which intersect in exactly two points a and b such that e(ad) = —e(b).
Suppose oy is an arc in Py, for i = 1,2, joining a and b and h: D~ M is a PL-map
of a PL-disc such that

(1.3) hldD is a PL-homeomorphism onto the Whitney circle ey Ua,;

(1.4) the singularities of h are transverse double points contained in h(IntD);

(1.5) A(Int DY (P L Pp) = B.

Then for any neighborhood U of h(D) in M there exist a PL-disc B, a regular
neighborhood of o, in P; AU and a PL-homotopy H: Bx [0, 1]-U such that

H(x, 1) = x for each (x,1)eBx{0}u(@Bx[0,1]) and H(x,1)e M\P,

Jor each x e B.

Proof of (I.1). Suppose oy & Ty, o, €T, are two simplexes with nonempty
intersection. £ (|o4]) nf(lo3]). The condition f(oy) A f(a2) = 0 implies that f(lo: )
Nf(loy]) is a set of an even number of points, say

{@ys s @i byyons by}
such that ¢(a)) = ~s(b). Let «,, i = 1, 2, be a PL-arc joining 4, and b; inf(In‘flall)
missing all singularities of f and all points at which f (Int|a,[) is not locally flat m.M
(the number of such points is finite). Since (M) = 0 there exists a PL-mapping
h: D=M of a PL-disc which satisfies the conditions (1.3), (1.4) and such that
h(Int D) meets f(X) transversely and is disjoint from f(X{" L X{").
Without loss of generality we may assume that
h(IntDynf(X;) = 9.
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This can be achieved by a PL-homotopy of f(X,) which removes points of inter-
section. of A(IntD) and f(X,) by pushing these points along disjointly imbedded
arcs in A(D) to the edge a,. These are “Casson moves” (or finger moves), see the
proof of (3.1) in [Fr] and section | in [F-Q]. Moreover, we may assume that this
procedure does not introduce new points of intersection of f(X,) and f(X;).

Observe that there are open neighborhoods P; and P, of a; and a, in
f(Intlo,|) and f (Int|o,]), respectively, which satisfy the assumptions of Lemma (1.2).
Applying (1.2), we can modify the map f on the inverse image of a small neighbor-
hood of a, in P, in order to get a map f': X — M, which satisfies the conditions (a),
(), (©) and (d) of (1.1) and such that

FE)f(X) = F(X)nf (X)\{e, b} .
Thus the lemma follows by applying successively the above argument.

2. Some lemmas concerning presentations of groups. First we introduce some
conventions. By cdimg X we denote the cohomological dimension of X with respect
to G; Q the additive group of all rationals, @, the additive group of all rationals
whose denominators are coprime with a prime p and Z(k) = Z/kZ. By (k,[) we
denote the greatest common divisor of integers k and /. If (k, ) = 1 for cach / be-
longing to a set & of integers then we write (k, #) = 1. In the sequel of the paper,
we fix a copy of the unit circle and denote it by S, or by S. Let \/ {8;: jeJ}, where
0 eJ, denote the one point union, with the base point #, of circles {S;: jeJ} and
let a; be a generator of n,{S;, *}. If {v;: i eI} is any collection of words in symbols
{a;: jeJ} then one can form a 2-dimensional CW-complex whose 1-skeleton is
\/ {S;: jeJ} and whose 2-cells {s;: ie I} are such that the attaching map of o
is given by v;em,(\/ {S;: j&J}, *) for each icl We call
@1 P={{a;: jeJ}; {v;: iel}}
the presentation of the arising complex K(P). The elements v; are called refators
of P.

We say (see [Sp2]) that a mapping f: (L, Ly)— (X, S) is admissible if for any
homomorphism 7z of abelian groups the following condition is satisfied

H{)®h=0 iff HW)WQh=0,

where ¢: (L, Ly) = (D% S) and : (K, S)—(D?, ) are extensions of f|L, and
the identity map on S, respectively. (By D* we denote the upit 2-ball.)

The following lemma is essential in the proof of Theorem 2.

(2.2) Lemma (see [Sp2], (3.9) and (2.5)). Let (L, L,) be a pair of compact poly-
hedra such that dimL = 2. Then aay mapping Ly — S can be extended 10 an admissible
mapping (L, Ly) — (K(P), S) where P has the following form

P = {ay, .., a; a'é(j)dj"”) Jor 1<j<k, [a;, e for 0<i<j<k},

such that n(j) # 0 and n(j) divides m(j) for each je {1, .., k}.
We will also need the following lemmas:
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(2.3) LemMA. Let P be given by (2.1) and let P' be defined as P except that, for
some i€ I and some positive integer n, the relator v, is replaced by (v))". If (X, 4) is
a pair of compacta such that dimX = 2 and cdimyw X< 1, then a map f: A~ S
admits an extension X — K(P') provided f admits an extension X — K(P).

The proof is essentially the same as that of Lemma (4.4) in [Sp2], since the
assumption dim(Xx X) <4 can be relaxed to cdimgy X <1 (see Remark (4.3)

in [Sp2]).
(2.4) LomMA, Let P and P' be as assumed in (2.3). Then there exists a mapping
K(PY— K(P)
which is the identity on S.
(2.5) LeMMA. Let us consider two presentations

P = {ay, a5 a'(’)a’;'la [a0, a1}
and
P = {ay, ay, a3 abds, dyay, [ay, )] for 0<i<j<2},
where u, k and 1 are positive integers. If (k,1) = 1, then there exists a mapping
K(P)— K(P") which is the identity on S.

Proof. Let ¢ and ¢ be integers such that ¢+k+s-I = 1. Then the required map is
induced by the substitutions ay—a, and ay—aj .

3. Proof of Theorem 2. As discussed in the Introduction, we will restrict ourselves
to the case m = 2 = n and the “only if” part. Let X3, X, be 2-dimensional compacta
such that dim (X, x X,) <4 and let

get (Xgo Ao (D%, 8),
be mappings, where 4, is a closed subset of X, for se {I, 2}. We need the following

(3.1) LeMMA, There exist mappings

/Ix: (Xm As) "’(K(Ps)'- S) »

such that h(x) = g(x) for x & A, and Py is a presentation of the Sollowing form

s=1,2,

g=1,2,

Py {dg, oy gy @D for 1 <7< k), [ay, aj) for 0<i<j<k(},

where n(s, j) divides m(s,j), n(s,J) # 0, m(s,j) is either O or a power of a prime,
and the greatest common divisor of the integers m(L, D), m(2,j) divides the product
n(l, i)n(2,7) for each pair (i,j)e{l, ..., k(D}x {L, ., K2}

Proof. By (2.5), we may additionally require that in (2.2) each m(j)is either 0 or
a power of a prime. The proof follows from (2.2) by the argument used to prove
(4.2) in [Sp2].

Observe that under assertions of (3.1) either all m(l,j)’s are monzero or all
m(2,7)s are nonzero, Without loss of generality we will assume that the latter
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condition is satisfied. Let k denote the lowest common multiple of the integers
m'2,7) = m(2,/)n@2,j) for 1<j<k(2). Let us observe that

(3.2) Remark. If, in (3.1), we have m(l,j) = O then k divides n(1, ).

For se {1, 2}, let &, denote the set of all primes p such that cdimg, X, = 2.
Let us note (see [Ko]) that dim(X; x X;) <4 implies that &, n&F, = J. The proof
of Theorem 2 is divided into the following two lemmas:

(3.3) LEMMA. There exist an integer | such that (I, %,) = 1 and a mapping

fi XKy = K({ao, ay; ds, aoali})

snch thar f1(x) = g4(x) for each x € A;.

Proof. By (2.5) in [Sp2], and (3.1), (3.2) and (2.3), there exists a mapping
Byt (X, 4,) > (K(Py), S) as asserted in (3.1) and (3.2) except that, for each j such
that (m(1, ), #1) = 1, the condition n(1,5) divides m(1, ) is replaced by the con-
dition k divides n(1, ). By Lemma (2.4), we may additionally require that n(1,7) = 1
for each j such that (m(1,/), #4) # 1 and m(1,7) # 0. Let [ be the lowest common
multiple of all integers m(l,j)’s such that (m(1,/), #1) # 1 and m(1,)) # 0.
Observe that then (I, #,) = 1.

Now, there exists a mapping

K(P)~ Ky,

‘which is the identity on §; it is defined by the following substitutions
it (m(L,)),#F)=1,
if (m(1,), ) #1 and m(1,j) #0,

a, - trivial element

a;— (al)l/'"(l""

and by applying (2.4).
(3.4) LemMa. Let | be an integer such that (I, ;) = 1. Then there exists
a mapping
fi Xp— K, = K({am as, (aoa'f)'})

such that fo(x) = g,(x) for each x & Aj.

Proof. Let h, be as asserted in (3.1). By (2.4), there exists a mapping K(P,) —
-+ K(P3), which is the identity on S, where P; is defined as P, except that n(2,j) is
replaced by 1 and m(2, j) is replaced by m'(2, j) = m(2, ))n(2,j) for each 1 <j < k(2).
Then there exists a mapping
K(Py)—K({ay, a;; a5dt))

which is the identity on §; it is induced by the substitutions a, - (a,"™ @, The
lemma follows by applying (2.3) successively.

4. Appendix. An alternative approach to a result of [Sp2] and Theorem 2. We will
give an alternative proof of Theorems 3 and 3’ of [Sp2] and of the “only if” part of
Theorem 2, which does not depend on Lemma (2.2) and uses Eilenberg-MacLane
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spaces. We shall consider the case of 2-dimensional compacta only, as the proof in
higher dimensions is the same.

First, we introduce some notations. For a nonempty set & of primes, by Qs
we denote the intersection () {Q,: pe F}. If & is empty then we define 0y = Q.
By 0™ we denote the additive group of all rationals whose denominators are powers
of a prime p, and by N the set of nonnegative integers. The following informations,
stated in (4.1) and (4.5), on the Eilenberg-MacLane spaces K(Qg, 1) and K(0®/Z, 1)
are necessary.

(4.1) Lemma. Let F be a set of primes and let & denote the set of primes not
belonging to F. Suppose P is a presentation whose symbols form the set

o = {ag}via, i pe F,me N},
and whose relators form the set
(@) a5k pe &, m,ne N and m<nyu{le, dl: c,de o},

where each a, o = ay for each p e & . Then, the 2-dimensional complex K(P) satisfies
n,(K(P), *) = Qg. Therefore, K(P) can be considered as a 2-skeleton of an Eilenberg—
MacLane space K(Qg, 1).

Proof. Let h: m,(K(P), *)~ Oz be a homomorphism such that h(g) = 1
and h(a,,) = p~". We will prove that / is an isomorphism, by using the following
fact (see [Fu], Theorem 8.4, Chapter II):

2 052 = @ {QV/Z: pe F}.
Observe that any a & m;(K(P), *) can be presented in the following form

ki
(4.3) a=ay- [ %,
L PEF

where k(p) is 0 for almost all p and 0<k(p) < ", Suppose that
(4.4) k(@) = n+ 3, k(p)-p™™®
pe¥F
is 0 (in Qg). Then Y. k(p)- p~"P, considered as an element of Qg/Z, is equal to 0.
¥

e
Thus, by (4.2), we i’mvc that each k(p) is 0, and consequently n = 0. It follows that
= 0, which proves that 4 is a monomorphism.

Using (4.2), one can prove that any"'b & O can be presented in the form given
by (4.4), where k(p) is 0 for almost all p and 0 < k(p) < p"™. Thus b = h(a), where ais
given by (4.3). It follows that % is an epimorphism.

(4.5) Lemma. Suppose P is a presentation whose symbols form the set
{a,: ne N} and whose relators form the set

{ao} v {a(aey) 7 nE N}

Then, the 2-dimensional complex K(P) satisfies my(K(P), *) = oz, Ther(ij)'ore,
K(P) can be considered as a 2-skeleton of an Eilenberg-MacLane space K(Q™, 1).
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Proof. The homomorphism /: m,(K(P), *)» 0%/, given by h(ay) = 0 and
h(a,) = p~™ for n>0, is an isomorphism.
As a consequence of (4.1), we obtain the following

(4.6) LeMMA. Let F be a set of primes and let (X, 4) be a pair of compacta
such that dim X = 2 and that edimg ;. X < 1. Then any mapping A— S can be extended
10 a mapping

X K({ao, as; apa1})

Jor some integer n satisfying (n, F) = 1.

Proof. Suppose a mapping A — S is given. Since cdimy X <1 we can extend
this mapping to a mapping f; X— K(Qg, 1), see [Ko] (let us recall that a, cor-
responds to ). Since X is a 2-dimensional compactum thus we may assume that
J(X) is contained in a compact subset of K(P). Thus there exist a finite subsct
F' = {p1,.,;} of & and an integer r such that

SX)cKP)=K(P),
where P’ is the presentation whose symbols form the set
o' = {ag}uf{a,,: peF meN and m<r},
and whose relators form the set
{@n)" e peF',m,neN and m<n< ryuf{le,dl: c,de o'} .
The substitutions a,,,~(a,,)” ", where pe &', 0<m<r induce a mapping
K(P)—K(P"),

which is the identity on S, where P’ is the presentation whose symbols form the set

A" = {a}ufa,,: peF},
and whose relators form the set

{ag'al,: p eFYu{le,d]: ¢,de o'}

Finally, there exists a mapping

K(P")~K({ao, ay; apdl}),

which is the identity on S, where 7 = Py p)s and Lemma (4.6) follows.
Now, suppose X is a 2-dimensional compactum such that dim(Xx X)<4.
By. Theorem 41~4 in [Ko], it follows that cdimp X <2 and cdimy,, X < 2 for each
prime p. By (2.3) and (4.6), any mapping 4— S can be extended to a mapping
X K({ay, a,; (a,d)y)
and consequently to a mapping
X~ K({am ag; ﬂg(‘h)"z: [a,, a,]})
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for some integer n. Thus we obtain an alternative proof of the “only if* part of
Theorem 3 in [Sp2] that characterizes compacta X such that dim (X x X) < 2dim X=4.
Theorem 3’ of [Sp2], dealing with the case dimX > 2, can be reproved similarly.

(4.7) LemmA. Let k be an integer and let (X, A) be a pair of compacta such that
dim X = 2 and that cdimgeyz X <1 for each prime p which divides k. Then any
mapping A— S can be extended to a mapping

X K({ag, ay; df, ayah})

Jor some integer | which has the following property: if a prime p divides | then r
divides k.

Outline of the proof. The case where k is a power of a prime p can be
obtained as a consequence of (4.5) similarly to the proof (4.6). Then, the lemma can
be proved by applying the proof of (4.4) in [Sp2] and (2.5) in [Sp2].

An alternative proof of Theorem 2 (the “only if” part in the case m = 2 = n):
Let X and Y be 2-dimensional compacta such that dim(X x ¥) < 4. By 41-4 in [Ko],
we have cdimgy X' <2 or cdimy ¥ <2. Without loss of generality we may assume
that cdimg X' <2. By & we denote the sct of all primes such that cdimg, ¥ < 2.
Then, by Bockstein’s first theorem (see [Kol, p. 233), we have cdim, X <2.By (4.6),
any mapping 4 — S, where A is a closed subset of X, admits an extension

X K({ag, as; “oa,f})

for some integer k satislying (k, &) = 1.

By Z(k) we denote the set of all primes p which divide k. Since
PE)nF =@, thus by 41-4 in [Ko] it follows that cdimgeyz Y <2 for each
pe?(k). Let 2 be the set of all primes p e (k) such that cdimg, ¥ <2. Let us
consider k as the product s-# of integers such that (s, Z(\#') = 1 and (r, #') = 1.
By (4.7), any mapping B— S, where B is a closed subset of ¥, admits an extension

!
Y- K({ay, a;; db, apa,})

for some integer / which has the following property: if a prime p divides / then
pEePINA.

Observe that if a prime p divides s then cdimy,y ¥ <2, and if a prime ¢
divides / then cdimyy, ¥ = 2 and consequently cdimgy X <2 by Theorem 41-4
in [Ko]. Thus by (2.3), there exist extensions

X K({ay, as; (204%)'}) and

of the mappings 4— S and B— S respectively, and Theorem 2 follows. ‘

I am grateful to Henryk Toruficzyk for helpful conversations and suggesting
the use of Eilenberg-MacLane spaces to get alternative proofs in the Appendix.
I would also like to thank Zbigniew Karno for helpful discussions.

Y- K({ag, a; dy, apai})
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