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Caliber (v;, ) is not productive
by

Stephen Watson * (North York) and Zhou Hao-Xuan' (Chengdu)

Abstract. Caliber (»,, w) is a property between separability and the countable chain condition
which was introduced by Comfort and Negrepontis in their book Chain Conditions in Topological
Spaces. Separability is productive while the productivity of the countable chain condition is con-
sistent but indepexident of the axioms of set theory. In this i)aper, we construct, in ZFC, a space
of caliber (w,, w) whose square does not have caliber (w,, w). The combinatorics used in the con«
struction are of independent interest.

1. Introduction. In Chain Conditions in Topological Spaces, Comfort and Negre-
pontis [1] introduced the property of caliber (w,, w): A topological space has caliber
(e, , w) if point-finite families of open sets are countable. This property lies between
separability and the countable chain condition. Separability is productive while

‘the productivity of the countable chain condition is consistent but independent of
.the axioms of set theory. In this paper, we construct, in ZFC, a space X of caliber

(w4, ®) whose square does not have caliber (w,, @).

In compact Hausdorff spaces (or even Baire spaces), caliber (w,, @) coincides
with precaliber (w;, ) (any uncountable family of open sets has an infinite centred
subfamily) which is equivalent to the countable chain condition (construct induc-
tively maximal centred subfamilies — either some subfamily is infinite or the inter-
sections of these finite subfamilies are an uncountable disjoint family of open sets).

Under MA,,, the product of two spaces with the countable chain condition has
the countable chain condition (this- was shown by Kupen in 1968 (see [3])) and
50, under M4, , the product of two compact Hausdorff spaces with caliber (o4, @)
also has caliber (w;, w). The example in this paper is completely regular but cannot,
therefore, be compact (or even Baire).

A useful discussion of calibers and precalibers can be found in [2] while a discus-

_sion of M4 and productivity can be found in [3].
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2. Getting X to have an uncountable point-finite open family. Let A, and A . be
disjoint sets of cardinality N,. Let II;: w, — 4, (i€ 2) be bijections which witness
this fact. We shall define a family F of countable subsets of @, which are increasing
w-sequences. We shall also define a partition of F into subfamilies F, and F,. The
counterexample X is the subspace of 24°V** defined by pe X if and only if

1 aew;=(p(Iy@) = 0 v p(lL(«) = 0);

2. ie2=@fe F): Ainp {(DETI f
(& denotes inclusion mod finite).

Lemva 1. If fie F; (i€ 2) implies | fyfy| <w then X* has an uncountable
point-finite family.

Proof. Let U, = [[,c2{pe X: p(I()) = 1}. Bach U, is a nonempty open
subset of X2 (nonempty because U, contains the function (f,,f1)e X? defined
by f7 (1) = {I()}). In fact, {U,: ¢ €w,} is an wncountable point-finite open

- family. To demonstrate this, suppose that (pg, py) € () {Uym): n € ®}. Consider
the first coordinate: p, ([I (oc(n))) =1 for each ne w while, by (2) above, there is
fo€F, such that 4onps &0 fo. Thus {Ty(a(n): ne &I f, and so
{¢, neco}c fo- A similar argument shows that there is f, e F, such that
{#,: new} &£ and so |f,nfil = o which is impossible.

Remark: A standard 4-system argument shows that X has the countable
" chain condition. In fact, X has precaliber ¥,. Since precaliber ¥, is productive,
X? has the countable chain condition as well.

"3, Getting X to have caliber (w, ; ®). The precise definition of F is a bit difficult.
What we need is to be able to recapture a finite subset of w, from its maximum and
an integer: if- 4 < 4 has order-type w and supremum o then A4, is defined to be
{a(n): ae 4} if this set also has order-type  and supremum o (where each ordinal
ae o, is interpreted as a bijection a: - ~» ). This definition can be extended to finite
strings of integers in a natural way: if o = t *n where » denotes concatenation
then A(s) ="(A(7))(n) if this set also has order-type » and supremum a. If 4, exists,
then we say o codes A.

A technical problem arises here. How do we distinguish between a set 4 and
another set 4(n)? We need to well-found the 4(-) process and rigorize the notion
that 4 and 4(n) have different behavior. This is manifested, for example, in the
"length of a maximal string of #’s which code 4 and 4 (n). The definition of urelement
is only a little more difficult than this: the behavior of 4 on o where o codes 4 is
a function f: [¢]x domo— w where [o] is the set of all nonempty substrings of o.

If v is a nonempty substring of ¢ and ne domo then f(t, n) is the maximal
integer m such that on 7™ codes 4 (z™ denotes the concatenation of m copies
of 7). Of course, some sets may not have a defined behavior but this is not a problem.

.- Unfortunately, we need behavior to be hereditary to ensure that the hypothesis
of Lemma 2 is satisfied. We say that 4 has behavior f hereditarily if, for each t € [0]
and nedoma, A(on»t/"*!) is bounded below sup 4. Note that if B is an
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infinite subset of a set A with behavior f hereditarily, then B also has
behavior f.

The definition of F (and F, and F;) can now be made. Let {S(o, f, x): o is
a string of integers, f: [¢]xdomo—w and x: 1+domo —»2} partition the limit
ordinals into stationary sets. For each a € S(o, f, x), let F*(z) be the family of all
subsets 4 of w, of order-type w and supremum « such that ¢ codes 4 and A has
behavior f- hereditarily. Let F(«) = {A(c } n): 4 F*(),n<domo} and let
F=|){F(): o is 2 countable limit ordinal}. To complete the definition, let
A(c } n) € F, if x(n) = i. Note that each F, is closed under finite union, closed under
adding a finite set and closed under taking an infinite subset. What is not so evident
is that F, and F, are disjoint:

LemMA 2. Fy and Fy are disjoint (and so the hypothesis of Lemma 1 is satisfied
by the closure properties of each F)).

Proof. Suppose that A, Be Fy(o), o€ S{(o,f,x) and m<n but that
A(o } m) = B(o t n). Let 1€ [o] be such that ¢ bm*t= 0o pn Let f,, fp be the
behavior of A4 and B respectively. We can calculate f,(t, m) = f3(r, m)+ 1, which
contradicts f, =f = f3-

The basic thinning-out lemma we need is:

LevMa 3. If {{af: ien}: ac w,} is any disjoint family of subsets of w, (where
we assume &> ds > & > ... for simplicity), then there is a closed unbounded set C,
a string @, a behavior f and an uncountable A < w, such that for each o€ C and each
countable Y < A such that {aﬁ: Be Y} is an increasing sequence converging to a:

L {{d: peX}: i<n} = {{af: B X}(o }i): i<n};

2. {dh: Be X} has code o and hereditary behavior f on o.

Proof. Define a string o, for each aew; by {af: i<n} = {di(a(® ti):
i<n}. Now o(®) =0 is fixed on a stationary 4cw;. For each teld],
nedomo, wed, let fr,n) be the maximal integer m such that a(c t
n*t™)>a Assume f, =fis fixed. Furthermore, press down (that is apply
Ulam’s theorem which states that if S is a stationary subset of w; and f: S— oy
satisfies (Yoe §)f(«) <o then (@ stationary T S)Ane w,): (YaeT)f (@) =n)
finitely many times to find 7 € w, such that for each ve [o],nedomo, xe 4 we
have oo } nxt"*Y) <y where m = f,(r, n). Thin out A so that a < f € 4 implies
dy<d_, and then find Ccw,—7n such that c<deC apd c<dp<d implies
c<dy_y.

We can now prove the result:

LeMMA 4. X has caliber (0, o).

Proof. For ecach aew,, let p, e Fn(d,UA,,2) be a finite partial function
which indicates a nonempty basic open subset {fe X: fop,} of X which will
be denoted [p,]. By assumption (1) in the definition of X, for each a € w,, We can
find new, {4]: i<n}cow, and x: n—2 such that

suppp, = (I (af): i<n,x() = j}.
1'
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Assume the-{af : i < n} are disjoint outside a root (that is, assume that there is a finite
set 4 such that {4} —4: i < n} is a disjoint family) be applying the delta-system lemma
for finite sets and reindexing. We can ignore the root since it is finite. We can assume
that n is fixed and x is fixed and then we can apply Lemma 3 to find a closed un-
bounded set C, a string o, a behavior f and an uncountable 4 < w,. Let
weCnS(o,f, x) be such that there is an infinite Y= A such that {af: ae ¥}
Aincreases to. « (this requires intersection with another closed unbounded set). Now
{a%: € ¥} has code ¢ and behavior f hereditarily which implies that {a%: a e Y}

€ F*(o). This means that {ai: «e ¥} = {a§: ae Y}(o } i) & Fy;). By closure under
finite. unions {af: ¢ e ¥, ie x™*(j)} & F; and s0 p~ (1) N 4; eII(f) for some f'e F,.
By the definition of X, {[p,]: ¢ & ¥} has nonempty intersection with X.
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Slender modules, endo-slender abelian groups
and large cardinals

by

Katsuya Eda (Tsukuba)

Dedicated to Professor Hiroyuki Tachikawa .
on his 60-th birthday

Abstract. We prove the following theorems introducing some new notions.

THEOREM A. The following (1)~(3) are equivalent: ) .

(1) For an arbirary infinite cardinal ;t, there exists an Ly~ compact cardinal; ) :

(2) For an arbitrary ring R and module Mg, tlxem exists a cardinal » such that RM = Rp x] ,
where Ry 4 = (\{Ker(k): he Homp(4, M)} and R4 = S {RyXr: Xr < Ag and §X1<x},

(3) For an arbitrary ring R and module MR, the ‘torsion class +M, R is singly generated, i.e.,
IMy = J‘(Aé) Sor some AR.

An abelian group A is endo-slender, if 4 is a slender module over its endomorphism ring. .

TreorReM B. Let A(= Iic14i) be a direct product of reduced torsion free groups A; of rank 1. *
Then, A is endo-slender iff for any infinite subset X of I there exists a j & I such that

{ie X: t(d) <t(4;)}
78 infinite. .
THEOREM C. Let B be an (w, wo)-distributive complete Boolean algebra and A a countabiel
reduced torsionfree abelian group. Then, the Boolean power AB) is endo-slender iff B satisfies («,),
I.e. For any family of nonzero elements {bn: n < w} there exist a nonzero b, an infinite subset I of o
and hn (ne€I) such that hy: [0, bal—10, 6] is a ¢ bly complete rphism and ha(by) = b
for each ne 1.

0. Introduction. There had been several studies about slender modules and rings
as generalizations of slender abelian groups even before the works of Huber [23]
and Mader [26]. However, they found a somewhat new situation, where slenderness -
occurs through consideration of abelian groups and modules as modules over their
endomorphism rings. On the other hand, the fundamental theorem about slender
groups due to J. Lo§ was generalized to arbitrary cardinalities by the author-[8, 10].-
This clarified why a measurable cardinal appears concerning abelian groups, Though
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