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An approximate analog of a theorem of Khintchine
by
Chris Freiling and Dau Rinne (San Berpardino, California)
Abstract The following theorem is established: If [ is a real valued measurable function on

the reals, then f has a finite approximate derivative almost everywhere on the set where the upper
approximate symmettic derivate is less than infinity. This theorem is the approximate apalog of

& theorem of A. Khintchine.

In 1927, Khintchine [2] proved the following:

THEOREM. If' fis a real valued measurable function on the reals, then f has a finite
ordinary derivative almost everywhere on the set where the upper symmetric derivate
is less than infinity.

In this paper we prove:

Teeowem 1. It fis a real valued measurable fimction on the reals, then f has
a finite approximate derivative almost everywhere on the set where the upper approxi-
mate symmetric derivate is less than infinity.

An earlier proof of Theorem | (Russo and Valenti [6]) makes the oversight of
assuming that not density zero implies positive density. This theorem will almost

immediately give a Denjoy--Young-Saks Theorem for the approximate symmetric

derivative,

In [1], Belna, Bvans, and Humke constructed an additive subgroup, G, of the
reals so that both the set G and its complenient contain an element fiom every perfect
set, and thus both have inner measure zero, The characteristic function of the set G,
therefore, has symmetric derivative zero at every point in G, while the ordipary
derivative does not exist at any point in G, showing that the assumption of measu-
rability cannot be dropped in Khintchine’s Theorem, Their example, however,
leaves open the possibility that a non-measurable version of Khintchine’s Theorem
might be true if “almost everywhere” were replaced by “except on a set of inmer
measure zero.” This improvement has been established by the following result of

Uher [9]:

THEORRM. If a function f has a finite upper symmetric derivate on a measurable
set E, then f is almost everywhere differentiable on E.
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The example of Belna, Evans, and Humke simifarly shows that the measurability
condition of fin Theorem 1 of this work cannot be dropped, since the characteristic
function of their set G also does not have an approximate derivative at any point
in G. However, an improvement such as Uher’s cannot be proven in ZFC for the
approximate case since, with the aid of the continuum hypothesis, Sierpinski [8}
constructed a set whose characteristic function has an approximate symmetric deri~
vative zero everywhere and which is nowhere approximately differentiable.

We will use the following notation. We use 1 and A, for Lebesgue measure on
the line and in the plane respectively. The approximate derivative (upper right,
lower right) of fis denoted by f,,(f ;; » fiap): The approximate symmetric derivative
of fis fi(x) = lim appy—o. (f (o+k)—F (x—H))/2h. The upper and lower approxi-
mate symmetric derivates ( f3', &) are defined similarly.

Proof of Theorem 1. Let E be the set on which f$’ <o and £, does not
exist. Since &7 is measurable (Larson [3]), as are the extreme approximate derivates
(Saks. [7]), E is a measurable set. Suppose that E has positive measure. We may
assume that; for some n, f$ <n on E since E is the countable union of such sets,
and also assume £ is contained in some finite interval. By subtracting the function nx
from f, we may further assume that 7’ <0 on E.

We first construct a function g and a set G< £ so that

() A(G) > A(E)/2 and

(2) for each x in G and &> 0,

AM{he(0,8)] f(x+h) <f(x~h}) = (1—8) for all 5< g(s) .

For the construction of G and g we first need to demonstrate, for fixed positive
integers n and k, the measurability of

A™ = {x| A({he©,0) f(x+h) </ (x=m}) > (1=1/m)s for all & in (0, Y}

Let B = {(x,h,0)] 0<h<d and f(x+h) <f(x—F)}, a measurable subset of R®.
Then 5(x, &) = A({h| (x, h, 5)€ B})/§ is a measurable function by Fubini’s Theo-
rem. Therefore, C = {(x, 8)| b(x,8) > 1—-1/n} is a measurable subset of R2 For
each rational ¢ in (0, 1], let D, = {(x, )| (x, ¢»)e C}. Then D = () D, is mea-
surable. Since b(x, 6) is continuous in 6, D = {(x, )] y>0 and (x, ) & C for all
0<3<y}. Observe that {y| (x,y)e D} is the same as the interval [0, d(x)].
Therefore, by Fubini’s Theorem, d(x) = A({y| (v, ) e D}) is a measwable fun-

ction, and since A™ = d~*([I/k, w)), 4" is measurable. Observe, for each n,
E=|(End™.
k

‘ To construct G, let A, = E and k, = 1. We define A4, and k, inductively by

picking k,>k,-; so that 4, = 4, , [} 4™ has measure greater than A(E)/2.
.o ‘e g

Then {4,} is a nested decreasing sequence of sets and G = (" A, has measure greater
n=]

than or equal to A(E)/2. Define the function g to be 1/k, on each interval
{l/n, 1/(n—~1)). Then G and g clearly satisfy conditions (1) and (2) above.
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By the Denjoy-Young-Saks Theorem for approximate derivatives (Jeffery [5]),
Sot= 00 and fy4p = —co almost everywhere on G, since G < E. By ignoring a set
of measurc 0, we may assume that these derivates are infinite at every point in G
and that every point in G is a density point of G.

For x in G and r > x, let T'(x, r) be the right triangle, together with its interior,
with vertices (x, 0), (r, 0), and ((x+r)/2, (r—x)/2). If P is any point in T(x, r) off
the x-axis, then P is a vertex of some T'(z, y) = T(x, r). Let D(x, r) consist of all
such. points P for which f(z) > (») and let U(x,r) be T'(x, rND(x, r). Observe
that, if f$(c) < 0 for ¢ between x and r then D (x, r) has linear density 1 at the point
(c, 0) along the vertical line through (¢, 0).

The function g provides the uniformity needed to establish the following limit
we will need later in the proof. For xe G

(O © lim L,(UCx, )A(T(x, 1) = 0.

To see this, let &> 0. Since x is a density point of G, we can pick § € g(e) so that

MG (x, r))(r~xy>1—e for 0<r—x<8. By property (2), if y& Gn(x, r) and

r—x <38, the linear measure of D(x, r) on the vertical line segment through the

point (y, 0) inside of T'(x, r) is at lcast 1 — ¢ times the height of T(x, r) above (y, 0),

-since this height is less than g (), Thus, the total measure of D(x, r) is greater than

.or.equal to (1~8)*2,(T(x, 1)), so lim* Ao(D(x, 1)) A(T(x, r)) = 1, establishing (%).
rex

Fix x € G, let / be the line thiough the point (x, 0) with slope 1. The line / con-

“taims a side of T'(x, r) for all r > x. For any point P, let I_,(P) be the line through P

with slope —1. Observe that if the upper vertices of T'(x, ¥) and T(x, z) are in
D(x,z) and Ufx, z) respectively, then the upper vertex of T(y,z) is in
U(x, 2)n1.4(Z), where Z is the point (z, 0). This says that, if x <b < ¢, then for
each point P in (U(x, ONTGx, B))n 1, 2(U(x, )nI1-y(P)) 2 A(D(x, b) ). Thus,
ifx<b<e

) 2(Ux, ©)) = A(D(x, YA DA(U(x, ONT(x, B) A1)

We will show that j}.’; = 0 and fi,, = —© on G lead to a contradiction
of (x). Let « and f be 1/4/2 times the lower and upper densities of the set U(x, r)n1
at the point (x, 0) (The factor of 1/4/2 is used due to the fact that r—x is along the
x-axis while U(x, )1 is along 1). Thus limsup,..x+ (A(U(x, 1))/~ x) = B and
Tminf, e (1( Ulx, ) l))/(r—-—x) = g. If the right approximate derivates of f are co
and —oo, then U(x,r)n! and D(x, r)n] have positive upper linear density at

“(x,0), and hence 0< f and o <1//2. We distinguish two cases. .

. Case1. If a <, let m = (a-+f)/2. We pick two sequences {a,} and (b,} with
by4y <@,y <b, <a,, where n ranges over the set of positive integers for which
«/3’*1/#?"",’1-’ We pick 4, so that '

(UG, )] = (- tpGay) md | '
e by = sup{b & (¥, a)| A(UGx, ) =m(b=}
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Then, for p—ln>m, AU(x, a)nl) = (f~1/n)(a,~x) = A(U(x, b))+
+k,(a,—b,) where m<k,<1//2. This gives p—1/n= m(b,~x)/(a,—x)+
+k,(a,—b,)/(a,—x). We can assume that lim(a,—b,)/(a,—x) exists by passing to
a subsequence if necessary. This [imit cannot be zero, since then (b,— x)/(a,—x)
would approach 1, and the equation above would yield f = m. Thus for some
83 0 and all n, a,—b, = 8(a,—x) = 6(b,—x). Since a,—b, may be much larger than
6(b,—x), we let ¢, = b,+8(b,—x) so that (b,—x)/(c,—x) = 1/(1+8). We also have
AD@, b)) = (1 J2-m)(b,~x) and  A((U(x, eI\NT(x, b)) A1) > m(c,~b,)
= md(b,—x). Thus, by (), the measure of U(x, ¢,) is at least
(UJ2~m) (b, —x)mb (b, —X) .

Since the measure of T(x,¢,) is (¢,—x)*/4, the relative measure of U(x,¢,) in
T(x, c,) is at least (1./2—m)(b,—x)*4m[(c,~ x)* = 4(l//Z—m)md/(1 +8)2, con-
tradicting Hmit (x).

Case 2. If o = B, define b, = x+1/2", and ¢, = b,_,, so that (¢,—b,) = (b,~x).
Since the density of U(x, r)n/ at (x, 0) exists, the relative measures

A(UCx, eNT(x, B,) 0 D)(c,~b,)

approach 1//2—o and o respectively. By (+x), the liminf of the sequence
2o(Ux, e)22(T(x, c,) is at least a(l//2~u)>0, contradicting (x). This finishes
the proof of our theorem.

Theorem 1 immediately gives the following approximate symmetric analog of
the Denjoy-Young-Saks Theorem.

THEOREM 2. For a measurable function f, almost everywhere

(1) £4 exists (finite) or

@ FY =c0 and f = — 0,

Proof. By Theorem 1, f;; exists (finite) almost everywhere on the complement
of the set for which (2) holds, and £’ = fy, when the approximate derivative exists.

AD(x, by Dib,—x) and
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