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The dimension of products of complete separable metric spaces
by

John Kulesza (Fairfax)

Abstract. For each n & w, a complete, separable, totally disconnected metric space Xy is de-

scribed satisfying dim(Xn) = n and zflim()\’;".o ) = n. The space Xy can be chosen to be a subspace
of R™* homeomorphic to its own square.

0. Introduction. It is well known that if 4 and B are separable, metrizable spaces
with positive dimension, then

dim(4 x B) > max {dim(4), dim(B)},

provided either 4 or B is compact. In 1967, in [AK], Anderson and Keisler proved:

TueoreMm. For each ne w there is a separable, metrizable subspace Y, of R"*!
satigfying dim(Y,) = dim(¥y) = n.

It follows from above that an example as in this theorem cannot be compact
for n> 0. In this paper, we improve on the Anderson and Keisler result by showing:

TueoreM 1. For eachn e w there is a completely metrizable, totally disconnected
subspace X, of R'*' satisfying dim(X,) = dim(X;) = n.

In fact X© can be shown. to embed in R"**; hence the example can additionally
be made homeomorphic to its square.

Examples for n = 0 and n = 1 are well known,; for n = 0 the Cantor set suffices
while for n = 1 the set of irrational points in /, will do.

The examples provided will actually be graphs of functions from a Cantor set
into an n-cube. Dimension theory techniques of Rubin, Schori, and Walsh [RSW],
as noticed by R. Pol in [P] will easily give n dimensional complete graphs. We choose
the graphs carefully so that the products will not have greater dimension than the
original graphs.

Tn Section 2 a direct proof of Theorem 1 is given, while Sections 3 and 4 are
intended to isolate and generalize the techniques used in the proof of Theorem 1.
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In Section 5 an example is presented which shows that some of the care used in getting
the spaces for Theorem 1 is necessary.
The author gratefully acknowledges the referce’s valuable comments,

1. Preliminaries. Let R denote the real numbers, let I denote the closed
interval [0, 1], and let C denote the usual Cantor set in 1. If X is a set then
X" = {f: fis a function, domain(f) = n, and image(f) < X}. We identify fe X"
with the ordered n-tuple (f(0),/(1), .../ (n~1)), and let £, denote the restriction
of ftom. For x,y e R, x 2,y if x is greater than or equal to p in the lexicographic
ordering on R”. If fi XY is a function then Gr(/) denotes the graph of f; the
topology on Gr(/) is the subspace topology where Gr(/) < Xx Y. A topological
space is totally disconnected if each point is the intersection of all of the simul-
taneously closed and open subsets containing it. If X is a topological space, and G
is a collection of pairwise disjoint compact subsets of X whose union is X, then G is
an upper semicontinuous (usc) decomposition of X if and only if for each closed
subset C in X, U {geG: gnC # @} is closed in X.

2. Proof of Theorem 1. In [RSW], for each new a compact subset W,
of Cx I" < I"*! is described where W, projects onto C, and any subset of W, which
projects onto C has dimension n. For each ce C, let p, denote the least element
of ({c}xI")n W, in the lexicographic ordering, and let X, = {p,: ce C}. ThenX,
is the graph of a function f: C—I", where p, = (e,f(e), and dim(X,) = n. The
‘referée has pointed out that X, is essentially the set in the example on pages 80
and 81 of [L]. In fact, in [L] it is shown that such a metric spaces is complete; com-

" pleteness will also follow from our Theorem 3.
" 'We want to show that dim(X?) = n; it suffices to show dim (X, = n for all m.
‘For maximal simplicity we do the case m = 2; for larger m the proof is analogous.
"We actually show X7 embeds in € x R”, and the result is immediate. Consider the
function 2: X7+ CxCxR" given by

]1((()1,f(01)), (ﬂlsf(c2))> = (CL’ Czsf("j)"“f((‘z)) .

If 4 is an injective homeomorphism we are done because Cx C is homeomorphic
to C. To show that & is a homeomorphism we need only show its inverse is continuous
because 4 is obviously injective and continuous. Supposing the inverse is not con-
tinuous, we have (¢y, d;, £ (c))+7 (d)) = (¢, &, F (¢) +f (@) but (¢;, £ (e)) = ¢, r) and
(4, f(d))~(d, s) where not both r = f (¢) and s = f(d), for some sequence
{Ces, di, fle)+F (d))}. Since W, is compact, by the choice of S, it follows that
r2,f(c) and s =,f(d), with at least one of the Inequalities being strict. But then
r+5>,f()+f(d), and this implies that (c;, d,, f (c)) +f(d))~(c, d, r+5), violating
the original choice. M ‘

Remark. It will also follow from Theorem 2 that X' embeds in R"*!. In fact
it can be shown that X® embeds in R**!. For i€, let fi1 C—I" be defined by
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Filx) = f()/2", where fis as in Theorem 1. Then Gr(f,) is hameomorphic to Gr(f),
which is homeomorphic to X, and so [[Gr(f) is homeomorphic to X®. The
function p: T]Gr(f)~C”x R" defined by

])((i"'o’f(("()))w (Cl :f("l)): ) = ((cOs €1, ---);fo(co)+f1(c1)+...)

is a homeomorphism. But C* is homeomorphic to C, hence X2 embeds in C x R™

3. Bounding the dimension of products of graphs. We start by characterizing
graphs for which a particular function will be a homeomorphism.

Depwrrion: [ Let ft X+ R', and g: Y- R" be functions. The pair {f,g)
is said to be properly spreadif the conditions that (x, u) & el(Gr(f)), (. v) € cl(Cr(g))
and w-+o = ()40, imply that v = f(x) and v = g(p).

LemMA L If X and Y are metrizable, f+ X~ R" and g: Y- R" are bounded
Sunctions, then the function ¢: Gr(f)x Gr(g)— Xx Y% R* defined by

(e, S @), (7, g () = (%, 2. S D +9(»)

is an mjective homeomorphism if and only if {f, g) is properly spread.

Proof. Obviously e is continuous and injective. The function e is continuous
if and only if, whenever (x;, ¥,/ (x)-+g(¥))—~(x, y,f(x)+g(3)) it follows that
(34, S ) = (e, (x)) and (93, g (D))= (., g (), which is true if and only if {f, g)
is properly spread. W

In general, if fand g are continuous or # = | and f and ¢ are both lower (or
upper) semicontinuous, then ¢ will be a homeomorphism. We proceed to generalize
semicontinuity in a way which allows for the application of Lemuma 1, and obviously
includes functions like the f used in Theorem 1.

DerNmIoN 2, 10 X is a topological space, and /2 X'~ R" is a function, then fis n
lower semicontinuous (n-lsc) provided, if p = (x,7) e {x} xR is a limit point of
Gr(f) (in Xx R", then r, f(x). ‘

One can define 7 upper semicontinuity analogously and get all of our results.
We stay with n lower semicontinuity.

LemMA 2. If X and Y are metrizable spaces and f: X~ R, g: Y- R" are
n-lse, then {f, gy is properly spread.

Proof, Suppose (x, w) & cl{(Gr(f)), (. 0) & cl(Gr(g)) and utv = f (x)+g(?1)-
By the n-1sc condition, v 2, f (x) and v 2, g (), s0 u+v 2, f(¥) +g(»), with equality
holding exactly when u = 7(x) and « = ¢(¥). Thus {f, g) is propesly spread. M

Lemma 3. If X and Y are metrizable spaces, 2 X-+R" and g: Y~ R" are
bounded n-lsc functions, then h: Xx Y= R" defined by h(x,y) =f (x)+g{(y) is
« bounded n-Isc function. S

Proof. Obviously / is bounded. Suppose (x, v, r) € Xx Yx R” is a limit point
of Gr(h). Then there are r, and r, with (x, r,) € cl(Gr(f)) and (¥, 1) € (G (g))
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and 7,+r, = r. Since the functions are n-lsc r,2,f(x) and r,2,9(3), so
r2 f(®)+g() = h(x,y). ®

Combining Lemmas 1, 2 and 3:

TuEOREM 2. If X and Y are metrizable f» X — R" and g: Y- R" are bounded
and n-lsc, then Gr(f)x Gr(g) is homeomorphic to Gr(h) where h: Xx Y- R" is
defined by h(x,y) = f(x)+g(»), and k is n-Isc.

Immediately we get:

COROLLARY 1. For X, Y metrizable, and f, g n-lIsc functions as in Theorem 2,
dim{Gr () x Gr(g)) < dim (X)) +dim (¥) +n.

Proof. By Theorem 2, Gr(X)x Gr(¥) is homeomorphic to Gr(h) which is
a subset of Xx YxR". W

COROLLARY 2. If X is a strongly zero dimensional metrizable space and f: X — R"
is bounded and n-lsc, then dim(Gr(f)®) < n. .

Proof. We only need to show dim(Gr()*) < for all k > 1. But this is obvious
using Theorem 2 and induction. M

In the same way one proves the following.

CorOLLARY 3. If {X;: ie w} is a collection of strongly zero dimensional metrizable
spaces, and for each i€ w, fi: X, R" is n-Isc, then dim(]] Gr(f))<n.

4. Getting completeness. In the exaniple of Theorem ! the use of the lexico-
graphic ordering was twofold. First, it enabled the usc of the homeomorphism tech-
nique of Section 3, by giving n-1sc functions. The main goal of this section is to show
its other use, which is to guarantee completeness; this is the content of Theorem 3
which is quite general and interesting in its own right. Apparently the use of the
lexicographic ordering in selection theorems is quite old. (See [BS] for an example.)
Also, other people know of Theorem 3; we include a proof because we do not know
of a reference and because it can be used to show the spaces X, from Theorem 1
are complete.

We start with some notation and a preliminary lemma.

If X< I' is a compact set, and G is a usc decomposition of X, then for each
g € G let I(g) denote the least element of g in the lexicographic ordering on I", Then
for O<m<n, let g(m) = {xeg: ¥, = g}, and let G, = {g(m): ¢ eG}.
Then G, = {{I(9)}: g€G).

Lemma 4. For X, G as above, G,, is a usc decomposition of \) G,,.

Proof. Fix m. Suppose K is a closed subset of U Gy, and x e g(m) is a limit
point of H= J{geG,: gnk @}, Then for each few, there exists X, € g,{m)
with x,—x, and each g,(m) < H. Now Xyl ¥y, There are also y, & g(m)nK,
and yl,, = xl,,. By the usc property of G, any limit point of {y,}is in g, and there
must be such a point; call it y. Now it follows that yeKngm), so gim) = H, W

TeeoREM 3. For X and G as above, Jor eachm withO<m<n, U G, is a Gy
subset of I'. In particular {I(g): g e G} is completely metrizable.
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Proof. Obviously G, is Gy. Suppose {J G,, is G;. We show that U Ghsy is.
For each icw und 0<j<2' let J,; = {xeI": x(m)e [jI2, (j+1)/2'1}, and let
Ji={J;: 0<j< 2. We consider J; as ordered by the second subscript. We have:

(1) J; is a closed subset of I"

(2) If x, y are both in J;;, then |x(m)—y(m)| < 1/2', and

(3) For cach g € G, g (m-+1) = J;; where J; is the least element of J, intersecting
g{(m).

For each icw and 0</<2 let Ky = (Jyn(U GINW, where W, =
= U {g(m): g(m)nJ,, # O for some r<j}. Then:

M Ky is a Gy set,

8 I Kyng # @, then g(m+1)SK,.,, and

(6) For cach iew there is a K, which intersects g.

The only one at all tricky to verify is (4). By Lemma 4, W, is a closed subset
of U G,,. But Jy; is closed, |J G, is Gy by hypothesis, so (4) holds.

Let K; = U {K,;: 0<j<2Y;clearly K, is Gy. Thus N K is also a G,. By (2), (3),
and (6)'\ U Gm+l == ﬂ Kl' L]

Observe that Theorem 3 remains true with » replaced by . Thus Theorem 3
gives a way of {inding G sections for mappings on compact metric spaces; simply
embed the domain in the Hilbert cube and choose the least element in each point
inverse.

5. A false conjecture. One might guess that whenever f: C— R* is a fuction
dim(Gr{f)") €n. We provide a counterexample as follows. Let X, be as in
Theorem 1, and let f"be the function which X, is the graph of. Define, for i€ {0, 1},
Jit €= R by fi(e) = x4 and fi(e) = x; where f(¢) = (x,, x,). Let M be the free
union of Gr(f,) and Gr(f}). Clearly M is homeomorphic to the graph of a function
from C to R", and so dim (M) <1, but M? contains a copy of Gr(f) (along the
diagonal), hence has dimension 2.

6. Questions, The [ollowing questions present themselves.

(1) Is there a (compleie) separable metric space M such that dim(M)
<dim(M”) < ?

(2) The examples of this paper give, 10 some extent, high dimensional analogues
of the irrational points in /,. In order to make the analogue more complete, can these
examples be made homogencous?
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An approximate analog of a theorem of Khintchine
by
Chris Freiling and Dau Rinne (San Berpardino, California)
Abstract The following theorem is established: If [ is a real valued measurable function on

the reals, then f has a finite approximate derivative almost everywhere on the set where the upper
approximate symmettic derivate is less than infinity. This theorem is the approximate apalog of

& theorem of A. Khintchine.

In 1927, Khintchine [2] proved the following:

THEOREM. If' fis a real valued measurable function on the reals, then f has a finite
ordinary derivative almost everywhere on the set where the upper symmetric derivate
is less than infinity.

In this paper we prove:

Teeowem 1. It fis a real valued measurable fimction on the reals, then f has
a finite approximate derivative almost everywhere on the set where the upper approxi-
mate symmetric derivate is less than infinity.

An earlier proof of Theorem | (Russo and Valenti [6]) makes the oversight of
assuming that not density zero implies positive density. This theorem will almost

immediately give a Denjoy--Young-Saks Theorem for the approximate symmetric

derivative,

In [1], Belna, Bvans, and Humke constructed an additive subgroup, G, of the
reals so that both the set G and its complenient contain an element fiom every perfect
set, and thus both have inner measure zero, The characteristic function of the set G,
therefore, has symmetric derivative zero at every point in G, while the ordipary
derivative does not exist at any point in G, showing that the assumption of measu-
rability cannot be dropped in Khintchine’s Theorem, Their example, however,
leaves open the possibility that a non-measurable version of Khintchine’s Theorem
might be true if “almost everywhere” were replaced by “except on a set of inmer
measure zero.” This improvement has been established by the following result of

Uher [9]:

THEORRM. If a function f has a finite upper symmetric derivate on a measurable
set E, then f is almost everywhere differentiable on E.
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